Generalized Inequalities

- Proper Cone \mathcal{K} :
- K closed and convex
- \mathcal{K} solid (nonempty interior) and pointed (contain no line)
- Examples:
- Nonnegative orthant $\mathbb{R}_{+}^{n}=\left\{\mathbf{x} \in \mathbb{R}^{n} \mid x_{i} \geq 0, i=1, \ldots, n\right\}$
- Positive semidefinite cone $\mathbb{S}_{+}^{n}=\left\{\mathbf{X} \in \mathbb{S}^{n} \mid \mathbf{X} \succeq 0\right\}$
- Generalized Inequality:
- Partial ordering

$$
\mathbf{x} \succeq_{\mathcal{K}} \mathbf{y} \Leftrightarrow \mathbf{x}-\mathbf{y} \in \mathcal{K}, \quad \mathbf{x} \succ_{\mathcal{K}} \mathbf{y} \Leftrightarrow \mathbf{x}-\mathbf{y} \in \operatorname{int} \mathcal{K}
$$

- Examples:
- $\mathbf{x} \succeq_{\mathbb{R}_{+}^{n}} \mathbf{y} \Leftrightarrow \mathbf{x}-\mathbf{y} \in \mathbb{R}_{+}^{n}$ or $\mathbf{x} \geq \mathbf{y}$ (componentwise inequality)
- $\mathbf{X} \succeq_{\mathbb{S}_{+}^{n}} \mathbf{Y} \Leftrightarrow \mathbf{X}-\mathbf{Y} \in \mathbb{S}_{+}^{n}$ or $\mathbf{X} \succeq \mathbf{Y}$ (matrix inequality)

Minimum and Minimal Elements

- Minimum Element $\mathbf{x} \in \mathcal{S}$:

$$
\left(\mathbf{y} \in \mathcal{S} \Rightarrow \mathbf{y} \succeq_{\mathcal{K}} \mathbf{x}\right) \quad \Leftrightarrow \quad \mathcal{S} \subseteq \mathbf{x}+\mathcal{K}
$$

- Minimal Element $\mathbf{x} \in \mathcal{S}$:

$$
(\mathbf{y} \in \mathcal{S}, \mathbf{x} \succeq \mathcal{K} \mathbf{y} \Rightarrow \mathbf{y}=\mathbf{x}) \quad \Leftrightarrow \quad \mathcal{S} \cap(\mathbf{x}-\mathcal{K})=\{\mathbf{x}\}
$$

- Minimum element is a minimal element
- Example in \mathbb{R}_{+}^{2}

Dual Generalized Inequalities

- Dual Cone of \mathcal{K} :

$$
\mathcal{K}^{*}=\left\{\mathbf{x} \mid \mathbf{x}^{T} \mathbf{y} \geq 0, \forall \mathbf{y} \in \mathcal{K}\right\}
$$

- \mathcal{K}^{*} is a convex cone
- Examples
- $\mathcal{K}=\mathbb{R}_{+}^{n}: \mathcal{K}^{*}=\mathcal{K}$ (self-dual cone)
- $\mathcal{K}=\mathbb{S}_{+}^{n}: \mathcal{K}^{*}=\mathcal{K}$
- $\mathcal{K}=\left\{(\mathbf{x}, t) \mid\|\mathbf{x}\|_{2} \leq t\right\}: \mathcal{K}^{*}=\mathcal{K}$
- $\mathcal{K}=\left\{(\mathbf{x}, t) \mid\|\mathbf{x}\|_{1} \leq t\right\}: \mathcal{K}^{*}=\left\{(\mathbf{x}, t) \mid\|\mathbf{x}\|_{\infty} \leq t\right\}$
- \mathcal{K} is proper $\rightarrow \mathcal{K}^{*}$ is proper
- Dual Generalized Inequality $\succeq \mathcal{K}^{*}$

$$
\mathbf{x}_{1} \succeq_{\mathcal{K}^{*}} \mathbf{x}_{2} \Leftrightarrow \mathbf{y}^{\top} \mathbf{x}_{1} \geq \mathbf{y}^{\top} \mathbf{x}_{2}, \quad \forall \mathbf{y} \succeq \mathcal{K} 0
$$

Dual Characterization of Minimum and Minimal Elements

- Minimum Element
\mathbf{x} is the minimum element of \mathcal{S}, with respect to $\succeq_{\mathcal{K}}$, if and only if $\quad \arg \min _{\mathbf{z} \in \mathcal{S}} \mathbf{y}^{\top} \mathbf{z}=\{\mathbf{x}\}, \quad \forall \mathbf{y} \succ^{\mathcal{K}} \boldsymbol{0} 0$
- Minimal Element

If \mathbf{x} minimizes $\mathbf{y}^{T} \mathbf{z}$ over $\mathbf{z} \in \mathcal{S}$ for some $\mathbf{y} \succ_{\mathcal{K}^{*}} 0$, then \mathbf{x} is minimal with respect to $\succeq \mathcal{K}$

If \mathbf{x} is minimal, with respect to $\succeq_{\mathcal{K}}$, for a convex set \mathcal{S}, then there exists $\mathbf{y} \succeq_{\mathcal{K}^{*}} 0$ such that \mathbf{x} minimizes $\mathbf{y}^{\top} \mathbf{z}$ over $\mathbf{z} \in \mathcal{S}$

