CO367/CM442 Nonlinear Optimization Lecture 1

Instructor: Henry Wolkowicz hwolkowi@uwaterloo.ca TA: Vris Cheung, yl2cheun@math.uwaterloo.ca

 $orion.math.uwaterloo.ca/{\sim}hwolkowi/henry/teaching/w10/367.w10/index.shtml$

January 04, 2010

Structure of Class

- Course Goals
 - Formulate problems as (convex) optimization problems
 - Develop code for problems of moderate size
 - Characterize optimal solutions (optimality conditions)
- Topics
 - Convex sets, functions, optimization problems
 - Examples and applications
 - Algorithms
- Textbook: Convex Optimization Boyd and Vandenbergh
 - http://www.stanford.edu/~boyd/cvxbook/
- Software: CVX
 - http://www.stanford.edu/~boyd/cvx/

Requirements

• Homeworks: 40%

• Homework 1: due Wednesday Jan 20, 2010

- Midterm: 20%
- Final: 40%

Student Academic Discipline Policy:

Copy assignments is contrary to University policy. You must work on your assignments on your own. Late assignments are not accepted.

Lecture Outline

- Mathematical Optimization
- Least-Squares and Linear Optimization
- Nonlinear Optimization
- Convex Optimization
- CVX Demonstration

Mathematical Optimization

• Mathematical Optimization Problem

$$\begin{array}{ll} \min & f_0(\mathbf{x}) \\ \text{s.t.} & f_i(\mathbf{x}) \leq b_i, \quad i = 1, \dots, m \end{array}$$

- $\mathbf{x} = (x_1, \dots, x_n)$: optimization variables
- $f_0: \mathbb{R}^n \to \mathbb{R}$: objective function
- $f_i : \mathbb{R}^n \to \mathbb{R}, i = 1, \dots, m$: constraint functions
- Optimal Solution
 - **x**^{*} has the *smallest* value of *f*₀ among all vectors that *satisfy* the constraints

Examples

- Portfolio Optimization
 - Variables: amounts invested in different assets
 - Constraints: budget, max./min. investment per asset, minimum return
 - Objective: overall risk or return variance
- Device Sizing in Electronic Circuits
 - Variables: device widths and lengths
 - Constraints: manufacturing limits, timing requirements, maximum area
 - Objective: power consumption
- Data Fitting
 - Variables: model parameters
 - Constraints: prior information, parameter limits
 - Objective: measure of misfit or prediction error

Solving Optimization Problems

• General Optimization Problem

- Very difficult to solve
- Methods involve some compromise, e.g., very long computation time, or not always finding the solution
- Exceptions: certain problem classes can be solved efficiently and reliably
 - Least-squares problems
 - Linear optimization problems
 - Convex (nonlinear) optimization problems

Least-Squares

Problem Formulation

$$\min_{\mathbf{x}\in\mathbb{R}^n}f_0(\mathbf{x})=||\mathbf{A}\mathbf{x}-\mathbf{b}||_2^2=\sum_{i=1}^k\left(\mathbf{a}_i^T\mathbf{x}-b_i\right)^2,$$

where $\mathbf{A} \in \mathbb{R}^{k \times n}$, $k \ge n$, and rank $(\mathbf{A}) = n$.

- Solving Least-Squares Problems
 - Analytical solution $\mathbf{x}^* = \left(\mathbf{A}^T \mathbf{A}\right)^{-1} \mathbf{A}^T \mathbf{b}$
 - Computational time proportional to n^2k
- Using Least-Squares
 - Basis for regression analysis, many parameter estimation and data fitting methods
 - Flexibility in applications: weighted least-squares, least-squares with regularization

Linear Programming

Problem Formulation

min
$$\mathbf{c}^T \mathbf{x}$$

s.t. $\mathbf{a}_i^T \mathbf{x} \le b_i$, $i = 1, \dots, m$.

- Solving Linear Optimization Problems
 - No analytical formula for solution
 - Reliable and efficient algorithms and software
 - Computational time in practice proportional to n^2m (assuming $m \ge n$)
- Using Linear Programming
 - Several optimization problems can be transformed to an equivalent linear program using some standard techniques
 - Example: Chebyshev approximation problem

$$\min\max_{i=1,\ldots,k}|\mathbf{a}_i^T\mathbf{x}-b_i|.$$

Nonlinear Optimization

- Nonlinear Optimization
 - Either the objective or constraint functions are *not* linear (e.g. quadratic)
 - No effective methods for solving the general nonlinear optimization problem
- Convex Optimization
 - Both the objective and constraint functions are convex:

$$f_i(\lambda \mathbf{x} + (1-\lambda)\mathbf{y}) \leq \lambda f_i(\mathbf{x}) + (1-\lambda)f_i(\mathbf{y}), \quad \forall \, \mathbf{0} \leq \lambda \leq 1.$$

- Least-squares and linear programs are convex problems
- Efficient methods for solving (nonlinear) convex problems
- Several problems can be solved by convex optimization
- Nonconvex Optimization
 - Local optimization methods: usually iterative methods
 - Global optimization methods: exponential complexity
 - Based on solving convex subproblems

Example

• Chebyshev Center of a Polyhedron

- Polyhedron $\mathcal{P} = \{\mathbf{x} \mid \mathbf{a}_i^T \mathbf{x} \leq b_i, i = 1, \dots, m\}$
- Ball $\mathcal{B}(\mathbf{x}_c, r) = {\mathbf{x}_c + \mathbf{u} \mid ||\mathbf{u}||_2 \le r}$
- Find the largest inscribed ball $\mathcal{B}(\mathbf{x}_c, r)$ in the polyhedron \mathcal{P}

• Problem Formulation

 $\begin{array}{ll} \max_{\mathbf{x}_{c},r} & r\\ \text{s.t.} & \mathcal{B}(\mathbf{x}_{c},r) \subset \mathcal{P} \end{array}$

Reformulation

• Constraint Reformulation

$$\begin{aligned} \mathcal{B}(\mathbf{x}_{c},r) \subset \mathcal{P} \Leftrightarrow \mathbf{x}_{c} + \mathbf{u} \in \mathcal{P}, \, \forall \, \mathbf{u} \in \mathcal{B}(\mathbf{0},r) \\ \Leftrightarrow \mathbf{a}_{i}^{T}(\mathbf{x}_{c} + \mathbf{u}) \leq b_{i}, \, \forall \, \mathbf{u} : ||\mathbf{u}||_{2} \leq r, \, i = 1, \dots, m \\ \Leftrightarrow \sup_{\mathbf{u}:||\mathbf{u}||_{2} \leq r} \mathbf{a}_{i}^{T} \, \mathbf{u} \leq b_{i} - \mathbf{a}_{i}^{T} \mathbf{x}_{c}, \, i = 1, \dots, m \end{aligned}$$

• Cauchy-Schwarz Inequality

$$\mathbf{a}_i^T \mathbf{u} \le ||\mathbf{a}_i||_2 ||\mathbf{u}||_2 \le r ||\mathbf{a}_i||_2 \quad \forall i = 1, \dots, m$$

• Problem Reformulation

$$\begin{array}{ll} \max_{\mathbf{x}_c,r} & r \\ \text{s.t.} & \mathbf{a}_i^T \mathbf{x}_c + r \left| |\mathbf{a}_i| \right|_2 \leq b_i, \quad i = 1, \dots, m. \end{array}$$

CVX Model

- http://www.stanford.edu/~boyd/cvx/
- Run cvx_setup in Matlab
- Code cvx model file
- Example: Chebyshev center of a polyhedron
 - Inputs: **A**, **b**, *n*, and *m*
 - cvx model:

```
cvx_begin
variable r;
variable x_c(n);
maximize r
subject to
for i=1:1:m
    A(i,:)*x_c + r*norm(A(i,:),2) <= b(i);
end
cvx_end
```

CVX Run

- Example in 2D by Joëlle Skaf
- Inputs n = 2, m = 4, and

$$\mathbf{A} = \left(\begin{array}{rrr} 2 & 2 & -1 & -1 \\ 1 & -1 & 2 & -2 \end{array}\right)^T, \ \mathbf{b} = (1; 1; 1; 1)$$

• Optimal solutions $\mathbf{x}_c^* = (0; 0)$ and $r^* = 0.4472$

