
A nonconvex problem with strong duality

minimize xTAx + 2bTx
subject to xTx ≤ 1

A 6� 0, hence nonconvex

dual function: g(λ) = infx(xT (A + λI)x + 2bTx− λ)

• unbounded below if A + λI 6� 0 or if A + λI � 0 and b 6∈ R(A + λI)

• minimized by x = −(A + λI)†b otherwise: g(λ) = −bT (A + λI)†b− λ

dual problem and equivalent SDP:

maximize −bT (A + λI)†b− λ
subject to A + λI � 0

b ∈ R(A + λI)

maximize −t− λ

subject to

[

A + λI b
bT t

]

� 0

strong duality although primal problem is not convex (not easy to show)
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Geometric interpretation

for simplicity, consider problem with one constraint f1(x) ≤ 0

interpretation of dual function:

g(λ) = inf
(u,t)∈G

(t + λu), where G = {(f1(x), f0(x)) | x ∈ D}

G

p⋆

g(λ)
λu + t = g(λ)

t

u

G

p⋆

d⋆

t

u

• λu + t = g(λ) is (non-vertical) supporting hyperplane to G

• hyperplane intersects t-axis at t = g(λ)
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epigraph variation: same interpretation if G is replaced with

A = {(u, t) | f1(x) ≤ u, f0(x) ≤ t for some x ∈ D}

A

p⋆

g(λ)

λu + t = g(λ)

t

u

strong duality

• holds if there is a non-vertical supporting hyperplane to A at (0, p⋆)

• for convex problem, A is convex, hence has supp. hyperplane at (0, p⋆)

• Slater’s condition: if there exist (ũ, t̃) ∈ A with ũ < 0, then supporting
hyperplanes at (0, p⋆) must be non-vertical
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Complementary slackness

assume strong duality holds, x⋆ is primal optimal, (λ⋆, ν⋆) is dual optimal

f0(x
⋆) = g(λ⋆, ν⋆) = inf

x

(

f0(x) +

m
∑

i=1

λ⋆
i fi(x) +

p
∑

i=1

ν⋆
i hi(x)

)

≤ f0(x
⋆) +

m
∑

i=1

λ⋆
i fi(x

⋆) +

p
∑

i=1

ν⋆
i hi(x

⋆)

≤ f0(x
⋆)

hence, the two inequalities hold with equality

• x⋆ minimizes L(x, λ⋆, ν⋆)

• λ⋆
i fi(x

⋆) = 0 for i = 1, . . . , m (known as complementary slackness):

λ⋆
i > 0 =⇒ fi(x

⋆) = 0, fi(x
⋆) < 0 =⇒ λ⋆

i = 0
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Karush-Kuhn-Tucker (KKT) conditions

the following four conditions are called KKT conditions (for a problem with
differentiable fi, hi):

1. primal constraints: fi(x) ≤ 0, i = 1, . . . , m, hi(x) = 0, i = 1, . . . , p

2. dual constraints: λ � 0

3. complementary slackness: λifi(x) = 0, i = 1, . . . , m

4. gradient of Lagrangian with respect to x vanishes:

∇f0(x) +

m
∑

i=1

λi∇fi(x) +

p
∑

i=1

νi∇hi(x) = 0

from page 5–17: if strong duality holds and x, λ, ν are optimal, then they
must satisfy the KKT conditions
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KKT conditions for convex problem

if x̃, λ̃, ν̃ satisfy KKT for a convex problem, then they are optimal:

• from complementary slackness: f0(x̃) = L(x̃, λ̃, ν̃)

• from 4th condition (and convexity): g(λ̃, ν̃) = L(x̃, λ̃, ν̃)

hence, f0(x̃) = g(λ̃, ν̃)

if Slater’s condition is satisfied:

x is optimal if and only if there exist λ, ν that satisfy KKT conditions

• recall that Slater implies strong duality, and dual optimum is attained

• generalizes optimality condition ∇f0(x) = 0 for unconstrained problem
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example: water-filling (assume αi > 0)

minimize −
∑n

i=1 log(xi + αi)
subject to x � 0, 1

Tx = 1

x is optimal iff x � 0, 1
Tx = 1, and there exist λ ∈ Rn, ν ∈ R such that

λ � 0, λixi = 0,
1

xi + αi
+ λi = ν

• if ν < 1/αi: λi = 0 and xi = 1/ν − αi

• if ν ≥ 1/αi: λi = ν − 1/αi and xi = 0

• determine ν from 1
Tx =

∑n
i=1 max{0, 1/ν − αi} = 1

interpretation

• n patches; level of patch i is at height αi

• flood area with unit amount of water

• resulting level is 1/ν⋆

i

1/ν⋆

xi

αi
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