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10. Unconstrained minimization

• terminology and assumptions

• gradient descent method

• steepest descent method

• Newton’s method

• self-concordant functions

• implementation
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Unconstrained minimization

minimize f(x)

• f convex, twice continuously differentiable (hence dom f open)

• we assume optimal value p⋆ = infx f(x) is attained (and finite)

unconstrained minimization methods

• produce sequence of points x(k) ∈ dom f , k = 0, 1, . . . with

f(x(k))→ p⋆

• can be interpreted as iterative methods for solving optimality condition

∇f(x⋆) = 0
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Initial point and sublevel set

algorithms in this chapter require a starting point x(0) such that

• x(0) ∈ dom f

• sublevel set S = {x | f(x) ≤ f(x(0))} is closed

2nd condition is hard to verify, except when all sublevel sets are closed:

• equivalent to condition that epi f is closed

• true if dom f = Rn

• true if f(x) →∞ as x→ bddom f

examples of differentiable functions with closed sublevel sets:

f(x) = log(

m∑

i=1

exp(aT

i
x + bi)), f(x) = −

m∑

i=1

log(bi − aT

i
x)
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Strong convexity and implications

f is strongly convex on S if there exists an m > 0 such that

∇2f(x) � mI for all x ∈ S

implications

• for x, y ∈ S,

f(y) ≥ f(x) +∇f(x)T (y − x) +
m

2
‖x− y‖22

hence, S is bounded

• p⋆ > −∞, and for x ∈ S,

f(x)− p⋆ ≤
1

2m
‖∇f(x)‖22

useful as stopping criterion (if you know m)
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