CO367/CM442 Nonlinear Optimization Lecture 2

Instructor: Henry Wolkowicz
hwolkowi@uwaterloo.ca

January 06, 2010

Lecture Outline

- Affine Sets
- Convex Sets
- Examples
- Convex Operations

Affine Set

- Definition
- Affine set contains the line through any two distinct points in the set
- Line through $\mathbf{x}_{1}, \mathbf{x}_{2} \in \mathbb{R}^{n}$:

$$
\mathbf{x}=\theta \mathbf{x}_{1}+(1-\theta) \mathbf{x}_{2}, \quad \theta \in \mathbb{R}
$$

- Example: $\mathcal{A}=\{\mathbf{x} \mid \mathbf{A x}=\mathbf{b}\}$
- Affine combination of $\mathbf{x}_{1}, \ldots, \mathbf{x}_{k}$:

$$
\mathbf{x}=\sum_{i=1}^{k} \theta_{i} \mathbf{x}_{i}, \quad \sum_{i=1}^{k} \theta_{i}=1
$$

- Exercise
- Affine set contains every affine combination of its points

Convex Set

- Definition
- Convex set contains the line segment between any two points in the set

$$
\mathbf{x}_{1}, \mathbf{x}_{2} \in \mathcal{C} \Rightarrow \theta \mathbf{x}_{1}+(1-\theta) \mathbf{x}_{2} \in \mathcal{C}, \quad 0 \leq \theta \leq 1
$$

- Example: affine sets are convex
- Simple convex and nonconvex sets

Convex Hull

- Convex combination of $\mathbf{x}_{1}, \ldots, \mathbf{x}_{k}$:

$$
\mathbf{x}=\sum_{i=1}^{k} \theta_{i} \mathbf{x}_{i}, \quad \sum_{i=1}^{k} \theta_{i}=1, \theta_{i} \geq 0, \forall i=1, \ldots, k
$$

- Convex hull of a set \mathcal{S} :
- $\operatorname{conv} \mathcal{S}$ is the set of all convex combinations of points in \mathcal{S}

- Exercise:
- If the convex set \mathcal{C} contains \mathcal{S}, then $\operatorname{conv} \mathcal{S} \subseteq \mathcal{C}$

Convex Cone

- Cone is a set that satisfies:

$$
\mathbf{x} \in \mathcal{C} \Rightarrow \theta \mathbf{x} \in \mathcal{C}, \quad \theta \geq 0
$$

- Convex cone is a cone which is convex

$$
\mathbf{x}_{1}, \mathbf{x}_{2} \in \mathcal{C} \Rightarrow \theta_{1} \mathbf{x}_{1}+\theta_{2} \mathbf{x}_{2} \in \mathcal{C}, \quad \theta_{1}, \theta_{2} \geq 0
$$

- Example: non-negative orthant in \mathbb{R}^{n}
- Conic combination of $\mathbf{x}_{1}, \ldots, \mathbf{x}_{k}$:

$$
\mathbf{x}=\sum_{i=1}^{k} \theta_{i} \mathbf{x}_{i}, \quad \theta_{i} \geq 0, \forall i=1, \ldots, k
$$

- Exercise:
- Convex cone contains every conic combination of its points

Example: Hyperplanes and Halfspaces

- Normal vector
- $\mathbf{a} \in \mathbb{R}^{n}, \mathbf{a} \neq \mathbf{0}$
- Hyperplane
- $\mathcal{H}=\left\{\mathbf{x} \mid \mathbf{a}^{T} \mathbf{x}=b\right\}$
- Affine
- Convex
- Halfspace
- $\mathcal{H}=\left\{\mathbf{x} \mid \mathbf{a}^{T} \mathbf{x} \leq b\right\}$
- Convex

Example: Euclidean Balls and Ellipsoids

- Euclidean ball with center \mathbf{x}_{c} and radius r

$$
\mathcal{B}\left(\mathbf{x}_{c}, r\right)=\left\{\mathbf{x}_{c}+r \mathbf{u} \mid\|\mathbf{u}\|_{2} \leq 1\right\}
$$

- Ellipsoid

$$
\mathcal{E}=\left\{\mathbf{x}_{c}+\mathbf{A} \mathbf{u}\| \| \mathbf{u} \|_{2} \leq 1\right\},
$$

where \mathbf{A} is a full-rank square matrix

- Euclidean ball is an ellipsoid with $\mathbf{A}=r \mathbf{l}$

Example: Norm Cones

- Norm function ||.||:
- $\|\mathbf{x}\| \geq 0$ for all $\mathbf{x} ;\|\mathbf{x}\|=0$ if and only if $\mathbf{x}=\mathbf{0}$
- $\|\theta \mathbf{x}\|=|\theta|\|\mathbf{x}\|$
- $\|\mathbf{x}+\mathbf{y}\| \leq\|\mathbf{x}\|+\|\mathbf{y}\|$
- Norm cone in \mathbb{R}^{n+1}

$$
\{(\mathbf{x}, t) \mid\|\mathbf{x}\| \leq t\}
$$

- Norm cone with $\|.\|_{2}$
- Second-order cone
- Example
- Second-order cone
 in \mathbb{R}^{3}

Example: Polyhedra

- Polyhedron: intersection of finitely many halfspaces

$$
\mathcal{P}=\left\{\mathbf{x} \mid \mathbf{a}_{i}^{T} \mathbf{x} \leq b_{i}, i=1, \ldots, m\right\}
$$

- $\mathbf{c}^{T} \mathbf{x}=d \Leftrightarrow \mathbf{c}^{T} \mathbf{x} \leq d,-\mathbf{c}^{T} \mathbf{x} \leq-d$
- Exercise
- Is $\left\{(x, y) \in \mathbb{R}_{+}^{2} \mid x \cos \theta+y \sin \theta \leq 1, \forall \theta \in[0, \pi / 2]\right\}$ a polyhedron?

Example: Positive Semidefinite Cones

- Notation
- \mathbb{S}^{n} : set of symmetric $n \times n$ matrices, $\mathbf{X}=\mathbf{X}^{T}$
- $\mathbb{S}_{+}^{n}=\left\{\mathbf{X} \in \mathbb{S}^{n} \mid \mathbf{X} \succeq 0\right\}$: set of positive semidefinite $n \times n$ matrices,

$$
\mathbf{X} \succeq 0 \Leftrightarrow \mathbf{z}^{T} \mathbf{X} \mathbf{z} \geq 0, \quad \forall \mathbf{z} \in \mathbb{R}^{n}
$$

- \mathbb{S}_{+}^{n} is a convex cone
- Example

$$
\left(\begin{array}{ll}
x & y \\
y & z
\end{array}\right) \in \mathbb{S}_{+}^{2}
$$

How to Prove Convexity

- Definition

$$
\mathbf{x}_{1}, \mathbf{x}_{2} \in \mathcal{C} \Rightarrow \theta \mathbf{x}_{1}+(1-\theta) \mathbf{x}_{2} \in \mathcal{C}, \quad \forall 0 \leq \theta \leq 1
$$

- Convex Operations
- Intersection
- Affine transformation
- Linear-fractional function

Operation: Intersection

- Intersection
- $\mathcal{C}_{1}, \ldots, \mathcal{C}_{k}$ are convex $\rightarrow \cap_{i=1}^{k} \mathcal{C}_{i}$ is convex
- Examples
- $\mathcal{P}=\left\{\mathbf{x} \mid \mathbf{a}_{i}^{T} \mathbf{x} \leq b_{i}, i=1, \ldots, m\right\}$ is convex
- $\mathcal{S}=\left\{(x, y) \in \mathbb{R}_{+}^{2} \mid x \cos \theta+y \sin \theta \leq 1, \forall \theta \in[0, \pi / 2]\right\}$ is convex

Operation: Affine Transformation

- Affine transformation $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$:

$$
f(\mathbf{x})=\mathbf{A} \mathbf{x}+\mathbf{b}, \quad \mathbf{A} \in \mathbb{R}^{m \times n}, \mathbf{b} \in \mathbb{R}^{m}
$$

- Image of a convex set $\mathcal{C} \subset \mathbb{R}^{n}$ under f is convex

$$
\mathcal{S}=f(\mathcal{C})=\{f(\mathbf{x}) \mid \mathbf{x} \in \mathcal{C}\}
$$

- Inverse image of a convex set $\mathcal{S} \subset \mathbb{R}^{m}$ under f is convex

$$
\mathcal{C}=f^{-1}(\mathcal{S})=\{\mathbf{x} \mid f(\mathbf{x}) \in \mathcal{S}\}
$$

- Examples
- Projection $\mathcal{S}=\left\{\mathbf{x} \in \mathbb{R}^{n} \mid \exists \mathbf{y} \in \mathbb{R}^{m}:(\mathbf{x}, \mathbf{y}) \in \mathcal{C} \subset \mathbb{R}^{n \times m}\right\}$
- Ellipsoids $\mathcal{E}=\mathbf{x}_{c}+\mathbf{A} \mathcal{B}(\mathbf{0}, 1)$
- Linear matrix inequality $\left\{\mathbf{x} \mid \mathbf{B}-\sum_{i=1}^{k} x_{i} \mathbf{A}_{i} \succeq 0\right\}, \mathbf{A}_{i}, \mathbf{B} \in \mathbb{S}^{n}$

Operation: Linear-Fractional Functions

- Perspective function $P: \mathbb{R}^{n} \times \mathbb{R}_{++} \rightarrow \mathbb{R}^{n}$

$$
P(\mathbf{x}, t)=\frac{1}{t} \mathbf{x}
$$

- Exercise
- Both image and inverse image of a convex set (within function domain) under P are convex
- General linear-fractional function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$

$$
f(\mathbf{x})=\frac{\mathbf{A x}+\mathbf{b}}{\mathbf{c}^{T} \mathbf{x}+d}, \quad \operatorname{dom}(f)=\left\{\mathbf{x} \in \mathbb{R}^{n} \mid \mathbf{c}^{T} \mathbf{x}+d>0\right\}
$$

- Exercise
- Both image and inverse image of a convex set (within function domain) under f are convex

