Descent methods

$$x^{(k+1)} = x^{(k)} + t^{(k)} \Delta x^{(k)} \quad \text{with } f(x^{(k+1)}) < f(x^{(k)})$$

- other notations: $x^+ = x + t\Delta x$, $x := x + t\Delta x$
- Δx is the step, or search direction; t is the step size, or step length
- from convexity, $f(x^+) < f(x)$ implies $\nabla f(x)^T \Delta x < 0$ (*i.e.*, Δx is a *descent direction*)

General descent method.

given a starting point $x \in \operatorname{dom} f$.

repeat

1. Determine a descent direction Δx .

2. *Line search.* Choose a step size t > 0.

3. Update. $x := x + t\Delta x$.

until stopping criterion is satisfied.

Line search types

exact line search: $t = \operatorname{argmin}_{t>0} f(x + t\Delta x)$

backtracking line search (with parameters $\alpha \in (0, 1/2)$, $\beta \in (0, 1)$)

• starting at t = 1, repeat $t := \beta t$ until

$$f(x + t\Delta x) < f(x) + \alpha t \nabla f(x)^T \Delta x$$

• graphical interpretation: backtrack until $t \leq t_0$

Gradient descent method

general descent method with $\Delta x = -\nabla f(x)$

given a starting point $x \in \text{dom } f$. **repeat** 1. $\Delta x := -\nabla f(x)$. 2. *Line search.* Choose step size t via exact or backtracking line search. 3. *Update.* $x := x + t\Delta x$. **until** stopping criterion is satisfied.

- stopping criterion usually of the form $\|\nabla f(x)\|_2 \leq \epsilon$
- convergence result: for strongly convex f,

$$f(x^{(k)}) - p^* \le c^k (f(x^{(0)}) - p^*)$$

 $c \in (0,1)$ depends on m, $x^{(0)}$, line search type

• very simple, but often very slow; rarely used in practice

quadratic problem in $\ensuremath{\mathsf{R}}^2$

$$f(x) = (1/2)(x_1^2 + \gamma x_2^2) \qquad (\gamma > 0)$$

with exact line search, starting at $x^{(0)} = (\gamma, 1)$:

$$x_1^{(k)} = \gamma \left(\frac{\gamma - 1}{\gamma + 1}\right)^k, \qquad x_2^{(k)} = \left(-\frac{\gamma - 1}{\gamma + 1}\right)^k$$

- very slow if
$$\gamma \gg 1$$
 or $\gamma \ll 1$

• example for $\gamma = 10$:

