Convex Optimization — Boyd & Vandenberghe
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Optimization problem in standard form

minimize  fo(z)
subject to  fi(x) <

e © € R" is the optimization variable
e fo:R" — R is the objective or cost function
e /;:R" =R, i=1,...,m, are the inequality constraint functions

e h; : R" — R are the equality constraint functions
optimal value:
p* =inf{fo(z) | fi(x) <0, i=1,...,m, hi(x) =0, i1 =1,...,p}

e p* = o if problem is infeasible (no x satisfies the constraints)

e p* = —oo if problem is unbounded below
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Optimal and locally optimal points

x is feasible if € dom f; and it satisfies the constraints
a feasible x is optimal if fy(x) = p*; X,pt is the set of optimal points

x is locally optimal if there is an R > 0 such that x is optimal for

minimize (over z) fo(2)

subject to fi(z) <0, i=1,....,m, hi(z)=0, i=1,...

Iz =zl < R

examples (with n =1, m = p = 0)

e fo(r)=1/x, dom fy =R, : p* =0, no optimal point

e fo(r)=—logx, dom fy =R,,: p* = —

o fo(r)==xlogx, dom fy =Ry ,: p* = —1/e, x = 1/e is optimal
e fo(x) =a°— 3z, p* = —o0, local optimum at z =1
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Implicit constraints

the standard form optimization problem has an implicit constraint
m p
xeD= ﬂdomfi N ﬂdomhi,

e we call D the domain of the problem
e the constraints f;(x) <0, h;(x) = 0 are the explicit constraints

e a problem is unconstrained if it has no explicit constraints (m = p = 0)

example:
minimize fo(x) = — Zle log(b; — alx)

is an unconstrained problem with implicit constraints a; z < b;
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Feasibility problem

find x
subject to  fi(z) <0, i=1,...,m

can be considered a special case of the general problem with fo(x) = 0:

minimize 0
subject to  fi(x) <0, i=1,...
hi(x) =0, 1

e p* = 0 if constraints are feasible; any feasible x is optimal

e p* = oo if constraints are infeasible
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Convex optimization problem

standard form convex optimization problem
minimize  fy(x)

subject to fz(as) i=1,....,m
a; aj—bz, 1=1,...,p

e fo, f1, ..., fm are convex; equality constraints are affine

e problem is quasiconvex if fy is quasiconvex (and f1, ..., fm convex)

often written as

minimize  fy(x)
subject to fz( ) <0, i=1,....m
Ax =0

important property: feasible set of a convex optimization problem is convex
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example

minimize  fo(x) = 27 + 25
subject to  fi(z) = x1/(1+23) <0
e fy is convex; feasible set {(x1,x2) | t1 = —x2 < 0} is convex

e not a convex problem (according to our definition): f7 is not convex, hq
is not affine

e equivalent (but not identical) to the convex problem
minimize 2% + 23

subjectto x1 <0
xr1 + Io9 = 0
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Local and global optima

any locally optimal point of a convex problem is (globally) optimal
proof: suppose x is locally optimal and y is optimal with fo(y) < fo(x)

x locally optimal means there is an R > 0 such that

z feasible, |z—z|o <R = fo(2) > fo(x)

consider z = 0y + (1 — 0)x with 8 = R/(2||ly — x||2)

o |[y—x|2>R, s00<6<1/2
e 2 is a convex combination of two feasible points, hence also feasible

e ||z—z|2=R/2 and

fo(z) < 0foley + (1 = 0) folap-< fo(x)

=

which contradicts our assumption that x is locally optimal
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Optimality criterion for differentiable f

x is optimal if and only if it is feasible and

Vfolx) ' (y —x) >0 for all feasible y

if nonzero, V fo(x) defines a supporting hyperplane to feasible set X at z
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