
Convex Optimization — Boyd & Vandenberghe

10. Unconstrained minimization

• terminology and assumptions

• gradient descent method

• steepest descent method

• Newton’s method

• self-concordant functions

• implementation

10–1

Unconstrained minimization

minimize f(x)

• f convex, twice continuously differentiable (hence dom f open)

• we assume optimal value p⋆ = infx f(x) is attained (and finite)

unconstrained minimization methods

• produce sequence of points x(k) ∈ dom f , k = 0, 1, . . . with

f(x(k))→ p⋆

• can be interpreted as iterative methods for solving optimality condition

∇f(x⋆) = 0

Unconstrained minimization 10–2

Initial point and sublevel set

algorithms in this chapter require a starting point x(0) such that

• x(0) ∈ dom f

• sublevel set S = {x | f(x) ≤ f(x(0))} is closed

2nd condition is hard to verify, except when all sublevel sets are closed:

• equivalent to condition that epi f is closed

• true if dom f = Rn

• true if f(x) →∞ as x→ bddom f

examples of differentiable functions with closed sublevel sets:

f(x) = log(

m∑

i=1

exp(aT
i x+ bi)), f(x) = −

m∑

i=1

log(bi − a
T
i x)

Unconstrained minimization 10–3

Strong convexity and implications

f is strongly convex on S if there exists an m > 0 such that

∇2f(x) � mI for all x ∈ S

implications

• for x, y ∈ S,

f(y) ≥ f(x) +∇f(x)T (y − x) +
m

2
‖x− y‖22

hence, S is bounded

• p⋆ > −∞, and for x ∈ S,

f(x)− p⋆ ≤
1

2m
‖∇f(x)‖22

useful as stopping criterion (if you know m)

Unconstrained minimization 10–4

Descent methods

x(k+1) = x(k) + t(k)∆x(k) with f(x(k+1)) < f(x(k))

• other notations: x+ = x+ t∆x, x := x+ t∆x

• ∆x is the step, or search direction; t is the step size, or step length

• from convexity, f(x+) < f(x) implies ∇f(x)T∆x < 0
(i.e., ∆x is a descent direction)

General descent method.

given a starting point x ∈ dom f .

repeat

1. Determine a descent direction ∆x.

2. Line search. Choose a step size t > 0.

3. Update. x := x + t∆x.

until stopping criterion is satisfied.

Unconstrained minimization 10–5

Line search types

exact line search: t = argmint>0 f(x+ t∆x)

backtracking line search (with parameters α ∈ (0, 1/2), β ∈ (0, 1))

• starting at t = 1, repeat t := βt until

f(x+ t∆x) < f(x) + αt∇f(x)T∆x

• graphical interpretation: backtrack until t ≤ t0

t

f(x + t∆x)

t = 0 t0

f(x) + αt∇f(x)T∆xf(x) + t∇f(x)T∆x

Unconstrained minimization 10–6

Gradient descent method

general descent method with ∆x = −∇f(x)

given a starting point x ∈ dom f .

repeat

1. ∆x := −∇f(x).

2. Line search. Choose step size t via exact or backtracking line search.

3. Update. x := x + t∆x.

until stopping criterion is satisfied.

• stopping criterion usually of the form ‖∇f(x)‖2 ≤ ǫ

• convergence result: for strongly convex f ,

f(x(k))− p⋆ ≤ ck(f(x(0))− p⋆)

c ∈ (0, 1) depends on m, x(0), line search type

• very simple, but often very slow; rarely used in practice

Unconstrained minimization 10–7

quadratic problem in R2

f(x) = (1/2)(x2
1 + γx2

2) (γ > 0)

with exact line search, starting at x(0) = (γ, 1):

x
(k)
1 = γ

(
γ − 1

γ + 1

)k

, x
(k)
2 =

(
−
γ − 1

γ + 1

)k

• very slow if γ ≫ 1 or γ ≪ 1

• example for γ = 10:

x1

x
2

x(0)

x(1)

−10 0 10

−4

0

4

Unconstrained minimization 10–8

nonquadratic example

f(x1, x2) = ex1+3x2−0.1 + ex1−3x2−0.1 + e−x1−0.1

x(0)

x(1)

x(2)

x(0)

x(1)

backtracking line search exact line search

Unconstrained minimization 10–9

a problem in R100

f(x) = cTx−
500∑

i=1

log(bi − a
T
i x)

k

f
(x

(k
))
−

p
⋆

exact l.s.

backtracking l.s.

0 50 100 150 200
10−4

10−2

100

102

104

‘linear’ convergence, i.e., a straight line on a semilog plot

Unconstrained minimization 10–10

Steepest descent method

normalized steepest descent direction (at x, for norm ‖ · ‖):

∆xnsd = argmin{∇f(x)Tv | ‖v‖ = 1}

interpretation: for small v, f(x+ v) ≈ f(x) +∇f(x)Tv;
direction ∆xnsd is unit-norm step with most negative directional derivative

(unnormalized) steepest descent direction

∆xsd = ‖∇f(x)‖∗∆xnsd

satisfies ∇f(x)T∆sd = −‖∇f(x)‖2∗

steepest descent method

• general descent method with ∆x = ∆xsd

• convergence properties similar to gradient descent

Unconstrained minimization 10–11

examples

• Euclidean norm: ∆xsd = −∇f(x)

• quadratic norm ‖x‖P = (xTPx)1/2 (P ∈ Sn
++): ∆xsd = −P−1∇f(x)

• ℓ1-norm: ∆xsd = −(∂f(x)/∂xi)ei, where |∂f(x)/∂xi| = ‖∇f(x)‖∞

unit balls and normalized steepest descent directions for a quadratic norm
and the ℓ1-norm:

−∇f(x)

∆xnsd

−∇f(x)

∆xnsd

Unconstrained minimization 10–12

choice of norm for steepest descent

x(0)

x(1)
x(2)

x(0)

x(1)

x(2)

• steepest descent with backtracking line search for two quadratic norms

• ellipses show {x | ‖x− x(k)‖P = 1}

• equivalent interpretation of steepest descent with quadratic norm ‖ · ‖P :
gradient descent after change of variables x̄ = P 1/2x

shows choice of P has strong effect on speed of convergence

Unconstrained minimization 10–13

Newton step

∆xnt = −∇2f(x)−1∇f(x)

interpretations

• x+ ∆xnt minimizes second order approximation

f̂(x+ v) = f(x) +∇f(x)Tv +
1

2
vT∇2f(x)v

• x+ ∆xnt solves linearized optimality condition

∇f(x+ v) ≈ ∇f̂(x+ v) = ∇f(x) +∇2f(x)v = 0

f

bf

(x, f(x))

(x + ∆xnt, f(x + ∆xnt))

f ′

bf ′

(x, f ′(x))

(x + ∆xnt, f ′(x + ∆xnt))

Unconstrained minimization 10–14

• ∆xnt is steepest descent direction at x in local Hessian norm

‖u‖∇2f(x) =
(
uT∇2f(x)u

)1/2

x

x + ∆xnt

x + ∆xnsd

dashed lines are contour lines of f ; ellipse is {x+ v | vT∇2f(x)v = 1}

arrow shows −∇f(x)

Unconstrained minimization 10–15

Newton decrement

λ(x) =
(
∇f(x)T∇2f(x)−1∇f(x)

)1/2

a measure of the proximity of x to x⋆

properties

• gives an estimate of f(x)− p⋆, using quadratic approximation f̂ :

f(x)− inf
y
f̂(y) =

1

2
λ(x)2

• equal to the norm of the Newton step in the quadratic Hessian norm

λ(x) =
(
∆xT

nt∇
2f(x)∆xnt

)1/2

• directional derivative in the Newton direction: ∇f(x)T∆xnt = −λ(x)2

• affine invariant (unlike ‖∇f(x)‖2)

Unconstrained minimization 10–16

Newton’s method

given a starting point x ∈ dom f , tolerance ǫ > 0.

repeat

1. Compute the Newton step and decrement.

∆xnt := −∇2f(x)−1∇f(x); λ2 := ∇f(x)T∇2f(x)−1∇f(x).

2. Stopping criterion. quit if λ2/2 ≤ ǫ.

3. Line search. Choose step size t by backtracking line search.

4. Update. x := x + t∆xnt.

affine invariant, i.e., independent of linear changes of coordinates:

Newton iterates for f̃(y) = f(Ty) with starting point y(0) = T−1x(0) are

y(k) = T−1x(k)

Unconstrained minimization 10–17

Classical convergence analysis

assumptions

• f strongly convex on S with constant m

• ∇2f is Lipschitz continuous on S, with constant L > 0:

‖∇2f(x)−∇2f(y)‖2 ≤ L‖x− y‖2

(L measures how well f can be approximated by a quadratic function)

outline: there exist constants η ∈ (0,m2/L), γ > 0 such that

• if ‖∇f(x)‖2 ≥ η, then f(x(k+1))− f(x(k)) ≤ −γ

• if ‖∇f(x)‖2 < η, then

L

2m2
‖∇f(x(k+1))‖2 ≤

(
L

2m2
‖∇f(x(k))‖2

)2

Unconstrained minimization 10–18

damped Newton phase (‖∇f(x)‖2 ≥ η)

• most iterations require backtracking steps

• function value decreases by at least γ

• if p⋆ > −∞, this phase ends after at most (f(x(0))− p⋆)/γ iterations

quadratically convergent phase (‖∇f(x)‖2 < η)

• all iterations use step size t = 1

• ‖∇f(x)‖2 converges to zero quadratically: if ‖∇f(x(k))‖2 < η, then

L

2m2
‖∇f(xl)‖2 ≤

(
L

2m2
‖∇f(xk)‖2

)2l−k

≤

(
1

2

)2l−k

, l ≥ k

Unconstrained minimization 10–19

conclusion: number of iterations until f(x)− p⋆ ≤ ǫ is bounded above by

f(x(0))− p⋆

γ
+ log2 log2(ǫ0/ǫ)

• γ, ǫ0 are constants that depend on m, L, x(0)

• second term is small (of the order of 6) and almost constant for
practical purposes

• in practice, constants m, L (hence γ, ǫ0) are usually unknown

• provides qualitative insight in convergence properties (i.e., explains two
algorithm phases)

Unconstrained minimization 10–20

Examples

example in R2 (page 10–9)

x(0)

x(1)

k

f
(x

(k
))
−

p
⋆

0 1 2 3 4 510−15

10−10

10−5

100

105

• backtracking parameters α = 0.1, β = 0.7

• converges in only 5 steps

• quadratic local convergence

Unconstrained minimization 10–21

example in R100 (page 10–10)

k

f
(x

(k
))
−

p
⋆

exact line search

backtracking

0 2 4 6 8 10
10−15

10−10

10−5

100

105

k

st
ep

si
ze

t(k
)

exact line search

backtracking

0 2 4 6 8
0

0.5

1

1.5

2

• backtracking parameters α = 0.01, β = 0.5

• backtracking line search almost as fast as exact l.s. (and much simpler)

• clearly shows two phases in algorithm

Unconstrained minimization 10–22

example in R10000 (with sparse ai)

f(x) = −
10000∑

i=1

log(1− x2
i)−

100000∑

i=1

log(bi − a
T
i x)

k

f
(x

(k
))
−

p
⋆

0 5 10 15 20

10−5

100

105

• backtracking parameters α = 0.01, β = 0.5.

• performance similar as for small examples

Unconstrained minimization 10–23

Self-concordance

shortcomings of classical convergence analysis

• depends on unknown constants (m, L, . . .)

• bound is not affinely invariant, although Newton’s method is

convergence analysis via self-concordance (Nesterov and Nemirovski)

• does not depend on any unknown constants

• gives affine-invariant bound

• applies to special class of convex functions (‘self-concordant’ functions)

• developed to analyze polynomial-time interior-point methods for convex
optimization

Unconstrained minimization 10–24

Self-concordant functions

definition

• convex f : R→ R is self-concordant if |f ′′′(x)| ≤ 2f ′′(x)3/2 for all
x ∈ dom f

• f : Rn → R is self-concordant if g(t) = f(x+ tv) is self-concordant for
all x ∈ dom f , v ∈ Rn

examples on R

• linear and quadratic functions

• negative logarithm f(x) = − log x

• negative entropy plus negative logarithm: f(x) = x log x− log x

affine invariance: if f : R→ R is s.c., then f̃(y) = f(ay + b) is s.c.:

f̃ ′′′(y) = a3f ′′′(ay + b), f̃ ′′(y) = a2f ′′(ay + b)

Unconstrained minimization 10–25

Self-concordant calculus

properties

• preserved under positive scaling α ≥ 1, and sum

• preserved under composition with affine function

• if g is convex with dom g = R++ and |g′′′(x)| ≤ 3g′′(x)/x then

f(x) = log(−g(x))− log x

is self-concordant

examples: properties can be used to show that the following are s.c.

• f(x) = −
∑m

i=1 log(bi − a
T
i x) on {x | aT

i x < bi, i = 1, . . . ,m}

• f(X) = − log detX on Sn
++

• f(x) = − log(y2 − xTx) on {(x, y) | ‖x‖2 < y}

Unconstrained minimization 10–26

Convergence analysis for self-concordant functions

summary: there exist constants η ∈ (0, 1/4], γ > 0 such that

• if λ(x) > η, then
f(x(k+1))− f(x(k)) ≤ −γ

• if λ(x) ≤ η, then

2λ(x(k+1)) ≤
(
2λ(x(k))

)2

(η and γ only depend on backtracking parameters α, β)

complexity bound: number of Newton iterations bounded by

f(x(0))− p⋆

γ
+ log2 log2(1/ǫ)

for α = 0.1, β = 0.8, ǫ = 10−10, bound evaluates to 375(f(x(0))− p⋆) + 6

Unconstrained minimization 10–27

numerical example: 150 randomly generated instances of

minimize f(x) = −
∑m

i=1 log(bi − a
T
i x)

◦: m = 100, n = 50
�: m = 1000, n = 500
♦: m = 1000, n = 50

f(x(0))− p⋆

it
er

at
io

n
s

0 5 10 15 20 25 30 35
0

5

10

15

20

25

• number of iterations much smaller than 375(f(x(0))− p⋆) + 6

• bound of the form c(f(x(0))− p⋆) + 6 with smaller c (empirically) valid

Unconstrained minimization 10–28

Implementation

main effort in each iteration: evaluate derivatives and solve Newton system

H∆x = g

where H = ∇2f(x), g = −∇f(x)

via Cholesky factorization

H = LLT , ∆xnt = L−TL−1g, λ(x) = ‖L−1g‖2

• cost (1/3)n3 flops for unstructured system

• cost ≪ (1/3)n3 if H sparse, banded

Unconstrained minimization 10–29

example of dense Newton system with structure

f(x) =

n∑

i=1

ψi(xi) + ψ0(Ax+ b), H = D +ATH0A

• assume A ∈ Rp×n, dense, with p≪ n

• D diagonal with diagonal elements ψ′′i (xi); H0 = ∇2ψ0(Ax+ b)

method 1: form H, solve via dense Cholesky factorization: (cost (1/3)n3)

method 2 (page 9–15): factor H0 = L0L
T
0 ; write Newton system as

D∆x+ATL0w = −g, LT
0A∆x− w = 0

eliminate ∆x from first equation; compute w and ∆x from

(I + LT
0AD

−1ATL0)w = −LT
0AD

−1g, D∆x = −g −ATL0w

cost: 2p2n (dominated by computation of LT
0AD

−1ATL0)

Unconstrained minimization 10–30

