Generalized Inequalities

- Proper Cone \mathcal{K} :
 - $\bullet~\mathcal{K}$ closed and convex
 - *K* solid (nonempty interior) and *pointed* (contain no line)
- Examples:
 - Nonnegative orthant $\mathbb{R}^n_+ = \{ \mathbf{x} \in \mathbb{R}^n \mid x_i \ge 0, i = 1, \dots, n \}$
 - Positive semidefinite cone $\mathbb{S}^n_+ = \{ \mathbf{X} \in \mathbb{S}^n \, | \, \mathbf{X} \succeq \mathbf{0} \}$
- Generalized Inequality:
 - Partial ordering

$$\mathbf{x} \succeq_{\mathcal{K}} \mathbf{y} \Leftrightarrow \mathbf{x} - \mathbf{y} \in \mathcal{K}, \quad \mathbf{x} \succ_{\mathcal{K}} \mathbf{y} \Leftrightarrow \mathbf{x} - \mathbf{y} \in \mathsf{int}\mathcal{K}$$

• Examples:

- $\mathbf{x} \succeq_{\mathbb{R}^n_+} \mathbf{y} \Leftrightarrow \mathbf{x} \mathbf{y} \in \mathbb{R}^n_+$ or $\mathbf{x} \ge \mathbf{y}$ (componentwise inequality)
- $\mathbf{X} \succeq_{\mathbb{S}^n_+} \mathbf{Y} \Leftrightarrow \mathbf{X} \mathbf{Y} \in \mathbb{S}^n_+$ or $\mathbf{X} \succeq \mathbf{Y}$ (matrix inequality)

Minimum and Minimal Elements

• Minimum Element $\mathbf{x} \in \mathcal{S}$:

$$(\mathbf{y} \in \mathcal{S} \Rightarrow \mathbf{y} \succeq_{\mathcal{K}} \mathbf{x}) \quad \Leftrightarrow \quad \mathcal{S} \subseteq \mathbf{x} + \mathcal{K}$$

• Minimal Element $\mathbf{x} \in \mathcal{S}$:

$$(\mathbf{y} \in \mathcal{S}, \, \mathbf{x} \succeq_{\mathcal{K}} \mathbf{y} \, \Rightarrow \, \mathbf{y} = \mathbf{x}) \quad \Leftrightarrow \quad \mathcal{S} \cap (\mathbf{x} - \mathcal{K}) = \{\mathbf{x}\}$$

- Minimum element is a minimal element
- Example in \mathbb{R}^2_+

Dual Generalized Inequalities

• Dual Cone of \mathcal{K} :

$$\mathcal{K}^* = \{ \boldsymbol{\mathsf{x}} \, | \, \boldsymbol{\mathsf{x}}^{\mathcal{T}} \boldsymbol{\mathsf{y}} \geq \boldsymbol{\mathsf{0}}, \, \forall \, \boldsymbol{\mathsf{y}} \in \mathcal{K} \}$$

• Examples

•
$$\mathcal{K} = \mathbb{R}^n_+$$
: $\mathcal{K}^* = \mathcal{K}$ (self-dual cone)

•
$$\mathcal{K} = \mathbb{S}^n_+$$
: $\mathcal{K}^* = \mathcal{K}$

•
$$\mathcal{K} = \{(\mathbf{x}, t) \mid ||\mathbf{x}||_2 \leq t\}$$
: $\mathcal{K}^* = \mathcal{K}$

- $\mathcal{K} = \{ (\mathbf{x}, t) \mid ||\mathbf{x}||_1 \le t \}$: $\mathcal{K}^* = \{ (\mathbf{x}, t) \mid ||\mathbf{x}||_\infty \le t \}$
- ${\mathcal K}$ is proper $\to {\mathcal K}^*$ is proper
- Dual Generalized Inequality $\succeq_{\mathcal{K}^*}$

$$\mathbf{x}_1 \succeq_{\mathcal{K}^*} \mathbf{x}_2 \Leftrightarrow \mathbf{y}^{\mathcal{T}} \mathbf{x}_1 \ge \mathbf{y}^{\mathcal{T}} \mathbf{x}_2, \quad \forall \, \mathbf{y} \succeq_{\mathcal{K}} \mathbf{0}$$

Dual Characterization of Minimum and Minimal Elements

- Minimum Element **x** is the minimum element of S, with respect to $\succeq_{\mathcal{K}}$, if and only if $\arg\min_{\mathbf{z}\in\mathcal{S}}\mathbf{y}^{\mathsf{T}}\mathbf{z} = \{\mathbf{x}\}, \quad \forall \, \mathbf{y} \succ_{\mathcal{K}^*} \mathbf{0}$
- Minimal Element
 If x minimizes y^T z over z ∈ S for some y ≻_{K*} 0, then x is
 minimal with respect to ≿_K

If **x** is minimal, with respect to $\succeq_{\mathcal{K}}$, for a convex set \mathcal{S} , then there exists $\mathbf{y} \succeq_{\mathcal{K}^*} \mathbf{0}$ such that **x** minimizes $\mathbf{y}^T \mathbf{z}$ over $\mathbf{z} \in \mathcal{S}$