Perspective

the perspective of a function $f: \mathbf{R}^{n} \rightarrow \mathbf{R}$ is the function $g: \mathbf{R}^{n} \times \mathbf{R} \rightarrow \mathbf{R}$,

$$
g(x, t)=t f(x / t), \quad \operatorname{dom} g=\{(x, t) \mid x / t \in \operatorname{dom} f, t>0\}
$$

g is convex if f is convex

examples

- $f(x)=x^{T} x$ is convex; hence $g(x, t)=x^{T} x / t$ is convex for $t>0$
- negative logarithm $f(x)=-\log x$ is convex; hence relative entropy $g(x, t)=t \log t-t \log x$ is convex on \mathbf{R}_{++}^{2}
- if f is convex, then

$$
g(x)=\left(c^{T} x+d\right) f\left((A x+b) /\left(c^{T} x+d\right)\right)
$$

is convex on $\left\{x \mid c^{T} x+d>0,(A x+b) /\left(c^{T} x+d\right) \in \operatorname{dom} f\right\}$

The conjugate function

the conjugate of a function f is

$$
f^{*}(y)=\sup _{x \in \operatorname{dom} f}\left(y^{T} x-f(x)\right)
$$

- f^{*} is convex (even if f is not)
- will be useful in chapter 5

examples

- negative logarithm $f(x)=-\log x$

$$
\begin{aligned}
f^{*}(y) & =\sup _{x>0}(x y+\log x) \\
& = \begin{cases}-1-\log (-y) & y<0 \\
\infty & \text { otherwise }\end{cases}
\end{aligned}
$$

- strictly convex quadratic $f(x)=(1 / 2) x^{T} Q x$ with $Q \in \mathbf{S}_{++}^{n}$

$$
\begin{aligned}
f^{*}(y) & =\sup _{x}\left(y^{T} x-(1 / 2) x^{T} Q x\right) \\
& =\frac{1}{2} y^{T} Q^{-1} y
\end{aligned}
$$

