CO367/CM442 Nonlinear Optimization Lecture 3

Instructor: Henry Wolkowicz
hwolkowi@uwaterloo.ca

January 08, 2010

Lecture Outline

- Separating Hyperplane Theorem
- Supporting Hyperplane Theorem
- Generalized Inequalities
- Dual Generalized Inequalities

Separating Hyperplane Theorem

Question

Given two sets \mathcal{C} and \mathcal{D} that do not intersect, $\mathcal{C} \cap \mathcal{D}=\emptyset$, can we separate them using a hyperplane?

Separating Hyperplane Theorem

Theorem
Suppose \mathcal{C} and \mathcal{D} are two convex sets that do not intersect, $\mathcal{C} \cap \mathcal{D}=\emptyset$. Then there exist $\mathbf{a} \neq \mathbf{0}$ and b such that

$$
\mathbf{a}^{T} \mathbf{x} \leq b, \quad \forall \mathbf{x} \in \mathcal{C}, \quad \text { and } \quad \mathbf{a}^{T} \mathbf{x} \geq b, \quad \forall \mathbf{x} \in \mathcal{D}
$$

Separating Hyperplane Theorem

Proof.

- Assume $\operatorname{dist}(\mathcal{C}, \mathcal{D}):=\inf \left\{\|\mathbf{u}-\mathbf{v}\|_{2} \mid \mathbf{u} \in \mathcal{C}, \mathbf{v} \in \mathcal{D}\right\}$ is attained: $\quad \exists \mathbf{c} \in \mathcal{C}, \mathbf{d} \in \mathcal{D}:\|\mathbf{c}-\mathbf{d}\|_{2}=\operatorname{dist}(\mathcal{C}, \mathcal{D})>0$
- Possible conditions: \mathcal{C} and \mathcal{D} are closed and bounded

Separating Hyperplane Theorem

- Hyperplane perpendicular to line segment between \mathbf{c} and \mathbf{d} and pass through the midpoint:

$$
\mathbf{a}=\mathbf{d}-\mathbf{c}, \quad b=\frac{1}{2} \mathbf{a}^{T}(\mathbf{c}+\mathbf{d})
$$

- Prove $f(\mathbf{u})=\mathbf{a}^{T} \mathbf{u}-\mathbf{b} \geq 0$ for all $\mathbf{u} \in \mathcal{D}$ by contradiction
- Assume $f(\mathbf{u})=(\mathbf{d}-\mathbf{c})^{T}(\mathbf{u}-\mathbf{d})+\|\mathbf{c}-\mathbf{d}\|_{2}^{2} / 2<0$:

$$
(\mathbf{d}-\mathbf{c})^{T}(\mathbf{u}-\mathbf{d})<0, \quad \mathbf{u} \neq \mathbf{d}
$$

- Consider line segment between \mathbf{d} and \mathbf{u} :

$$
\mathbf{x}=\mathbf{d}+\theta(\mathbf{u}-\mathbf{d}) \in \mathcal{D} \text { for } 0 \leq \theta \leq 1
$$

- $\|\mathbf{x}-\mathbf{c}\|_{2}^{2}=\|\mathbf{d}-\mathbf{c}\|_{2}^{2}+2 \theta(\mathbf{d}-\mathbf{c})^{T}(\mathbf{u}-\mathbf{d})+\theta^{2}\|\mathbf{u}-\mathbf{d}\|_{2}^{2}$
- There exists $\theta>0$:

$$
\|\mathbf{x}-\mathbf{c}\|_{2}^{2}<\|\mathbf{d}-\mathbf{c}\|_{2}^{2}, \text { (contradiction) }
$$

Separating Hyperplane Theoreom

- Strict Separation
- Additional assumptions (\mathcal{C} closed, \mathcal{D} singleton)
- Application
- No intersection: related to infeasibility \rightarrow use separation hyperplane theorem to derive infeasibility condition
- A Theorem of Alternatives

The system $\mathbf{A x}=\mathbf{b}, \mathbf{x} \geq \mathbf{0}$ is infeasible if and only if there exists \mathbf{p} such that $\mathbf{p}^{T} \mathbf{A} \geq \mathbf{0}$ and $\mathbf{p}^{T} \mathbf{b}<0$.

- Convex sets: $\mathcal{C}=\{\mathbf{A} \mathbf{x} \mid \mathbf{x} \geq \mathbf{0}\}$ and $\mathcal{D}=\{\mathbf{b}\}$

Supporting Hyperplane Theorem

- Supporting Hyperplane
- $\left\{\mathbf{x} \mid \mathbf{a}^{T} \mathbf{x}=\mathbf{a}^{T} \mathbf{x}_{0}\right\}$ is a supporting hyperplane of \mathcal{C} at its boundary point \mathbf{x}_{0} if $\mathbf{a} \neq \mathbf{0}, \quad \mathbf{a}^{T} \mathbf{x} \leq \mathbf{a}^{T} \mathbf{x}_{0}, \quad \forall \mathbf{x} \in \mathcal{C}$

Theorem
For any nonempty convex set \mathcal{C}, and any boundary point \mathbf{x}_{0}, there exists a supporting hyperplane to \mathcal{C} at \mathbf{x}_{0}.

Generalized Inequalities

- Proper Cone \mathcal{K} :
- K closed and convex
- \mathcal{K} solid (nonempty interior) and pointed (contain no line)
- Examples:
- Nonnegative orthant $\mathbb{R}_{+}^{n}=\left\{\mathbf{x} \in \mathbb{R}^{n} \mid x_{i} \geq 0, i=1, \ldots, n\right\}$
- Positive semidefinite cone $\mathbb{S}_{+}^{n}=\left\{\mathbf{X} \in \mathbb{S}^{n} \mid \mathbf{X} \succeq 0\right\}$
- Generalized Inequality:
- Partial ordering

$$
\mathbf{x} \succeq_{\mathcal{K}} \mathbf{y} \Leftrightarrow \mathbf{x}-\mathbf{y} \in \mathcal{K}, \quad \mathbf{x} \succ_{\mathcal{K}} \mathbf{y} \Leftrightarrow \mathbf{x}-\mathbf{y} \in \operatorname{int} \mathcal{K}
$$

- Examples:
- $\mathbf{x} \succeq_{\mathbb{R}_{+}^{n}} \mathbf{y} \Leftrightarrow \mathbf{x}-\mathbf{y} \in \mathbb{R}_{+}^{n}$ or $\mathbf{x} \geq \mathbf{y}$ (componentwise inequality)
- $\mathbf{X} \succeq_{\mathbb{S}_{+}^{n}} \mathbf{Y} \Leftrightarrow \mathbf{X}-\mathbf{Y} \in \mathbb{S}_{+}^{n}$ or $\mathbf{X} \succeq \mathbf{Y}$ (matrix inequality)

Minimum and Minimal Elements

- Minimum Element $\mathrm{x} \in \mathcal{S}$:

$$
\left(\mathbf{y} \in \mathcal{S} \Rightarrow \mathbf{y} \succeq_{\mathcal{K}} \mathbf{x}\right) \quad \Leftrightarrow \quad \mathcal{S} \subseteq \mathbf{x}+\mathcal{K}
$$

- Minimal Element $\mathbf{x} \in \mathcal{S}$:

$$
(\mathbf{y} \in \mathcal{S}, \mathbf{x} \succeq \mathcal{K} \mathbf{y} \Rightarrow \mathbf{y}=\mathbf{x}) \quad \Leftrightarrow \quad \mathcal{S} \cap(\mathbf{x}-\mathcal{K})=\{\mathbf{x}\}
$$

- Minimum element is a minimal element
- Example in \mathbb{R}_{+}^{2}

Dual Generalized Inequalities

- Dual Cone of \mathcal{K} :

$$
\mathcal{K}^{*}=\left\{\mathbf{x} \mid \mathbf{x}^{T} \mathbf{y} \geq 0, \forall \mathbf{y} \in \mathcal{K}\right\}
$$

- \mathcal{K}^{*} is a convex cone
- Examples
- $\mathcal{K}=\mathbb{R}_{+}^{n}: \mathcal{K}^{*}=\mathcal{K}$ (self-dual cone)
- $\mathcal{K}=\mathbb{S}_{+}^{n}: \mathcal{K}^{*}=\mathcal{K}$
- $\mathcal{K}=\left\{(\mathbf{x}, t) \mid\|\mathbf{x}\|_{2} \leq t\right\}: \mathcal{K}^{*}=\mathcal{K}$
- $\mathcal{K}=\left\{(\mathbf{x}, t) \mid\|\mathbf{x}\|_{1} \leq t\right\}: \mathcal{K}^{*}=\left\{(\mathbf{x}, t) \mid\|\mathbf{x}\|_{\infty} \leq t\right\}$
- \mathcal{K} is proper $\rightarrow \mathcal{K}^{*}$ is proper
- Dual Generalized Inequality $\succeq^{\mathcal{K}}$ *

$$
\mathbf{x}_{1} \succeq_{\mathcal{K}^{*}} \mathbf{x}_{2} \Leftrightarrow \mathbf{y}^{\top} \mathbf{x}_{1} \geq \mathbf{y}^{\top} \mathbf{x}_{2}, \quad \forall \mathbf{y} \succeq \mathcal{K} 0
$$

Dual Characterization of Minimum and Minimal Elements

- Minimum Element
\mathbf{x} is the minimum element of \mathcal{S}, with respect to $\succeq_{\mathcal{K}}$, if and only if $\quad \arg \min _{\mathbf{z} \in \mathcal{S}} \mathbf{y}^{\top} \mathbf{z}=\{\mathbf{x}\}, \quad \forall \mathbf{y} \succ_{\mathcal{K}^{*}} 0$
- Minimal Element

If \mathbf{x} minimizes $\mathbf{y}^{\top} \mathbf{z}$ over $\mathbf{z} \in \mathcal{S}$ for some $\mathbf{y} \succ_{\mathcal{K}^{*}} 0$, then \mathbf{x} is minimal with respect to $\succeq_{\mathcal{K}}$

If \mathbf{x} is minimal, with respect to $\succeq_{\mathcal{K}}$, for a convex set \mathcal{S}, then there exists $\mathbf{y} \succeq_{\mathcal{K}^{*}} 0$ such that \mathbf{x} minimizes $\mathbf{y}^{\top} \mathbf{z}$ over $\mathbf{z} \in \mathcal{S}$

