CO367/CM442 Nonlinear Optimization Lecture 1

Instructor: Henry Wolkowicz
hwolkowi@uwaterloo.ca

TA: Vris Cheung, yl2cheun@math.uwaterloo.ca
orion.math.uwaterloo.ca/~hwolkowi/henry/teaching/w10/367.w10/index.shtml
January 04, 2010

Structure of Class

- Course Goals
- Formulate problems as (convex) optimization problems
- Develop code for problems of moderate size
- Characterize optimal solutions (optimality conditions)
- Topics
- Convex sets, functions, optimization problems
- Examples and applications
- Algorithms
- Textbook: Convex Optimization - Boyd and Vandenbergh
- http://www.stanford.edu/~boyd/cvxbook/
- Software: CVX
- http://www.stanford.edu/~boyd/cvx/

Requirements

- Homeworks: 40%
- Homework 1: due Wednesday Jan 20, 2010
- Midterm: 20\%
- Final: 40%

Student Academic Discipline Policy:
Copy assignments is contrary to University policy. You must work on your assignments on your own. Late assignments are not accepted.

Lecture Outline

- Mathematical Optimization
- Least-Squares and Linear Optimization
- Nonlinear Optimization
- Convex Optimization
- CVX Demonstration

Mathematical Optimization

- Mathematical Optimization Problem

$$
\begin{array}{cl}
\min & f_{0}(\mathbf{x}) \\
\text { s.t. } & f_{i}(\mathbf{x}) \leq b_{i}, \quad i=1, \ldots, m
\end{array}
$$

- $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$: optimization variables
- $f_{0}: \mathbb{R}^{n} \rightarrow \mathbb{R}$: objective function
- $f_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}, i=1, \ldots, m$: constraint functions
- Optimal Solution
- \mathbf{x}^{*} has the smallest value of f_{0} among all vectors that satisfy the constraints

Examples

- Portfolio Optimization
- Variables: amounts invested in different assets
- Constraints: budget, max./min. investment per asset, minimum return
- Objective: overall risk or return variance
- Device Sizing in Electronic Circuits
- Variables: device widths and lengths
- Constraints: manufacturing limits, timing requirements, maximum area
- Objective: power consumption
- Data Fitting
- Variables: model parameters
- Constraints: prior information, parameter limits
- Objective: measure of misfit or prediction error

Solving Optimization Problems

- General Optimization Problem
- Very difficult to solve
- Methods involve some compromise, e.g., very long computation time, or not always finding the solution
- Exceptions: certain problem classes can be solved efficiently and reliably
- Least-squares problems
- Linear optimization problems
- Convex (nonlinear) optimization problems

Least-Squares

- Problem Formulation

$$
\min _{\mathbf{x} \in \mathbb{R}^{n}} f_{0}(\mathbf{x})=\|\mathbf{A} \mathbf{x}-\mathbf{b}\|_{2}^{2}=\sum_{i=1}^{k}\left(\mathbf{a}_{i}^{T} \mathbf{x}-b_{i}\right)^{2}
$$

where $\mathbf{A} \in \mathbb{R}^{k \times n}, k \geq n$, and $\operatorname{rank}(\mathbf{A})=n$.

- Solving Least-Squares Problems
- Analytical solution $\mathbf{x}^{*}=\left(\mathbf{A}^{T} \mathbf{A}\right)^{-1} \mathbf{A}^{T} \mathbf{b}$
- Computational time proportional to $n^{2} k$
- Using Least-Squares
- Basis for regression analysis, many parameter estimation and data fitting methods
- Flexibility in applications: weighted least-squares, least-squares with regularization

Linear Programming

- Problem Formulation

$$
\begin{array}{cl}
\min & \mathbf{c}^{T} \mathbf{x} \\
\text { s.t. } & \mathbf{a}_{i}^{T} \mathbf{x} \leq b_{i}, \quad i=1, \ldots, m
\end{array}
$$

- Solving Linear Optimization Problems
- No analytical formula for solution
- Reliable and efficient algorithms and software
- Computational time in practice proportional to $n^{2} m$ (assuming $m \geq n$)
- Using Linear Programming
- Several optimization problems can be transformed to an equivalent linear program using some standard techniques
- Example: Chebyshev approximation problem

$$
\min \max _{i=1, \ldots, k}\left|\mathbf{a}_{i}^{T} \mathbf{x}-b_{i}\right|
$$

Nonlinear Optimization

- Nonlinear Optimization
- Either the objective or constraint functions are not linear (e.g. quadratic)
- No effective methods for solving the general nonlinear optimization problem
- Convex Optimization
- Both the objective and constraint functions are convex:

$$
f_{i}(\lambda \mathbf{x}+(1-\lambda) \mathbf{y}) \leq \lambda f_{i}(\mathbf{x})+(1-\lambda) f_{i}(\mathbf{y}), \quad \forall 0 \leq \lambda \leq 1 .
$$

- Least-squares and linear programs are convex problems
- Efficient methods for solving (nonlinear) convex problems
- Several problems can be solved by convex optimization
- Nonconvex Optimization
- Local optimization methods: usually iterative methods
- Global optimization methods: exponential complexity
- Based on solving convex subproblems

Example

- Chebyshev Center of a Polyhedron
- Polyhedron $\mathcal{P}=\left\{\mathbf{x} \mid \mathbf{a}_{i}^{T} \mathbf{x} \leq b_{i}, i=1, \ldots, m\right\}$
- Ball $\mathcal{B}\left(\mathbf{x}_{c}, r\right)=\left\{\mathbf{x}_{c}+\mathbf{u} \mid\|\mathbf{u}\|_{2} \leq r\right\}$
- Find the largest inscribed ball $\mathcal{B}\left(\mathbf{x}_{c}, r\right)$ in the polyhedron \mathcal{P}
- Problem Formulation

$$
\begin{array}{rl}
\max _{\mathbf{x}_{c}, r} & r \\
\text { s.t. } & \mathcal{B}\left(\mathbf{x}_{c}, r\right) \subset \mathcal{P}
\end{array}
$$

Reformulation

- Constraint Reformulation

$$
\begin{aligned}
\mathcal{B}\left(\mathbf{x}_{c}, r\right) \subset \mathcal{P} & \Leftrightarrow \mathbf{x}_{c}+\mathbf{u} \in \mathcal{P}, \forall \mathbf{u} \in \mathcal{B}(\mathbf{0}, r) \\
& \Leftrightarrow \mathbf{a}_{i}^{T}\left(\mathbf{x}_{c}+\mathbf{u}\right) \leq b_{i}, \forall \mathbf{u}:\|\mathbf{u}\|_{2} \leq r, i=1, \ldots, m \\
& \Leftrightarrow \sup _{\mathbf{u}:\|\mathbf{u}\|_{2} \leq r} \mathbf{a}_{i}^{T} \mathbf{u} \leq b_{i}-\mathbf{a}_{i}^{T} \mathbf{x}_{c}, i=1, \ldots, m
\end{aligned}
$$

- Cauchy-Schwarz Inequality

$$
\mathbf{a}_{i}^{T} \mathbf{u} \leq\left\|\mathbf{a}_{i}\right\|_{2}\|\mathbf{u}\|_{2} \leq r\left\|\mathbf{a}_{i}\right\|_{2} \quad \forall i=1, \ldots, m
$$

- Problem Reformulation

$$
\begin{array}{rl}
\max _{\mathbf{x}_{c}, r} & r \\
\text { s.t. } & \mathbf{a}_{i}^{T} \mathbf{x}_{c}+r\left\|\mathbf{a}_{i}\right\|_{2} \leq b_{i}, \quad i=1, \ldots, m
\end{array}
$$

CVX Model

- http://www.stanford.edu/~boyd/cvx/
- Run cvx_setup in Matlab
- Code cvx model file
- Example: Chebyshev center of a polyhedron
- Inputs: A,b,n, and m
- cvx model:

```
        cvx_begin
        variable r;
        variable x_c(n);
        maximize r
        subject to
        for i=1:1:m
        A(i,:)*x_c + r*norm(A(i,:),2) <= b(i);
        end
cvx_end
```

- Example in 2D by Joëlle Skaf
- Inputs $n=2, m=4$, and

$$
\mathbf{A}=\left(\begin{array}{cccc}
2 & 2 & -1 & -1 \\
1 & -1 & 2 & -2
\end{array}\right)^{T}, \mathbf{b}=(1 ; 1 ; 1 ; 1)
$$

- Optimal solutions $\mathbf{x}_{c}^{*}=(0 ; 0)$ and $r^{*}=0.4472$

