5. Duality

- Lagrange dual problem
- weak and strong duality
- geometric interpretation
- optimality conditions
- perturbation and sensitivity analysis
- examples
- generalized inequalities

Lagrangian

standard form problem (not necessarily convex)

$$
\begin{array}{ll}
\operatorname{minimize} & f_{0}(x) \\
\text { subject to } & f_{i}(x) \leq 0, \quad i=1, \ldots, m \\
& h_{i}(x)=0, \quad i=1, \ldots, p
\end{array}
$$

variable $x \in \mathbf{R}^{n}$, domain \mathcal{D}, optimal value p^{\star}
Lagrangian: $L: \mathbf{R}^{n} \times \mathbf{R}^{m} \times \mathbf{R}^{p} \rightarrow \mathbf{R}$, with $\operatorname{dom} L=\mathcal{D} \times \mathbf{R}^{m} \times \mathbf{R}^{p}$,

$$
L(x, \lambda, \nu)=f_{0}(x)+\sum_{i=1}^{m} \lambda_{i} f_{i}(x)+\sum_{i=1}^{p} \nu_{i} h_{i}(x)
$$

- weighted sum of objective and constraint functions
- λ_{i} is Lagrange multiplier associated with $f_{i}(x) \leq 0$
- ν_{i} is Lagrange multiplier associated with $h_{i}(x)=0$

Lagrange dual function

Lagrange dual function: $g: \mathbf{R}^{m} \times \mathbf{R}^{p} \rightarrow \mathbf{R}$,

$$
\begin{aligned}
g(\lambda, \nu) & =\inf _{x \in \mathcal{D}} L(x, \lambda, \nu) \\
& =\inf _{x \in \mathcal{D}}\left(f_{0}(x)+\sum_{i=1}^{m} \lambda_{i} f_{i}(x)+\sum_{i=1}^{p} \nu_{i} h_{i}(x)\right)
\end{aligned}
$$

g is concave, can be $-\infty$ for some λ, ν
lower bound property: if $\lambda \succeq 0$, then $g(\lambda, \nu) \leq p^{\star}$
proof: if \tilde{x} is feasible and $\lambda \succeq 0$, then

$$
f_{0}(\tilde{x}) \geq L(\tilde{x}, \lambda, \nu) \geq \inf _{x \in \mathcal{D}} L(x, \lambda, \nu)=g(\lambda, \nu)
$$

minimizing over all feasible \tilde{x} gives $p^{\star} \geq g(\lambda, \nu)$

Least-norm solution of linear equations

$$
\begin{array}{ll}
\operatorname{minimize} & x^{T} x \\
\text { subject to } & A x=b
\end{array}
$$

dual function

- Lagrangian is $L(x, \nu)=x^{T} x+\nu^{T}(A x-b)$
- to minimize L over x, set gradient equal to zero:

$$
\nabla_{x} L(x, \nu)=2 x+A^{T} \nu=0 \quad \Longrightarrow \quad x=-(1 / 2) A^{T} \nu
$$

- plug in in L to obtain g :

$$
g(\nu)=L\left((-1 / 2) A^{T} \nu, \nu\right)=-\frac{1}{4} \nu^{T} A A^{T} \nu-b^{T} \nu
$$

a concave function of ν
lower bound property: $p^{\star} \geq-(1 / 4) \nu^{T} A A^{T} \nu-b^{T} \nu$ for all ν

Standard form LP

$$
\begin{array}{ll}
\operatorname{minimize} & c^{T} x \\
\text { subject to } & A x=b, \quad x \succeq 0
\end{array}
$$

dual function

- Lagrangian is

$$
\begin{aligned}
L(x, \lambda, \nu) & =c^{T} x+\nu^{T}(A x-b)-\lambda^{T} x \\
& =-b^{T} \nu+\left(c+A^{T} \nu-\lambda\right)^{T} x
\end{aligned}
$$

- L is affine in x, hence

$$
g(\lambda, \nu)=\inf _{x} L(x, \lambda, \nu)= \begin{cases}-b^{T} \nu & A^{T} \nu-\lambda+c=0 \\ -\infty & \text { otherwise }\end{cases}
$$

g is linear on affine domain $\left\{(\lambda, \nu) \mid A^{T} \nu-\lambda+c=0\right\}$, hence concave lower bound property: $p^{\star} \geq-b^{T} \nu$ if $A^{T} \nu+c \succeq 0$

Equality constrained norm minimization

$$
\begin{array}{ll}
\operatorname{minimize} & \|x\| \\
\text { subject to } & A x=b
\end{array}
$$

dual function

$$
g(\nu)=\inf _{x}\left(\|x\|-\nu^{T} A x+b^{T} \nu\right)= \begin{cases}b^{T} \nu & \left\|A^{T} \nu\right\|_{*} \leq 1 \\ -\infty & \text { otherwise }\end{cases}
$$

where $\|v\|_{*}=\sup _{\|u\| \leq 1} u^{T} v$ is dual norm of $\|\cdot\|$
proof: follows from $\inf _{x}\left(\|x\|-y^{T} x\right)=0$ if $\|y\|_{*} \leq 1,-\infty$ otherwise

- if $\|y\|_{*} \leq 1$, then $\|x\|-y^{T} x \geq 0$ for all x, with equality if $x=0$
- if $\|y\|_{*}>1$, choose $x=t u$ where $\|u\| \leq 1, u^{T} y=\|y\|_{*}>1$:

$$
\|x\|-y^{T} x=t\left(\|u\|-\|y\|_{*}\right) \rightarrow-\infty \quad \text { as } t \rightarrow \infty
$$

lower bound property: $p^{\star} \geq b^{T} \nu$ if $\left\|A^{T} \nu\right\|_{*} \leq 1$

Two-way partitioning

$$
\begin{array}{ll}
\operatorname{minimize} & x^{T} W x \\
\text { subject to } & x_{i}^{2}=1, \quad i=1, \ldots, n
\end{array}
$$

- a nonconvex problem; feasible set contains 2^{n} discrete points
- interpretation: partition $\{1, \ldots, n\}$ in two sets; $W_{i j}$ is cost of assigning i, j to the same set; $-W_{i j}$ is cost of assigning to different sets dual function

$$
\begin{aligned}
g(\nu)=\inf _{x}\left(x^{T} W x+\sum_{i} \nu_{i}\left(x_{i}^{2}-1\right)\right) & =\inf _{x} x^{T}(W+\operatorname{diag}(\nu)) x-\mathbf{1}^{T} \nu \\
& = \begin{cases}-\mathbf{1}^{T} \nu & W+\operatorname{diag}(\nu) \succeq 0 \\
-\infty & \text { otherwise }\end{cases}
\end{aligned}
$$

lower bound property: $p^{\star} \geq-\mathbf{1}^{T} \nu$ if $W+\operatorname{diag}(\nu) \succeq 0$
example: $\nu=-\lambda_{\min }(W) \mathbf{1}$ gives bound $p^{\star} \geq n \lambda_{\min }(W)$

Lagrange dual and conjugate function

$$
\begin{array}{ll}
\operatorname{minimize} & f_{0}(x) \\
\text { subject to } & A x \preceq b, \quad C x=d
\end{array}
$$

dual function

$$
\begin{aligned}
g(\lambda, \nu) & =\inf _{x \in \operatorname{dom} f_{0}}\left(f_{0}(x)+\left(A^{T} \lambda+C^{T} \nu\right)^{T} x-b^{T} \lambda-d^{T} \nu\right) \\
& =-f_{0}^{*}\left(-A^{T} \lambda-C^{T} \nu\right)-b^{T} \lambda-d^{T} \nu
\end{aligned}
$$

- recall definition of conjugate $f^{*}(y)=\sup _{x \in \operatorname{dom} f}\left(y^{T} x-f(x)\right)$
- simplifies derivation of dual if conjugate of f_{0} is kown
example: entropy maximization

$$
f_{0}(x)=\sum_{i=1}^{n} x_{i} \log x_{i}, \quad f_{0}^{*}(y)=\sum_{i=1}^{n} e^{y_{i}-1}
$$

