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Separating Hyperplane Theorem

Question
Given two sets C and D that do not intersect, C ∩ D = ∅, can we
separate them using a hyperplane?



Separating Hyperplane Theorem

Theorem
Suppose C and D are two convex sets that do not intersect,
C ∩ D = ∅. Then there exist a 6= 0 and b such that

aTx ≤ b, ∀ x ∈ C, and aTx ≥ b, ∀ x ∈ D.



Separating Hyperplane Theorem

Proof.

Assume dist(C,D) := inf{||u− v||2 |u ∈ C, v ∈ D} is
attained: ∃c ∈ C,d ∈ D : ||c− d||2 = dist(C,D) > 0

Possible conditions: C and D are closed and bounded

�



Separating Hyperplane Theorem

Hyperplane perpendicular to line segment between c and d
and pass through the midpoint:

a = d− c, b =
1

2
aT (c + d)

Prove f (u) = aTu− b ≥ 0 for all u ∈ D by contradiction

Assume f (u) = (d− c)T (u− d) + ||c− d||22 /2 < 0:

(d− c)T (u− d) < 0, u 6= d

Consider line segment between d and u:
x = d + θ(u− d) ∈ D for 0 ≤ θ ≤ 1

||x− c||22 = ||d− c||22 + 2θ(d− c)T (u− d) + θ2 ||u− d||22
There exists θ > 0:

||x− c||22 < ||d− c||22 , (contradiction)



Separating Hyperplane Theoreom

Strict Separation

Additional assumptions (C closed, D singleton)

Application

No intersection: related to infeasibility → use separation
hyperplane theorem to derive infeasibility condition

A Theorem of Alternatives
The system Ax = b, x ≥ 0 is infeasible if and only if there
exists p such that pTA ≥ 0 and pTb < 0.

Convex sets: C = {Ax | x ≥ 0} and D = {b}



Supporting Hyperplane Theorem

Supporting Hyperplane

{x | aTx = aTx0} is a supporting hyperplane of C at its
boundary point x0 if a 6= 0, aTx ≤ aTx0, ∀ x ∈ C

Theorem
For any nonempty convex set C, and any boundary point x0, there
exists a supporting hyperplane to C at x0.



Generalized Inequalities

Proper Cone K:

K closed and convex
K solid (nonempty interior) and pointed (contain no line)

Examples:

Nonnegative orthant Rn
+ = {x ∈ Rn | xi ≥ 0, i = 1, . . . , n}

Positive semidefinite cone Sn
+ = {X ∈ Sn |X � 0}

Generalized Inequality:

Partial ordering

x �K y⇔ x− y ∈ K, x �K y⇔ x− y ∈ intK

Examples:

x �Rn
+

y⇔ x− y ∈ Rn
+ or x ≥ y (componentwise inequality)

X �Sn
+

Y ⇔ X− Y ∈ Sn
+ or X � Y (matrix inequality)



Minimum and Minimal Elements
Minimum Element x ∈ S:

(y ∈ S ⇒ y �K x) ⇔ S ⊆ x +K

Minimal Element x ∈ S:

(y ∈ S, x �K y ⇒ y = x) ⇔ S ∩ (x−K) = {x}

Minimum element is a minimal element

Example in R2
+



Dual Generalized Inequalities

Dual Cone of K:

K∗ = {x | xTy ≥ 0, ∀ y ∈ K}

K∗ is a convex cone

Examples

K = Rn
+: K∗ = K (self-dual cone)

K = Sn
+: K∗ = K

K = {(x, t) | ||x||2 ≤ t}: K∗ = K
K = {(x, t) | ||x||1 ≤ t}: K∗ = {(x, t) | ||x||∞ ≤ t}

K is proper → K∗ is proper

Dual Generalized Inequality �K∗

x1 �K∗ x2 ⇔ yTx1 ≥ yTx2, ∀ y �K 0



Dual Characterization of Minimum and
Minimal Elements

Minimum Element
x is the minimum element of S, with respect to �K, if and
only if arg min

z∈S
yTz = {x}, ∀ y �K∗ 0

Minimal Element
If x minimizes yTz over z ∈ S for some y �K∗ 0, then x is
minimal with respect to �K

If x is minimal, with respect to �K, for a convex set S, then
there exists y �K∗ 0 such that x minimizes yTz over z ∈ S


