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Structure of Class

Course Goals

Formulate problems as (convex) optimization problems
Develop code for problems of moderate size
Characterize optimal solutions (optimality conditions)

Topics

Convex sets, functions, optimization problems
Examples and applications
Algorithms

Textbook: Convex Optimization - Boyd and Vandenbergh

http://www.stanford.edu/∼boyd/cvxbook/

Software: CVX

http://www.stanford.edu/∼boyd/cvx/

http://www.stanford.edu/~boyd/cvxbook/
http://www.stanford.edu/~boyd/cvx/


Requirements

Homeworks: 40%

Homework 1: due Wednesday Jan 20, 2010

Midterm: 20%

Final: 40%

Student Academic Discipline Policy:
Copy assignments is contrary to University policy. You
must work on your assignments on your own. Late
assignments are not accepted.



Lecture Outline

Mathematical Optimization

Least-Squares and Linear Optimization

Nonlinear Optimization

Convex Optimization

CVX Demonstration



Mathematical Optimization

Mathematical Optimization Problem

min f0(x)
s.t. fi (x) ≤ bi , i = 1, . . . ,m

x = (x1, . . . , xn): optimization variables
f0 : Rn → R: objective function
fi : Rn → R, i = 1, . . . ,m: constraint functions

Optimal Solution

x∗ has the smallest value of f0 among all vectors that satisfy
the constraints



Examples

Portfolio Optimization

Variables: amounts invested in different assets
Constraints: budget, max./min. investment per asset,
minimum return
Objective: overall risk or return variance

Device Sizing in Electronic Circuits

Variables: device widths and lengths
Constraints: manufacturing limits, timing requirements,
maximum area
Objective: power consumption

Data Fitting

Variables: model parameters
Constraints: prior information, parameter limits
Objective: measure of misfit or prediction error



Solving Optimization Problems

General Optimization Problem

Very difficult to solve
Methods involve some compromise, e.g., very long
computation time, or not always finding the solution

Exceptions: certain problem classes can be solved efficiently
and reliably

Least-squares problems
Linear optimization problems
Convex (nonlinear) optimization problems



Least-Squares

Problem Formulation

min
x∈Rn

f0(x) = ||Ax− b||22 =
k∑

i=1

(
aT

i x− bi

)2
,

where A ∈ Rk×n, k ≥ n, and rank(A) = n.

Solving Least-Squares Problems

Analytical solution x∗ =
(
ATA

)−1

ATb

Computational time proportional to n2k

Using Least-Squares

Basis for regression analysis, many parameter estimation and
data fitting methods
Flexibility in applications: weighted least-squares, least-squares
with regularization



Linear Programming

Problem Formulation

min cTx
s.t. aT

i x ≤ bi , i = 1, . . . ,m.

Solving Linear Optimization Problems

No analytical formula for solution
Reliable and efficient algorithms and software
Computational time in practice proportional to n2m (assuming
m ≥ n)

Using Linear Programming

Several optimization problems can be transformed to an
equivalent linear program using some standard techniques
Example: Chebyshev approximation problem

min max
i=1,...,k

|aT
i x− bi |.



Nonlinear Optimization

Nonlinear Optimization

Either the objective or constraint functions are not linear (e.g.
quadratic)
No effective methods for solving the general nonlinear
optimization problem

Convex Optimization

Both the objective and constraint functions are convex:

fi (λx + (1− λ)y) ≤ λfi (x) + (1− λ)fi (y), ∀ 0 ≤ λ ≤ 1.

Least-squares and linear programs are convex problems
Efficient methods for solving (nonlinear) convex problems
Several problems can be solved by convex optimization

Nonconvex Optimization

Local optimization methods: usually iterative methods
Global optimization methods: exponential complexity
Based on solving convex subproblems



Example

Chebyshev Center of a Polyhedron

Polyhedron P = {x | aT
i x ≤ bi , i = 1, . . . ,m}

Ball B(xc , r) = {xc + u | ||u||2 ≤ r}
Find the largest inscribed ball B(xc , r) in the polyhedron P

Problem Formulation

max
xc ,r

r

s.t. B(xc , r) ⊂ P



Reformulation

Constraint Reformulation

B(xc , r) ⊂ P ⇔ xc + u ∈ P, ∀u ∈ B(0, r)

⇔ aT
i (xc + u) ≤ bi , ∀u : ||u||2 ≤ r , i = 1, . . . ,m

⇔ sup
u:||u||2≤r

aT
i u ≤ bi − aT

i xc , i = 1, . . . ,m

Cauchy-Schwarz Inequality

aT
i u ≤ ||ai ||2 ||u||2 ≤ r ||ai ||2 ∀ i = 1, . . . ,m

Problem Reformulation

max
xc ,r

r

s.t. aT
i xc + r ||ai ||2 ≤ bi , i = 1, . . . ,m.



CVX Model

http://www.stanford.edu/∼boyd/cvx/

Run cvx_setup in Matlab

Code cvx model file

Example: Chebyshev center of a polyhedron

Inputs: A,b, n, and m
cvx model:
cvx_begin
variable r;
variable x_c(n);
maximize r
subject to
for i=1:1:m
A(i,:)*x_c + r*norm(A(i,:),2) <= b(i);

end
cvx_end

http://www.stanford.edu/~boyd/cvx/


CVX Run

Example in 2D by Joëlle Skaf

Inputs n = 2, m = 4, and

A =

(
2 2 −1 −1
1 −1 2 −2

)T

, b = (1; 1; 1; 1)

Optimal solutions x∗c = (0; 0) and r∗ = 0.4472
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