
• unconstrained problem: x is optimal if and only if

x ∈ dom f0, ∇f0(x) = 0

• equality constrained problem

minimize f0(x) subject to Ax = b

x is optimal if and only if there exists a ν such that

x ∈ dom f0, Ax = b, ∇f0(x) + ATν = 0

• minimization over nonnegative orthant

minimize f0(x) subject to x � 0

x is optimal if and only if

x ∈ dom f0, x � 0,

{

∇f0(x)i ≥ 0 xi = 0
∇f0(x)i = 0 xi > 0
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Equivalent convex problems

two problems are (informally) equivalent if the solution of one is readily
obtained from the solution of the other, and vice-versa

some common transformations that preserve convexity:

• eliminating equality constraints

minimize f0(x)
subject to fi(x) ≤ 0, i = 1, . . . , m

Ax = b

is equivalent to

minimize (over z) f0(Fz + x0)
subject to fi(Fz + x0) ≤ 0, i = 1, . . . , m

where F and x0 are such that

Ax = b ⇐⇒ x = Fz + x0 for some z
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• introducing equality constraints

minimize f0(A0x + b0)
subject to fi(Aix + bi) ≤ 0, i = 1, . . . , m

is equivalent to

minimize (over x, yi) f0(y0)
subject to fi(yi) ≤ 0, i = 1, . . . , m

yi = Aix + bi, i = 0, 1, . . . , m

• introducing slack variables for linear inequalities

minimize f0(x)
subject to aT

i x ≤ bi, i = 1, . . . , m

is equivalent to

minimize (over x, s) f0(x)
subject to aT

i x + si = bi, i = 1, . . . , m
si ≥ 0, i = 1, . . . m
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• epigraph form: standard form convex problem is equivalent to

minimize (over x, t) t
subject to f0(x)− t ≤ 0

fi(x) ≤ 0, i = 1, . . . , m
Ax = b

• minimizing over some variables

minimize f0(x1, x2)
subject to fi(x1) ≤ 0, i = 1, . . . , m

is equivalent to

minimize f̃0(x1)
subject to fi(x1) ≤ 0, i = 1, . . . , m

where f̃0(x1) = infx2 f0(x1, x2)
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Quasiconvex optimization

minimize f0(x)
subject to fi(x) ≤ 0, i = 1, . . . , m

Ax = b

with f0 : Rn → R quasiconvex, f1, . . . , fm convex

can have locally optimal points that are not (globally) optimal

(x, f0(x))
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convex representation of sublevel sets of f0

if f0 is quasiconvex, there exists a family of functions φt such that:

• φt(x) is convex in x for fixed t

• t-sublevel set of f0 is 0-sublevel set of φt, i.e.,

f0(x) ≤ t ⇐⇒ φt(x) ≤ 0

example

f0(x) =
p(x)

q(x)

with p convex, q concave, and p(x) ≥ 0, q(x) > 0 on dom f0

can take φt(x) = p(x)− tq(x):

• for t ≥ 0, φt convex in x

• p(x)/q(x) ≤ t if and only if φt(x) ≤ 0
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quasiconvex optimization via convex feasibility problems

φt(x) ≤ 0, fi(x) ≤ 0, i = 1, . . . , m, Ax = b (1)

• for fixed t, a convex feasibility problem in x

• if feasible, we can conclude that t ≥ p⋆; if infeasible, t ≤ p⋆

Bisection method for quasiconvex optimization

given l ≤ p⋆, u ≥ p⋆, tolerance ǫ > 0.

repeat

1. t := (l + u)/2.

2. Solve the convex feasibility problem (1).

3. if (1) is feasible, u := t; else l := t.

until u− l ≤ ǫ.

requires exactly ⌈log2((u− l)/ǫ)⌉ iterations (where u, l are initial values)
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Linear program (LP)

minimize cTx + d
subject to Gx � h

Ax = b

• convex problem with affine objective and constraint functions

• feasible set is a polyhedron

P x⋆

−c
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Examples

diet problem: choose quantities x1, . . . , xn of n foods

• one unit of food j costs cj, contains amount aij of nutrient i

• healthy diet requires nutrient i in quantity at least bi

to find cheapest healthy diet,

minimize cTx
subject to Ax � b, x � 0

piecewise-linear minimization

minimize maxi=1,...,m(aT
i x + bi)

equivalent to an LP

minimize t
subject to aT

i x + bi ≤ t, i = 1, . . . , m
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Chebyshev center of a polyhedron

Chebyshev center of

P = {x | aT
i x ≤ bi, i = 1, . . . , m}

is center of largest inscribed ball

B = {xc + u | ‖u‖2 ≤ r}

xchebxcheb

• aT
i x ≤ bi for all x ∈ B if and only if

sup{aT
i (xc + u) | ‖u‖2 ≤ r} = aT

i xc + r‖ai‖2 ≤ bi

• hence, xc, r can be determined by solving the LP

maximize r
subject to aT

i xc + r‖ai‖2 ≤ bi, i = 1, . . . , m
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(Generalized) linear-fractional program

minimize f0(x)
subject to Gx � h

Ax = b

linear-fractional program

f0(x) =
cTx + d

eTx + f
, dom f0(x) = {x | eTx + f > 0}

• a quasiconvex optimization problem; can be solved by bisection

• also equivalent to the LP (variables y, z)

minimize cTy + dz
subject to Gy � hz

Ay = bz
eTy + fz = 1
z ≥ 0

Convex optimization problems 4–20



generalized linear-fractional program

f0(x) = max
i=1,...,r

cT
i x + di

eT
i x + fi

, dom f0(x) = {x | eT
i x+fi > 0, i = 1, . . . , r}

a quasiconvex optimization problem; can be solved by bisection

example: Von Neumann model of a growing economy

maximize (over x, x+) mini=1,...,n x+
i /xi

subject to x+ � 0, Bx+ � Ax

• x, x+ ∈ Rn: activity levels of n sectors, in current and next period

• (Ax)i, (Bx+)i: produced, resp. consumed, amounts of good i

• x+
i /xi: growth rate of sector i

allocate activity to maximize growth rate of slowest growing sector
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