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Preface

A course in semidefinite optimization for fourth year undergraduate stu-
dents and graduate students. The aim is to introduce the theory and its
applications. We offer a quite brief treatment of interior point methods,
and make no attempt to discuss implementations. We provide applications
to graph theory, coding theory, geometry, quantum imformation.

Some of the prerequisites are as follows.

1. Be able to formulate, and understand the formulation of linear pro-
grams.

2. Understand duality of linear programs—be able to write down the
dual of a linear program and understand what it means.

3. Analysis: open sets, closed sets, compactness.

4. Linear algebra: all of it. Also norms on vector spaces and convex sets.

5. Graph theory: the basics, cliques, cocliques/independent sets, colour-
ing.

iii





Contents

Preface iii

Contents v

1 Basics 1
1.1 LPs and Inner Products . . . . . . . . . . . . . . . . . . . . 1
1.2 Inner Products & Norms . . . . . . . . . . . . . . . . . . . . 1
1.3 Positive Semidefinite Matrices . . . . . . . . . . . . . . . . . 3
1.4 Cocliques in Graphs . . . . . . . . . . . . . . . . . . . . . . 4

2 Positive Semidefinite Matrices 5
2.1 Characterizations . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Sums of Projections . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Principal Submatrices . . . . . . . . . . . . . . . . . . . . . 8
2.4 Cholesky . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.5 Kronecker and Schur Products . . . . . . . . . . . . . . . . . 11
2.6 Normal Linear Algebra . . . . . . . . . . . . . . . . . . . . . 13
2.7 Spectral Decomposition for Normal Matrices . . . . . . . . . 14
2.8 Algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 Convex Sets 17
3.1 Open Sets, Closed Sets . . . . . . . . . . . . . . . . . . . . . 17
3.2 Affine Space . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.3 Convex Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.4 Nearest Points . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.5 Separation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.6 Two More Proofs of Separation . . . . . . . . . . . . . . . . 23
3.7 Extreme Points . . . . . . . . . . . . . . . . . . . . . . . . . 24

v



Contents

3.8 Unit Balls and Norms . . . . . . . . . . . . . . . . . . . . . 25
3.9 Cones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.10 Bases for Convex Cones . . . . . . . . . . . . . . . . . . . . 27

4 Lovász Theta 29
4.1 The Strong Product . . . . . . . . . . . . . . . . . . . . . . 29
4.2 Graph Homomorphisms . . . . . . . . . . . . . . . . . . . . 31
4.3 Fractional Colourings . . . . . . . . . . . . . . . . . . . . . . 31
4.4 Using Symmetry . . . . . . . . . . . . . . . . . . . . . . . . 33
4.5 Lovász θ(G) . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.6 A Semidefinite Program? . . . . . . . . . . . . . . . . . . . . 35
4.7 A Semidefinite Program . . . . . . . . . . . . . . . . . . . . 37
4.8 Using Complements . . . . . . . . . . . . . . . . . . . . . . . 39
4.9 Other Bounds on the Shannon Capacity . . . . . . . . . . . 41

5 Duality and Semidefinite Programs 43
5.1 Conic Programs . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.2 Difficulties with Duality . . . . . . . . . . . . . . . . . . . . 44
5.3 Duals of Duals . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.4 Strong Duality . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.5 Farkas’s Lemma . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.6 A Second Approach to Duality . . . . . . . . . . . . . . . . . 51
5.7 Strong Duality, Again . . . . . . . . . . . . . . . . . . . . . . 53

6 Algorithms 55
6.1 Convex Functions . . . . . . . . . . . . . . . . . . . . . . . . 55
6.2 Differentiable Functions . . . . . . . . . . . . . . . . . . . . 56
6.3 An Interior Point Method . . . . . . . . . . . . . . . . . . . 57

7 Codes, Colourings, Packings 59
7.1 Geometry of Code Words . . . . . . . . . . . . . . . . . . . . 59
7.2 A Matrix Algebra . . . . . . . . . . . . . . . . . . . . . . . . 60
7.3 A Projection . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
7.4 A Bound on Codes . . . . . . . . . . . . . . . . . . . . . . . 63
7.5 Schur-Closed Algebras . . . . . . . . . . . . . . . . . . . . . 64
7.6 Properties of Projections . . . . . . . . . . . . . . . . . . . . 65
7.7 Projections are Positive . . . . . . . . . . . . . . . . . . . . . 66
7.8 Vector Colourings . . . . . . . . . . . . . . . . . . . . . . . . 67

vi



Contents

7.9 Semidefinite Programs for χvec(G) . . . . . . . . . . . . . . . 68
7.10 Bounds for χvec(G) . . . . . . . . . . . . . . . . . . . . . . . 70
7.11 The Kissing Number . . . . . . . . . . . . . . . . . . . . . . 71
7.12 Gegenbauer Polynomials . . . . . . . . . . . . . . . . . . . . 73
7.13 The Optimal Solution . . . . . . . . . . . . . . . . . . . . . 74

8 Quantum Channels 77
8.1 Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
8.2 Complex and Hermitian Matrices . . . . . . . . . . . . . . . 78
8.3 Measurement and Channels . . . . . . . . . . . . . . . . . . 79
8.4 Hermitian SDPs . . . . . . . . . . . . . . . . . . . . . . . . . 80
8.5 Optimal Measurements . . . . . . . . . . . . . . . . . . . . . 81

9 Copositive, Completely Positive 83
9.1 Motkin-Straus . . . . . . . . . . . . . . . . . . . . . . . . . . 83
9.2 Copositive and Completely Positive Matrices . . . . . . . . . 84
9.3 Motzkin-Straus as a Conic Program . . . . . . . . . . . . . . 86
9.4 Copositive Programs for α(G) . . . . . . . . . . . . . . . . . 87

Index 91

vii





Chapter 1

Basics

Roughly speaking, we’re following Laurent and Vallentin for a while.

1.1 LPs and Inner Products
Discuss key properties of feasible regions in optimization problems.

Write LPs in terms of inner products: instead of

max cTx, Ax = b, x ≥ 0,

rather, if A is m× n and Ai is the i-th row of A, then

max 〈c, x〉, 〈Ai, x〉 = bi, (i = 1, . . .m), x ≥ 0

Inner products on matrices. Change to upper case to get a semidefinite
program:

max 〈C,X〉, 〈Ai, X〉 = bi, (i = 1, . . .m), X < 0.

Some explanations are in order. See the following sections in this chapter.

1.2 Inner Products & Norms
A bilinear form on a vector space V over F is a map β : V × V → F that is
linear in each variable. It is symmetric if

β(u, v) = β(v, u)

1



1. Basics

for all u and v. It is non-degenerate if whenever β(a, u) = 0 for all u, then
a = 0.

The simplest examples arise when V = Rd and

β(u, v) = uTMv

for some d × d matrix M . This form is bilinear, and it is symmetric if
and only if M is symmetric. Note that if f1, . . . , fd is a basis for V , the d2

values β(fi, fj) determine the form. In fact if we stack these entries into a
d× d matrix M in the obvious way, and if [u] denotes the coordinates of u
relative to the given basis, then

β(u, v) = [u]TM [v].

A bilinear form is non-degenerate if and only if the associated matrix M is
invertible.

A bilinear form β on a real vector space is an inner product if it is
symmetric and

(a) β(x, x) ≥ 0 for all x in V .

(b) If β(x, x) = 0, then x = 0.

As you well know, if β is the form corresponding to the identity matrix,
then it is an inner product.

From this point on we will usually denote the value of a form on the
pair (u, v) by

〈x, y〉.

This means that in the worst case you might need to consider the context
to decide exactly what the form is. You may assume that if we’re working
over a finite-dimensional real vector space, we will use the traditional inner
product.

The set Matm×n(R) of m×n real matrices is a vector space and the map
that takes the pair (A,B) to tr(ATB) is easily seen to be bilinear. With
slightly more effort, you may show that it is an inner product. We will
make extensive use of this inner product in these notes. We will usually
denote its value by 〈A,B〉.

A norm on a real vector space V is a function that sends a vector v to
a real number ‖v‖ such that:

2



1.3. Positive Semidefinite Matrices

(a) If v is a vector and c is a scalar, then ‖cv‖ = |c|‖v‖.

(b) For all vectors v we have ‖v‖ ≥ 0, and if ‖v‖ = 0, then v = 0.

(c) ‖u+ v‖ ≤ ‖u‖+ ‖v‖.

If 〈·, ·〉 is an inner product on v, then the function

v 7→
√
〈v, v〉

is a norm. (But there are many useful norms that do not arise in this way.
Ask your favourite analyst for details.)

1.3 Positive Semidefinite Matrices
A real matrix M is positive semidefinite if:

(a) It is symmetric.

(b) For all vectors x we have xTMx ≥ 0.

A matrix M is positive definite if it is positive semidefinite and invertible.
Equivalently, it is positive definite if is positive semidefinite, and if xTMx =
0, then x = 0. (We will prove the equivalence of these two definitions later.)
If A and B are matrices, we write A < B to denote that A− B is positive
semidefinite. Thus A is positive semidefinite if and only if A < 0.

A matrix M is positive definite if and only if the associated form

β(x, y)) = xTMy

is an inner product.
We can now decode the definition of a semidefinite program given in the

first section. We can view it as arising from a linear program by replacing
vectors by matrices, and replacing the non-negativity condition by the as-
sumption that feasible matrices must be positive semidefinite. It could be
objected that, although we have shown this translation from LP to SDP is
“feasible”, the real question is how can we make use of it.

3



1. Basics

1.4 Cocliques in Graphs
We develop an example of a semidefinite program. A coclique (aka indepen-
dent set) in a graph G is a set of vertices S (say), such that no two vertices
in S are adjacent. We can represent S as a characteristic vector x on the
vertices of G, such that xi = 0 if the vertex i /∈ S and xi = 1 if i ∈ S. If
this was a course in linear programming we would happily work with these
characteristic vectors, but we need matrices.

So, to the coclique S we associate the matrix X = |S|−1xxT . Observe
that

tr(X) = tr(|S|−1xxT ) = 1
|S|

tr(xxT ) = 1
|S|

tr(xTx) = 1
|S|
|S| = 1.

Further if J is the matrix with all entries equal to 1 and 1 is the vector
with all entries 1, then J = 11T

〈J,X〉 = 1
|S|

tr(JxxT ) = 1
|S|

tr(11TxxT ) = |S|
2

|S|
= |S|.

None of this makes any use of the fact that x is the characteristic vector of
a coclique. We observe that if i and j are vertices in G, then Xi,j = 1 if
and only if i and j are distinct vertices in S; in particular Xi,j = 0 if i and
j are adjacent.

We conclude that the maximum value of 〈J,X〉, where X lies on the
affine space

Ω =
{
X : tr(X) = 1, Xi,j = 0 if {i, j} ∈ E(G)

}
and X < 0, is an upper bound on the maximum size α(G) of a coclique
in G. The maximum is called the theta number of G, and denoted θ(G).
We point out that it would be more useful to have a semidefinite program
whose minimum value was an upper bound for α(G).

You should prove that if we restrict the feasible region to the diagonal
matrices in Ω, the resulting problem is a linear program.

4



Chapter 2

Positive Semidefinite Matrices

2.1 Characterizations
We recall that a matrix A is positive semidefinite if it is symmetric and
xTAx = 0 for all x, and it is positive definite if it is positive semidefinite
and, if xTAx = 0 then x = 0. A diagonal matrix is positive semidefinite if
and only if its diagonal entries are non-negative.

If A = MTM , then

xTAX = xTMTMX = ‖Mx‖2 ≥ 0;

hence this gives us a large supply of positive semidefinite matrices. There
is a generalization. If x1, . . . , xd are vectors in an inner product space, their
Gram matrix G is the d× d matrix with

Gi,j = 〈xi, xj〉.

The exercises provide you with the opportunity to show that a Gram matrix
is positive semidefinite, and it is positive definite if and only if the vectors
x1, . . . , xd are linearly independent.

2.1.1 Theorem. Let A be a symmetric matrix. The following are equiva-
lent:

(a) A is positive semidefinite.

(b) xTAx ≥ 0 for all x.

5



2. Positive Semidefinite Matrices

(c) A = BTB for some matrix B.

(d) All eigenvalues of A are non-negative.

Proof. That (b) implies (a) is the definition, and we proved (c) implies (b)
above. For the next step assume that the eigenvalues of A are non-negative.
Then there is an orthogonal matrix L and a diagonal matrix D such that
A = LDLT . Since the eigenvalues of A are non-negative, the diagonal
entries of D are non-negative and therefore there is a diagonal matrix with
non-negative entries whose square is D. Originality is not required, and so
we denote it by D1/2. Now we have

A = LD1/2D1/2LT = LD1/2LT LD1/2LT

and, and if B = LD1/2L, then A = B2. Since B is symmetric, this shows
that (d) implies (c).

To complete the proof, we show (a) implies (d). If Az = λz and z 6= 0,
then

0 ≤ zTAz = λzT z,

whence λ ≥ 0.
One consequence of our proof is that every positive semidefinite matrix

has a square root (in fact 2n square roots if A is n× n).
If B is chosen so A = BTB, then

det(A) = det(BT ) det(B) = det(B)2 ≥ 0.

2.1.2 Theorem. A matrix A is positive semidefinite if and only 〈A,X〉 ≥ 0
for all positive semidefinite matrices X.

Proof. If A < 0, then A = BTB for some matrix B and so

〈A,X〉 = tr(AX) = tr(BTBX) = tr(BXBT ).

Since X < 0 we see that BXBT < 0 and hence tr(BXBT ) ≥ 0.
For the other direction, note that if x is a vector, then xxT is positive

semidefinite. If 〈A,X〉 ≥ 0 for all X, the 〈A, xxT 〉 ≥ 0 for all x. However

〈A, xxT 〉 = tr(AxxT ) = tr(xTAx) = xTAx

and therefore xTAx ≥ 0 for all x.

6



2.2. Sums of Projections

A real matrix P is a projection (more precisely, represents orthogonal
projection onto some subspace) if P = P T and P 2 = P . And here “some
subspace” is the column space of P . A matrix P such that P 2 = P is said
to be idempotent if P 2 = P , so a projection is a symmetric idempotent. If
P is idempotent, so is I − P , and consequently if P is a projection, the so
is I − P . Projections are necessarily positive semidefinite; you should be
able to provide three proofs of this. For any vector x we have

xxT xxT = xTx xxT

and so if ‖x‖ = 1, then xxT is a projection—onto the 1-dimensional sub-
space spanned by x. If P and Q are projections and PQ = QP = 0, we say
that they are orthogonal; in this case P + Q is also a projection (onto the
direct sum of the column spaces of P and Q).

2.2 Sums of Projections
Suppose A < 0. Then

0 ≤ (x+ ty)TA(x+ ty) = xTAx+ txTAy + tyTAx+ t2yTAY

= xTAx+ 2txTAy + t2yTAY.

The last term is a quadratic polynomial in t and, since it is non-negative
for all t, its discriminant cannot be positive, i.e.,

(xTAy)2 − xTAxyTAy ≤ 0.

Equivalently we have a form of the Cauchy-Schwarz inequality: if A < 0,
then

(xTAy)2 ≤ xTAxyTAy.

(You will be asked to characterize the case where equality holds.)
Any symmetric matrix A with rank one can be expressed in the form

±xxT for some x (and x is a unit vector if and only if tr(A) = 1.) Thus
symmetric matrices of rank one with non-nagative diagonal are positive
semidefinite.

2.2.1 Theorem. A positive semidefinite matrix with rank r can be written
as the sum of at most r positive semidefinite matrices with rank one.

7



2. Positive Semidefinite Matrices

Proof. We go by induction on rk(A). Choose a vector x such that Ax 6= 0—
if no such vector exists then A = 0 and the result holds. Define

B = A− 1
xTAx

AxxTA

and note that B − A is a symmetric matrix with rank one. We claim that
B < 0. We have

yTBy = yTAy − 1
xTAx

yTAxxTAy = yTAy − xTAy2

xTAx

and, by our version of Cauchy-Schwarz we deduce that B < 0. Since the
column space of B is a subspace of the column space of A, and since

Bx = Ax− 1
xTAx

AxxTAx = Ax− Ax = 0,

we have rk(B) < rk(A). By induction B is a sum of at most rk(A) − 1
symmetric matrices of rank one, and the result follows.

One consequence of this is that 〈A,P 〉 ≥ 0 for all positive semidefinite
matrices P if and only if 〈A,P 〉 ≥ 0 for all positive semidefinite matrices
of rank one. (We have already met a version of this.) We also note that
it is not hard to that we can replace “at most r” in the statement of the
theorem by “exactly r”.

2.3 Principal Submatrices
The following result will get a lot of use.

2.3.1 Lemma. If A is positive semidefinite, each principal submatrix of A
os positive semidefinite.

Proof. Suppose A is n×n and K ⊆ {1, . . . , }. Let x be a vector in RK and
let x̂ be the vector in Rn such that

x̂i =

xi, i ∈ K;
0, i /∈ K.

If B is the principal submatrix of A with rows and columns indexed by K,
then

x̂TAx̂ = xTBx

and so it follows that B < 0 if A < 0.

8



2.4. Cholesky

Each diagonal entry of a matrix is 1×1 principal submatrix, so it follows
that the diagonal entries of a positive semidefinite matrix are non-negative.
(We could also prove this by observing that Ar,r = eTr Aer.)

Since each principal submatrix of a positive semidefinite matrix is pos-
itive semidefinite, each principal minor of a positive semidefinite matrix is
non-negative. The converse is true, but we will not need it.

2.3.2 Lemma. If A < 0 and UTAU = 0 for some matrix U , then AU = 0.

Proof. If A < 0 then A = BTB for some matrix B. Hence

UTAU = UTBTBU = (BU)TBU = 〈BU,BU〉

and so UTAU = 0 implies BU = 0. If BU = 0, then Ax = BTBU = 0.

The most commonly used case of this is when U is a vector. There is
an important consequence of this: if M < 0 and Mi,i = 0, then all entries
in the i-th row and in the i-th column of M are zero. For if Mi,i = 0, then
eTi Mei = 0 and hence Mei = 0 (and eTi M = 0.)

2.4 Cholesky
Suppose the symmetric matrix M has the 2× 2 block form

M =
(
A B
C D

)

where A is invertible. We then have the factorization(
A B
C D

)
=
(

I 0
CA−1 I

)(
A 0
0 D − CA−1B

)(
I A−1B
0 I

)

The matrix
S = D − CA−1B

is called the Schur complement of A in M . Note that

det(M) = det(A) det(D − CA−1B).

9



2. Positive Semidefinite Matrices

2.4.1 Theorem. If the symmetric matrix M has the 2× 2 block form

M =
(
A BT

B D

)
where A is invertible, then M is positive semidefinite if and only if A and
D −BA−1BT are positive semidefinite.

Proof. We can rewrite our factorization above as

M = P T

(
A 0
0 D −BTA−1B

)
P

where
P =

(
I A−1B
0 I

)
.

It follows that M < 0 if and only if(
A 0
0 D −BTA−1B

)
< 0.

We can use this to give a variant of the characterization of positive
semidefinite matrices by factorization; this will also give us an algorithm
for recognizing if a matrix is positive semidefinite.

2.4.2 Lemma. If A is positive semidefinite, there is a lower triangular
matrix L such that A = LLT .

Proof. Assume A is n×n. The proof is by induction on n, and the result is
trivial if n = 1. Assume n ≥ 2. If A1,1 = 0, then the first row and column
of A are zero. If we let A1 be the matrix we get by deleting the first row
and column of A, then the theorem holds for A1 by induction.

So suppose a = A1,1 6= 0. Then we may assume

A =
(
a bT

b A1

)
and, by the previous theorem, there is a lower triangular matrix N such
that

N−1AN−T =
(
a 0
0 A1 − a−1bbT

)
.

Again by the previous theorem a > 0 and A1−a−1bbT < 0. So it follows by
induction that there is a lower triangular matrixM such that A = MDMT ,
where D is diagonal with non-negative diagonal entries. The matrix L we
need is MD1/2.

10



2.5. Kronecker and Schur Products

2.5 Kronecker and Schur Products
If A and B are matrices, their Kronecker product A ⊗ B is the matrix we
get by replacing the ij-entry of A with the matrix Ai,jB. If A is m × n
and B is r× s, then A⊗B is a mr× ns matrix. We can view its rows and
columns as indexed by ordered pairs of integers, thus

(A⊗B)(i,k),(j,`) = Ai,jBk,`.

If A is m× 1 and B is 1× n, then A⊗B is an m× n matrix.
The Kronecker product is bilinear but is not symmetric. One of the

most important properties of the Kronecker product is that if the matrix
products AC and BD are defined, then

(A⊗B)(C ⊗D) = AC ⊗BD

and, in particular for vectors u and v of the right order

(A⊗B)(u⊗ v) = Au⊗Bv.

Hence if u and v are eigenvectors of A and B respectively, then u⊗ v is an
eigenvector for A⊗B. We also see that

A⊗B = (A⊗ I)(I ⊗B) = (I ⊗B)(A⊗ I).

Many graph products can be defined in terms of Kronecker product.
We also have

(A⊗B)T = AT ⊗BT ;

note though that A ⊗ AT is not symmetric. (You might show that if P
represents the linear map sending u ⊗ v to v ⊗ u, then P (A ⊗ AT ) is sym-
metric.)

It is not hard to show that tr(A⊗ B) = tr(A) tr(B). The behaviour of
the determinant is more complex, and is left as an exercise.

Let e1, . . . , en denote the standard basis of Rn. If A is an m× n matrix,
we define vec(A) to be the column vector

Ae1
...

Aen

 .
11



2. Positive Semidefinite Matrices

You are invited to verify that for an matrix X we have

vec(AXBT ) = (A⊗B) vec(X).

In other words, the linear map on the space of matrices that sends X to
AXBT can be represented by the matrix A⊗B.

The Schur product A ◦ B of two m × n matrices is the m × n matrix
defined by the condition

(A ◦B)i,j = Ai,jBi,j.

It may also be referred to as the Hadamard product (although Hadamard
never used it), or as the ‘bad student’s product. If is bilinear and symmetric.

The Kronecker and Schur products play nicely together. Thus, assuming
the orders line up,

(A⊗B) ◦ (C ⊗D) = (A ◦ C)⊗ (B ◦D)

and
(A ◦B)⊗ (C ◦D) = (A× C) ◦ (B ⊗D).

(Perhaps you should check the last one.)
Naturally we are concerned with products of positive semidefinite ma-

trices.

2.5.1 Lemma. If A and B are positive semidefinite, so is A ⊗ B. If A
and B are positive semidefinite matrices of the same order, then A ◦ B is
positive semidefinite.

Proof. It is probably simplest to prove the Kronecker product of positive
semidefinite matrices is positive semidefinite using the characterization in
terms of factorizations, but it’s your choice. For the Schur product, one
simple approach is to observe that A ◦B is a principal submatrix of A⊗B
and the former is positive semidefinite if the latter is.

The Schur product allows us to provide another presentation of our
standard inner product. Let sum(M) denote the sum of the entries of the
matrix M . Then

〈A,B〉 = sum(A ◦B).

12
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2.6 Normal Linear Algebra
In this section we will work with complex inner product spaces. The inner
product on Cd is

〈x, y〉 =
∑
r

x̄ryr

and on complex matrices it is

〈A,B〉 = trA∗B = sumA ◦B.

Our complex inner products are linear in the second variable and conjugate-
linear in the first. (This is one of two conventions.) A matrix A is Hermitian
if A = A

T ; we will usually denote the complex-conjugate of A by A∗.

2.6.1 Lemma. The matrix A is Hermitian if and only if 〈x,Ay〉 = 〈Ax, y〉,
for all x and y.

If the subspace U is A-invariant, then its orthogonal complement U⊥ is
A∗-invariant, and therefore if A is Hermitian then the orthogonal comple-
ment of an A-invariant subspace is A-invariant. This the key fact we nee
to prove that Hermitian matrices are diagonalizable, but we want more.

A matrix A is normal if AA∗ = A∗A. Clearly Hermitian matrices are
normal; unitary matrices U∗U = I provide another large class. If A is
normal, so are A+ A∗ and A− A∗, whence

A = 1
2(A+ A∗) + i

1
2i(A− A

∗)

where A+A∗ and 1
2i(A−A

∗) are Hermitian and commute. We could view
these as the real and imaginary parts of A.

The following lemma is a fundamental tool.

2.6.2 Lemma. The matrixA is normal if and only if 〈Ax,Ax〉 = 〈A∗x,A∗x〉
for all x.

Proof. We have 〈x,Ay〉 = 〈A∗x, y〉 for any A. If A is normal,

〈Ax,Ay〉 = 〈A∗Ax, y〉 = 〈AA∗x, y〉 = 〈A∗x,A∗y〉.

2.6.3 Lemma. If A is normal and Ax = λx, then A∗x = λx.

13



2. Positive Semidefinite Matrices

Proof. If Ax = λx, then (λI − A)x = 0. If A is normal then so is λI − A
and

(λI − A)∗ = λI − A∗

As
〈(λI − A)x, (λI − A)x〉 = 0,

it follows that
〈(λI − A∗)x, (λI − A∗)x〉 = 0

whence A∗x = λx.

2.7 Spectral Decomposition for Normal
Matrices

Spectral decomposition is a reformulation of the result that a normal ma-
trix can be unitarily diagonalized. It proves a powerful for working with
functions of matrices.

2.7.1 Theorem. A matrix A is normal if and only if it is unitarily similar
to a diagonal matrix, i.e., A = LDL∗ where D is diagonal and L is unitary.

Proof. First the easy part. If A = LDL∗ with L∗L = I, then

A∗ = (LDL∗)∗ = LD∗L∗

and since the diagonal matrices D and D∗ commute, so do A and A∗.
For the converse, we sketch the proof that, if A is normal, there is an

orthonormal basis that consists of eigenvectors of A. Then L is the matrix
with these eigenvectors as columns and the diagonal entries of D are the
eigenvalues of A.

The proof now goes by induction on the dimension d. The result is trivial
if d ≤ 1, so assume d > 1. The matrix A has an eigenvector, z say, with
eigenvalue λ. From the previous section, this is also an eigenvector for A∗
(with eigenvalue λ). Hence the subspace spnned by z is A- and A∗-invariant,
and therefore its orthogonal complement z⊥ is A∗- and A-invariant. If B
denotes the restriction of A to z⊥, then B∗ is equal to the restriction of
A∗ to z⊥ and therefore B is normal. By induction there is an orthonormal
basis for z⊥ consisting of eigenvectors of B and this basis, together with
‖z‖−1z, forms the basis we need.

14



2.8. Algebras

Assume A = LDL∗ and that the eigenvalues of A are θ1, . . . , θm. Then
there are diagonal matrices D1, . . . , Dm with diagonal entries 0 and 1 such
that

I =
∑
r

Dr, D =
∑
r

θrDr.

We define matrices E1, . . . , Em by

Er = LDrL∗.

Then ∑
r

Er = LDL∗ = A

and
AEr = LDL∗ LDrL

∗ = LDDrL
∗ = θrLDrL

∗ = θrEr.

Moreover E2
r = Er and ErEs = 0 if r 6= s. We refer to E1, . . . , Em as the

spectral idempotents of A.

2.7.2 Lemma. The spectral idempotents of a normal matrix A are poly-
nomials in A.

2.8 Algebras
Matrix algebras, operators on spaces of matrices. Centralizers of permuta-
tion groups.

Projections onto subspaces of matrix algebras. Partial trace.
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Chapter 3

Convex Sets

3.1 Open Sets, Closed Sets
Let V be a real vector space with a norm ‖·‖. (You may assume this is the
usual Euclidean norm.) The ball of radius r about u in V is the set

{x ∈ V : ‖x− u‖ ≤ r}.

A subset S of V is open (relative to our norm) if for each v in S, there is
ε > 0 such that the ball of radius ε about v is a subset of S. A subset of V
is closed if its complement is open. Finite unions and intersections of open
sets are open, ditto for closed sets. Further an arbitrary union of open sets
is open, but an arbitrary intersection need not be.

A subset S of V is bounded if there is a scalar C such that ‖v‖ ≤ C for
all v in S.

A collection of subsets C covers S if S is a subset of the union of the
elements of C. A subset S of V is compact if, for any collection of open sets
that covers S, there is a finite subset of the collection that covers S. In our
setting a subset is compact if and only it is closed and bounded. We will
make free use of this fact.

3.1.1 Theorem. If f is a continuous function on a compact set C, there is
an element c of C such that f(x) ≤ f(c) for all x in C.

If C is a subset of Rn, and point x in C is an interior point if, for some
ε > 0, the ball of radius ε about u is contained in C. The set of all interior
points of A is the interior of A; a point of C that is not an interior point is
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3. Convex Sets

a boundary point. The interior of a set is open, and might be empty. An
open set has no boundary points. The set of boundary points of C is often
denoted by ∂C.

3.2 Affine Space
Let V be a vector space over F. We say a vector y is an affine linear
combination of vectors x1, . . . , xd if there are scalars a1, . . . , ad such that

y =
∑
r

arxr,
∑
r

ar = 1.

The set of all affine linear combinations of two distinct vectors is the affine
line through them. An affine subspace of V subset of V that is closed
under taking affine linear combinations. You should prove that the affine
subspaces are the cosets of the (usual) subspaces of V .

A set of vectors x0, . . . , xd is affinely dependent if there are scalars
a0, . . . , ad, not all zero, such that∑

r

arxr = 0,
∑
r

ar = 0.

We can relate affine dependence to linear dependence: if x ∈ V = Fd, let
x̂ denote the vector in Fd+1 we get by adjoining an extra coordinate, with
entry equal to 1. Then vectors x1, . . . , xd are affinely dependent if and only
if x̂1, . . . , x̂d is linearly dependent. A set that is not affinely dependent is
affinely independent. The maximum cardinality of an independent subset
of an affine space is its dimension.

Note that all this works over any field, of any characteristic. Further
note that the study of a vector space V and its linear subspace is a lightly
disguised version of projective geometry. Affine geoemtry arises when we
allow “subspaces” that do not contain the zero vector. On the other hand,
the map x 7→ x̂ used above shows that we can embed an affine space of
dimension d into a vector space of dimension d + 1 (which has projective
dimension d, go figure).

An affine space has affine dimension d if the maximum size of an affinely
independent subset is d+ 1. Such a subset may be called an affine basis.

3.2.1 Lemma. Let C be a subset of Rd and let x0, . . . , xe be an affinely
independent subset of C of maximum size. Then the affine subspace gener-
ated by x0, . . . , xe has affine dimension e and contains C.
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3.3 Convex Sets
Optimization problems over compact sets are in general very difficult—a
closed bounded set can be extraordinarily complicated. Convex sets are
sufficiently general to be useful and not so complicated as to be unmanage-
able. In this section we begin our dealings with convex sets.

An element y in a real vector space is a convex combination of x1, . . . , xd
if there are scalars a1, . . . , ad such that

y =
∑
r

xr,
∑
r

ar = 1, ar ≥ 0 (r = 1, . . . , d).

Thus y is an affine combination of x1, . . . , xd and the coefficients in this
combination are non-negative. An important special case is when d = 2;
here the affine line through distinct points x1 and x2 is the set

sx1 + (1− s)x2, s ∈ R,

and the convex combinations of the two points is the set

sx1 + (1− s)x2, 0 ≤ s ≤ 1.

We will refer to this set as the line segment generated by x1 and x2, it
consists of all points on the line through x1 and x2 that lie between x1 and
x2.

A set C is convex if it is closed under taking convex combinations. The
intersection of any collection of convex sets is convex. The convex hull of
a set S is the intersection of all the convex sets that contain it. A convex
polytope is the convex hull of a finite set of points. The unit ball relative
to a given norm is convex.

One of the most important families of convex sets are half-spaces. A
half-space in a real inner product space V is a set of the form

{x ∈ V : 〈α, x〉 ≤ b}

where α ∈ V and b ∈ R. Let us denote this by Hα,b. We see that H−α,b is
a second half-space and Hα,b ∩H−α,b is the affine hyperplane with equation
〈α, x〉 = b. A polyhedral set is defined to be the intersection of a finite num-
ber of half-spaces. Thus the non-negative vectors in Rd form a polyhedral
set.)
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3. Convex Sets

The set of n×n positive semidefinite matrices form an important exam-
ple of a convex set. To see this. note that if A < 0 and c ≥ 0, then cA <.
Since the sum of two positive semidefinite matrices is positive semidefinite,
it follows that any non-negative linear combination of positive semidefinite
matrices is positive semidefinite, and hence the set of all positive semidefi-
nite matrices is convex.

It is an important fact that a bounded polyhedral set is the convex hull
of a finite set of points. One proof of this follows from the theory of linear
programming. Much of what we do in the following sections is aimed at
generalizing this result.

A point x in a convex set C is an extreme point if it is an endpoint
of any line segment that is contained in C and contains x and a point in
the relative interior of C. If C is the convex hull of a finite set of points
S, the extreme points of C are a subset of S. It follows from the proof
of Theorem 2.2.1 that any positive semidefinite matrix with rank greater
than one is not an extreme point. To show that each rank-one positive
semidefinite matrix is an extreme point, it suffices to show that if A and
B are symmetric matrices of rank one and A is not a scalar multiple of B,
then rk(A+B) > 1. (See the exercises, if you do not want to do it now.)

The interior of a convex set may be empty—consider a line in R2. The
problem arises because the line has dimension one and R2 has dimension
two. A simplex is the convex hull of an affinely independent set of points.
If β is an affine basis for an affine space of dimension d.

3.3.1 Lemma. If C is a convex subset in a real affine space V and the affine
span of C is V , then the interior of C is not empty.

Proof. If C spans V , then C contains a basis x0, . . . , xd (say). The convex
hull of this basis is a simplex and, in the exercises, you will have opportunity
to prove that the interior of such a simplex is not empty.

The relative interior of a subset C of a real affine space is the interior
of C, viewed as a subset of its affine span. We can use the term “relative
interior” to avoid mentioning affine spans.
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3.4. Nearest Points

3.4 Nearest Points
We work over a real inner product space V . Suppose C is a closed subset
of V and x is a point not in C. If y ∈ C, the set

{z ∈ C : ‖x− z‖ ≤ ‖x− y‖}

is bounded and, since it is the intersection of a closed ball with C, it is also
closed. Therefore it is compact and hence there is a point z0 in C which is
a nearest point to x. Equivalently, the optimization problem of finding z in
C such that ‖x− z‖ is minimal has a solution.

Assume now that C is closed and convex and x /∈ C, and suppose there
are two distinct nearest points a and b. The line a∨ b is a closed convex set
and therefore its intersection with C is a closed line segment. It is easy to
prove that there is a unique point on this line segment closest to x. This
shows that there is a unique nearest point to x in C. (Thus closed implies
existence, closed and convex implies unique existence.) One of the most
important and useful properties of convex sets is, roughly speaking, that if
C is a closed convex set and x is a point not in C, there is a hyperplane that
separates x from C. We will need to be more precise about this, but that can
wait. One proof of this claim follows from properties of the nearest-point
map, which takes each point in V to the point in C nearest to it. This map
is referred to as metric projection, and we denote metric projection onto a
closed convex set C by πC . Note that the image of πC is contained in the
boundary ∂C.

3.4.1 Lemma. Let C be a non-empty closed convex set in the vector space
V . If x, y ∈ V , then

‖πC(x)− πC(y)‖ ≤ ‖x− y‖.

Proof. We work using the four points x, y, πC(x) and πC(y); in practice this
means we are working in affine space of dimension three. Let Hx and Hy

denote the hyperplanes through πC(x) and πC(y) respectively with normal
parallel to h = πC(y)− πC(x). (Thus these hyperplanes are parallel.)

If 〈x − πC(x), h〉 > 0, then πC(x) is not the nearest point to x on the
line segment [πC(y), πC(x)], a contradiction to the definition of πC(x). The
region between Hx and Hy divides V into two disjoint regions and, by what
we have just seen, x lies in one of these regions and y in the other. Hence
the distance between x and y is at least the distance between Hx and Hy.
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3. Convex Sets

3.4.2 Corollary. The metric projection map onto a non-empty closed con-
vex set is a contraction, and therefore it is continuous.

Suppose C is closed and convex and u /∈ C. If x lies on the half-line
from πC(u) through u, then πC(x) = πC(u). We leave this as an exercise.

3.4.3 Lemma. Suppose C is a non-empty closed convex set in Rd. Then
for each point y in ∂C, there is a point x not in C such that πC(x) = y.

Proof. Assume y ∈ ∂C. Any closed ball of positive radius around y is
convex, and so its intersection with C is a closed convex set. Accordingly
it suffices to prove the theorem with this set in place of C; equivalently we
may assume C is bounded and lies in the interior of some closed ball B.

We construct x by a limiting argument. Choose a sequence of points
yi in Rd \C such that d(y, yi) < 1/i, thus its limit is y. Because metric
projection is continuous, the sequence of points πC(yi) must converge to y.

The intersection of the line y ∨ πC(yi) with ∂B is a point which we
denote by xi, and is such that πC(xi) = πC(yi). Since ∂B is compact, the
sequence formed by the points xi has a limit in ∂B, which we denote by x.
Since limits and projection maps commute, we have πC(x) = y.

3.5 Separation
Two subsets A and B of Rd are separated if they lie on different sides
of the hyperplane. (This is a slightly unusual use of the word separated,
because A∩B need not be empty.) The hyperplane with equation 〈h, x〉 = c
separates A and B if 〈h, a〉 ≤ c for all a ∈ A and 〈h, b〉 ≥ c for all b in B.
Note that if we use the equation 〈−h, x〉 = −c, the inequalities are reversed.
If H separates A and B and

H ∩ A = H ∩B = ∅,

we say thatH strictly separates A and B. (These definitions are not entirely
consistent with those in Laurent and Vallentin.)

A hyperplane H is a supporting hyperplane for a convex subset C of
Rd if C lies in one of the half-spaces determined by H and H ∩ C 6= ∅. If
y ∈ H ∩ C, we may say that H supports C at y.
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3.5.1 Lemma. Suppose C is a non-empty closed convex set in Rd. If x
is a point in Rd \C, the hyperplane through πC(x) with normal x − πC(x)
supports C at πC(x).

Proof. Set y = πC(x). Let H be the given hyperplane through y and
suppose z is a point in C and in the same open half-space H+ as x—thus
〈z − y, x− y〉 > 0. We derive a contradiction.

We have

x− (sy + (1− s)z) = (x− y)− (1− s)(z − y)

and therefore

‖x− (sy+ (1− s)z)‖2 = ‖x− y‖2− 2(1− s)〈x− y, z− y〉+ (1− s)2‖z− y‖2

It follows that for small positive values of s, the point sy+ (1− s)z is closer
than x to y = πC(x). Since C is convex, [y, z] ⊆ C, and so we have our
contradiction.

We conclude that C ∩H+ = ∅, and therefore H is a supporting hyper-
plane for C that separates x from C.

3.6 Two More Proofs of Separation
We follow Barvinok ?.

3.6.1 Theorem. Let C be an open convex set in Rd. If x is a point in
Rd \ C, there is a hyperplane through x such that one of the open half-
spaces determined by H contains C.

Proof. We may assume without loss that x = 0.
We first treat the case d = 2. Let S be the unit circle in R2 and let α

be the image of C under the map x 7→ u/‖u‖. Since C is compact, α is a
connected set and therefore it is an arc in S. If u ∈ S, then u = v/‖v‖ for
some v in C. If ` is the line through v parallel to the tangent to S at u,
then ` ∩C is an open interval that contains v and the projection onto S of
this interval is open. Therefore α is open.

If the length of α is not less than π, then α contains a pair of antipodal
points, and therefore C contains points v and w such that

1
‖v‖

v = − 1
‖w‖

w,
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but by convexity it follows that 0 ∈ C.
If p is an “endpoint” of α, the line through 0 and p is the hyperplane

we need.
Now assume d ≥ 3. If P is a plane on 0, then P ∩ C is an open convex

set and, by what we have just proved, there is a line ` in P that contains
0 and is disjoint from C. Finally let H be a maximal affine subspace such
that 0 ∈ H and H ∩ C = ∅. We claim that H is a hyperplane. To prove
this we work in the quotient space V/H. If H is not a hyperplane, then
dim(V/H) ≥ 2. The image of C in V/H is open (prove it) and consequently
there is a line ` in V/H disjoint from the image of C such that 0 ∈ `. The
preimage of ` in V is a hyperplane that contains 0 and is disjoint from C.

Our second proof follows Tunçel ?.

3.6.2 Theorem. Let C be a non-empty closed convex set in Rd that does
not contain 0. Then there is a non-zero vector h and a positive scalar a
such that

C ⊆ {x ∈ Rd : hTx ≥ a}.

Proof. Let u be a point in C such that ‖u‖ is a minimum and define a to
be uTu. For each vector x in C, the line segment [x, c] is contained in C. If
0 < s ≤ 1, then sx+ (1− s)u ∈ C. Hence

uTu ≤ ‖sx+(1−s)u‖2 = ‖s(x−u)+u‖2 = s2‖x−u‖2 +2suT (x−u)+uTu

and so
s2‖x− u‖2 + 2suT (x− u) ≥ 0.

Therefore
uT (x− u) ≥ −s2‖x− u‖

2

and, taking limits as s decreases to 0, we see that uT (x − u) ≥ 0. As this
holds for all x, we conclude that the theorem holds with h = u and a = uTu.

3.7 Extreme Points
Recall from Section 3.3 that a point x in a convex set C is an extreme point
if it is an endpoint of any line segment that is contained in C and contains
both x and a point in the relative interior of C. Equivalently, x is extreme
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in C if whenever a and b are points of C and x = sa + (1 − s)b, where
0 ≤ s ≤ 1, then s = 0 or s = 1.

If C is a compact convex set and H is a supporting hyperplane for C,
then each extreme point of H ∩ C is an extreme point of C. (Another
exercise.)

3.7.1 Theorem. A compact convex set if the convex hull of its extreme
points.

Proof. We proceed by induction on the dimension d of the affine space
spanned by C. If d = 0 then C is a point and we’re done. Assume d ≥ 1.
By hypothesis, the relative interior of C is not empty.

Suppose first that x is a boundary point of C. By Lemma 3.5.1, there
is a supporting hyperplane H at x. We consider the set D = H ∩ C. This
is a compact convex set of dimension at most d − 1 that contains x; by
induction it follows that x is a convex combination of extreme points of D.
By our remark above it follows that x is a convex combination of extreme
points of D.

So we may assume that x lies in the interior of C. Hence there is a line
segment contained in C with x in its relative interior. The affine line that
contains this line segment meets C in a closed line segment that joins two
points on the boundary of C. Since these points are convex combinations
of extreme points of C, so is x.

If H is a supporting hyperplane for a convex set C, the intersection
H ∩ C is a face of C. A face is convex and is closed if C is. You might
prove that each extreme point of a convex polytope is a face.

3.8 Unit Balls and Norms
Unit balls are closed, centrally symmetric convex sets. Any such subset
gives a norm.

3.9 Cones
A subset C of a real vector space V is a convex cone if it is closed under
taking non-negative linear combinations. Equivalently
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(a) If x ∈ C and a ≥ 0, then ax ∈ C.

(b) If x, y ∈ C, then x+ y ∈ C.

We could also define a convex cone to be a convex set that is closed un-
der multiplication by non-negative scalars. In these notes, cone will mean
convex cone.

Two important examples of cones are the set of non-negative vectors in
Rd, and the positive semidefinite matrices in the space of n×n real matrices.
For a third example, we have the Lorentz cone or hyperbolic cone, which
is the subset of pairs (x, t) in Rd × R such that ‖x‖ ≤ t. As yet another
example, the set of symmetric matrices M such that xTMx ≥ 0 for all
non-negative vectors x is a convex cone, known as the copositive cone.

According to the definition, linear subspaces are cones, but this case is
of very little interest to us. We say a cone is pointed if it does not contain a
line through the origin. In the exercises you may meet with the Minkowski
sum A+B of convex sets A and B, defined by

A+B := {a+ b : a ∈ A, b ∈ B}.

You might prove that any cone that is not pointed is the Minkowski sum of
a subspace with a pointed cone.

We can use cones in V to create partial orders on V . For if K is a cone
in V and we declare x ≥ y if x− y ∈ K, then ≥ is a partial order on V .

If K is a convex cone and M is a linear map, then

MK := {Mx : x ∈ K}

is a convex cone. If M is invertible and MK = K we say M is an automor-
phism of K. A cone K is homogeneous if, for each pair of points x and y
in the interior of K, there is an automorphism of K that maps x to y. We
note that A and B are invertible matrices, then the map M 7→ AMBT is
an automorphism of the set of positive semidefinite matrices and it can be
shown that all automorphisms of this cone have this form.

The convex hull of a single point in a convex cone is called a ray of the
cone. In convex cones, extreme rays take on the role of extreme points: a
ray R of a convex cone C is an extreme ray if it is a face.

3.9.1 Lemma. If K is a closed convex cone and H with equation 〈h, x〉 = c
supports K at a non-zero vector u, then c = 0.
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If x ∈ K then
〈h, x〉 ≤ c

and, if λ > 0, then 〈h, λx〉 ≤ c and thus
〈h, x〉 ≤ λ−1c

for all positive λ. If c < 0, we take λ small and deduce that 〈h, x〉 is less
than any negative number, which is impossible. If c > 0, then we take λ
large and deduce that 〈h, x〉 ≤ 0.

One important consequence of this result is that a closed convex cone
is the intersection of closed half-spaces given by hyperplanes through the
origin.

If K is a convex cone in an inner product space, its dual K∗ is given by
K∗ = {y ∈ V : 〈y, x〉 ≥ 0, ∀x ∈ K}.

Since K∗ is defined as the intersection of closed half-spaces, it is closed
(whether or not K is). A cone K is self dual if K = K∗. It is easy to see
that if K is the set of non-negative vectors in Rd, or the set of all positive
semidefinite matrices, then it is self dual. We observe that if K and L are
convex cones and K ⊆ L, then L∗ ⊆ K∗. Similarly it is easy to check that
for any convex cone K we have K ⊆ K∗∗. In fact:

3.9.2 Theorem. If K is a closed convex cone, then K = K∗∗.

3.10 Bases for Convex Cones
Let K be a convex cone. A subset B of K is a base for K if 0 /∈ B and,
for each vector x in K \ 0, there is a unique vector b in B and a unique
positive scalar λ such that x = λb. Thus we see that the rays generated by
the elements of B partition the non-zero vectors in K, and each ray meets
B in exactly one point.

To give one example, if K is the cone of positive semidefinite matrices,
then the set

{M ∈ K : tr(M) = 1}
is a compact base for K. More generally, if K is closed and H is an affine
hyperplane that does not contain 0 and H ∩K is bounded, then H ∩K is
a base for K that is compact and convex. (We do not require bases to be
convex, but they will be usually.)
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3.10.1 Lemma. If a cone in Rm has a compact base, it is closed.

Proof. Let B be a compact base for K and let u be a point not in K. We
show that there is an open neighbourhood of u disjoint from K. Define δ
by

δ = min{‖x‖ : x ∈ B},

thus δ is the minimum distance of a point in B from 0. Let λ1 denote
(‖u‖+ 1)δ and let U1 be the open ball of radius λ1 centred on u. If λ > λ1,
then λB ∩ U1 = ∅.

Assume X = [0, λ1]×B and consider the map φ : X → Rm given by

φ(λ, x) = λx.

Since B is compact, so is X. The image φ(X) of X is compact and so
closed in Rm. As u /∈ K, we see that u /∈ φ(X), and therefore there is a
neighbourhood U2 of u such that U ∩ φ(X) = ∅. If λ ≥ 0, then

(U1 ∩ U2) ∩ λB = ∅.
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Chapter 4

Lovász Theta

Assume we have a fixed graph G and define a word to be a sequence of
vertices of G. Two words α and β are confoundable if for each i either
αi = βi of αi and βi are adjacent in G. We are concerned with the maximum
size of a set of pairwise non-confoundable words of length k. In this chapter
we work through Lovász’s paper on the Shannon capacity of a graph.

4.1 The Strong Product
Let G and H be graphs. The strong product G�H of G and H is the graph
with vertex set V (G)× V (H), where pairs (u, x) and (v, y) are adjacent if

(a) u = v and x ∼ y, or

(b) u ∼ v and x = y, or

(c) u ∼ v and x ∼ y.

On special case: if G = Km and H = Kn, then G �H = Kmn. If α(G) is
the maximum size of a coclique in G and ω(G) is the maximum size of a
clique, you may prove that

α(G�H) ≤ α(H)α(H), ω(G�H) = ω(G)ω(H).

The strong product is associative, i.e.,

(G�H)�K ∼= G� (H �K).

we use G�k to denote the strong product of k copies of G.
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4.1.1 Lemma. If G and H are graphs with respective adjacency matrics
A(G)andA(H), then

A(G�H) = I ⊗ A(H) + A(G)⊗ I + A(G)⊗ A(H).

4.1.2 Lemma. A set of words of length k over G is non-confoundable if
and only if it forms a coclique in G�k.

The complement of G of the graph G is the graph with vertex set V (G),
wehre two vertices are adjacent in G if they are distinct and not adjacent
in G.

4.1.3 Lemma. For any graph G we have α(G�G) ≥ |V (G)|.

Proof. The diagonal vertices (i, i) form a coclique of size |V (G)|.

Since C5 is self-complementary, if follows that α(C5⊗C5) ≥ 5, which is
strictly greater than α(C5)2.

The Shannon capacity of Θ(G) the graph G is defined by

Θ(G) = sup
k
α(G�k)1/k.

It can be shown that

sup
k
α(G�k)1/k = lim

k
α(G�k)1/k.

Since α(G � H) ≥ α(G)α(H) we see that α(G) ≤ Θ(G). Our aim in this
chapter is to derive upper bounds on Θ(G). We observe that if µ(G) is a
graph parameter such that

(a) α(G) ≤ µ(G),

1. µ(G�H) ≤ µ(G)µ(H),

then
α(G�k) ≤ µ(G�k) ≤ µ(G)k

whence Θ(G) ≤ µ(G). If (b) holds we say the parameter µ(G) is submulti-
plicative, and thus any submultiplicative parameter that is an upper bound
for α(G) is an upper bound for Θ(G).
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4.2 Graph Homomorphisms
If G and H are graphs, a map ψ : V (G)→ V (H) is a graph homomorphism
if, for each pair of adjacent vertices i and j in G, their images ψ(i) and ψ(j)
are adjacent in H. Examples:

(a) If G is a subgraph of H, the identity map is a homomorphism.

(b) A proper m-colouring of G is a homomorphism from G to Km.

(c) An automorphism of G is a homomorphism.

(d) IfG is bipartite and has at least one edge, then we have homomorphisms
K2 → G and G→ K2. (We say that G is homomorphically equivalent
to K2.)

(e) Let Ω(d) be the graph whose vertices are the unit vectors in Rd, where
two vectors are adjacent if they are orthogonal. A homomorphism from
G to Ω(d) is called an orthonormal representation of G.

The cliques of maximum size in Ω(d) are the orthonormal bases of Rd.
Thus each clique in Ω(d) is contained in a clique of size d.

If ψ : G→ H is a graph homomorphism and v ∈ V (H), the set

ψ−1(v) = {u ∈ V (G) : ψ(u) = v}

is called a fibre of ψ. Each fibre is necessarily a coclique in G.

4.3 Fractional Colourings
Let G be a graph and let N be the matrix whose columns are the charac-
teristic vectors of the cocliques of G. Note that G has an m-colouring if
and only if there are m cocliques in G whose union is V (G). The union
of a set of cocliques with characteristic vectors u1, . . . , um is equal to V (G)
if and only if all entries of ∑i u1 are positive, and therefore the 01-vectors
x such that 1Tx = m and Nx ≥ 1 correspond to the m-colourings of G.
Consequently the value of the linear program

min 1Tx, Nx ≥ 1, x ≥ 0
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is a lower bound in the chromatic number χ(G) of G. We denote this lower
bound by χf (G) and refer to it as the fractional chromatic number of G.
An optimal solution to the LP is a fractional colouring. The dual to this
LP is

max yT1, yTN ≤ 1T , y ≥ 0.
The 01-vectors yv such that yTN ≤ 1 must be characterisitic vectors of
cliques in G. Therefore the value of the dual is an upper bound on ω(G);
we denote this value by ωf (G) and we refer to an optimal solution as a
fractional clique. We have

ω(G) ≤ ωf (G) = χf (G) ≤ χ(G).

One consequence of this is that

α(G) ≤ χf (G).

We now prove that
χf (G�H) ≤ χf (G)χf (H),

from which it follows that Θ(G) ≤ χf (G).
Let N ′ be the matrix we get from N by deleting the columns correspond-

ing to cocliques that are not maximal (by inclusion). If Nx ≥ 1, there is a
non-negative vector z such that Nz ≥ 1 and 1T z = 1Tx—just replace each
coclique in the support of x by a maximal coclique.

For any graph G, let MG denote the matrix whose columns are the
maximal (by inclusion) cliques in G. Then

MG�H = MG ⊗MH .

Now χf (G�H), the minimum value of 1T z for non-negative vectors z such
that

1T z ≤MG�Hz = (MG ⊗MH)z,
is bounded above by the minimum value for non-negative vectors x and y
such that

1T (x⊗ y) ≤ (MG ⊗MH)(x⊗ y) = MGx⊗MHy,

and this is equal to χf (G)χf (H). Thus we have Shannon’s result:

4.3.1 Theorem. For any graph G, we have Θ(G) ≤ χf (G).
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4.4 Using Symmetry
An automorphism of a graph G is a permutation γ of its vertices such
uγ ∼ vγ if and only if u ∼ v. Each permutation can be represented by
a permutation matrix P (γ) such that Pei = eiγ; the permutation is an
automorphism if and only if P commutes with the adjacency matrix of the
graph. Two vertices u and v lie in the same orbit of Aut(G) if there is an
automorphism γ such that uγ = v. A graph is vertex transitive if there is
only one orbit.

Let N be our vertex-coclique incidence matrix. If P represents an au-
tomorphism of G, then PN = NQ for some permutation matrix Q. So if
yTN ≤ 1T ,

yTPN = yTNQ ≤ 1TQ = 1T

and hence yTP is feasible if and only if y is. Further, since P1 = 1,

yT1 = yTP1.

Therefore
ŷ = 1
|Aut(G)|

∑
P∈Aut(G)

yTP

is a convex combination of feasible solutions and so is itself feasible, with
the same value as y. Further it is constant on the orbits of Aut(G). (You
should prove this.) Since our choice of y was arbitrary, we can assume that
ŷ is optimal. If G is vertex transitive, we conclude that there is an optimal
solution to

max yT1, yTN ≤ 1T , y ≥ 0
that is a constant vector. This constant vector must be

1
α(G)1

and its value is v/α(G).

4.4.1 Lemma. If G is a vertex-transitive graph on v vertices, then

χf (G) = v

α(G) .

4.4.2 Corollary. If G is a vertex-transitive graph on v vertices, then

θ(G)ω(G) ≤ v.

This implies that, for vertex-transitive graphs, α(G)ω(G) ≤ v.
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4.5 Lovász θ(G)
Lovász showed how to use the geometry of orthonormal representations
of graphs to derive improved bounds on the Shannon capacity. We first
define a parameter. Suppose the vectors u1, . . . , un provide an orthonormal
representation of G. Then

θ(G) := min
‖c‖=1

max
1≤i≤n

1
〈c, ui〉2

.

A vector c which realizes the value θ(G) is called the handle of the repre-
sentation.

4.5.1 Lemma. For any graph G we have θ(G) ≤ α(G).

Proof. Let S be a coclique in G and let u1, . . . , un be an orthonormal
representation of G. Then

1 = 〈c, c〉 ≥
∑
i∈S
〈c, ui〉2 ≥

α(G)
θ(G) ,

and the lemma follows.
As a (very relevant) example, we show that θ(C5) ≤

√
5. Let the unit

vectors u0, . . . , u4 be the vertices of a regular pentagon centred at the origin.
Then

〈u0, u2〉 = cos(4π/5) ≈ −0.8090
and so we do not have an orthonormal representation yet. View u0, . . . , u4
as vectors in the xy-plane in R3. If y is a scalar multiple of the vector
(0, 0, 1), then 〈ui, y〉 = 0 and

〈ui + y, uj + y〉 = 〈ui, uj〉+ 〈y, y〉.

Therefore if we choose y so its squared length is − cos(4π/5), then the
vectors

1
‖ui + y‖

(ui + y), (i = 1, . . . , n)

are an orthonormal representation of C5 and the vector (0, 0, 1) is a handle
for this representation. The square of the inner product of the handle with
any of the above vectors is

− cos(4π/5)
1− cos(4π/5) = 1√

5
.
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We now prove that θ(G) is submultiplicative:

4.5.2 Lemma. For any graphs G and H we have θ(G�H) ≤ θ(G)θ(H).

Proof. Let u1, . . . , um and v1, . . . , vn be optimal orthonormal representa-
tions with handles c and d respectively. Then the vectors ui ⊗ vj form an
orthonormal representation for G�H and

θ(G�H) ≤ max
i,j

1
〈c⊗ d, ui ⊗ vj〉2

= max
i

1
〈c, ui〉2

max
j

1
〈d, vj〉2

= θ(G)θ(H).

We have shown that θ(G) is a submultiplicative upper bound for α(G),
hence:

4.5.3 Theorem. For any graph G we have θ(G) ≤ Θ(G).

We note that we follow the usual convention that a vertex is not adjacent
to itself. In his paper Lovász redefines adjacency so each vertex is adjacent
to itself.

4.6 A Semidefinite Program?
We present an optimization problem whose value is θ(G). We use λ1(M)
to denote the larges eigenvalue of the matrix M (which will invariably be
symmetric).

4.6.1 Theorem. Let G be a graph with vertex set {1, . . . , n} and let Φ(G)
be the set of symmetric n× n matrices such Mi,j = 1 if i = j or i and j are
not adjacent. Then

θ(G) = min
M∈Φ

λ1(M).

Proof. Let u1, . . . , un be an optimal orthonormal representation for G with
handle c. Define vectors vi by

vi := c− 〈c, ui〉−1ui;
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then
〈vi, vj〉 = −1 + 〈ui, uj〉

〈c, ui〉〈c, uj〉
.

Let D be the n× n diagonal matrix with ii-entry equal to 1/〈c, ui〉2. If we
use C to denote the Gram matrix of the vectors vi and set M = D − C,
then M ∈ Φ and D −M < 0. As θ(G)I < D, we see that θ(G)I −M < 0
and therefore θ(G) ≥ λ1(M). It follows that

θ(G) ≥ min
M∈Φ

λ1(M).

To get equality, suppose M ∈ Φ and λ = λ1(M). Then λI −M < and
accordingly λI −M is the Gram matrix of vectors x1, . . . , xn. Let c be a
unit vector orthogonal to each of these vectors and define

ui =:= 1√
λ

(c+ xi).

Then ui is a unit vector and, if i and j are distinct and

〈ui, uj〉 = 1
λ

(1 + 〈ui, uj〉) = 0;

hence these vectors form an orthonormal representation of G. As 〈c, ui〉2 =
1/λ, it follows that θ(G) ≤ λ, that is

θ(G) ≤ min
M∈Φ

λ1(M).

In the first part of this proof, if D 6= θ(G)I then θ(G) does not meet
the upper bound. We conclude that if u1, . . . , un is an optimal orthonormal
representation for G with handle c, then 〈c, ui〉 is independent of the vertex
i.

If G is a regular graph, we can derive an explicit upper bound for θ(G).
Suppose G is k-regular with adjacency matrix A. Then for any real t, we
have J−tA ∈ Φ; we compute λ1(J−tI). First, 1 is an eigenvector for J−tI
with eigenvalue n − tk. Suppose z is an eigenvector for A with eigenvalue
λ and 〈1, z〉 = 0. Then

(J − tA)z = 11T z − tAz = −tλz
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and, if τ is the least eigenvalue of A, the largest eigenvalue of J − tA is
minimal when n− tk = −tτ . In this case t = n/(k − τ) and λ1(J − tA) =
n(−τ)/(k − τ). So we have the bounds

α(G) ≤ θ(G) ≤ n(−τ)
k − τ

.

This bound is tight for complete graphs, regular bipartite graphs and the
Petersen graph (for which τ = −2).

4.7 A Semidefinite Program
The program for θ(G) in the previous section is not obviously a semidefinite
program. In this section we present a semidefinite program for θ(G). We
make extensive use of the fact that for symmetric matrices A and B of the
same order,

〈A,B〉 = trAB = sum(A ◦B).

4.7.1 Theorem. Let G be a graph with vertex set {1, . . . , n} and let Ω be
the set of n × n positive semidefinite matrices N such that tr(N) = 1 and
Ni,j = 0 if i and j are adjacent. Then

θ(G) = max
N∈Ω
〈J,N〉.

Proof. Let M any matrix in Φ (defined in the statement of Theorem 4.6.1)
with largest eigenvalue θ(G) and suppose N ∈ Ω. Then 〈J,N〉 = 〈M,N〉
and consequently

θ(G)− 〈J,N〉 = θ(G)I − 〈M,N〉 = 〈θ(G)I −M,N〉 < 0.

This shows that θ(G) ≥ maxN∈Ω〈J,N〉, we need to show that equality
holds.

Let A be the adjacency matrix of G. If h is a unit vector in Rn, define
ĥ to be the ordered pair in Rn2 × R given by

ĥ = (A ◦ hhT , 〈1, h〉2)

and define z in Rn2 × R by

z = (0, θ(G)).
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We claim that z lies in the convex hull of the vectors ĥ (as h runs over
all unit vectors in Rn). If our claim were false, there would be a separating
hyperplane, that is, a matrix B and a scalar y and a scalar β such that

〈B,A ◦ hhT 〉+ y〈1, h〉2 ≤ β (4.7.1)

but yθ(G) > β. Taking h = e1, we also see that

y = y〈1, e1〉2 ≤ β

and so β > 0. Hence yθ(G) > β ≥ y and, as θ(G) ≥ 1 we see that y > 0.
By rescaling if needed, we may assume y = 1 and then β < θ(G). Since

〈B,A ◦ hhT 〉 = sum(B ◦ A ◦ hhT ),

we can further assume that Bi,j = 0 if i = j or i ∼ j (or, equivalently, take
B = B ◦ A.)

Now we define M by
M = J +B

and observe that

〈B,A ◦ hhT 〉+ 〈1, h〉2 = sum(B ◦ A ◦ hhT ) + tr(JhhT )
= sum(B ◦ hhT ) + sum(hhT )
= sum((B + J) ◦ hhT )
= sum(M ◦ hhT )
= tr(MhhT )
= hTMh.

By Equation (4.7.1) (with y = 1) we see that hTMh ≤ β for all unit
vectors h, and therefore λ1(M) ≤ β < θ(G). On the other hand, M ∈ Φ
and therefore λ1(M) ≥ θ(G). This contradiction forces us to conclude that
z lies in the convex hull of the vectors ĥ.

We now construct our optimal solution. We know there are non-negative
scalars a1, . . . , am summing to 1 and unit vectors h1, . . . , hm such that

m∑
i=1

aiA ◦ hihTi = 0,
m∑
i=1

ai〈1, h〉2 = θ(G).
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Define
N =

m∑
i=1

aihih
T
i ;

clearly N ∈ Ω and

〈J,N〉 =
m∑
i=1

ai〈1, hi〉2 = θ(G).

Hence N is an optimal solution with value θ(G).

4.8 Using Complements
4.8.1 Theorem. If v1, . . . , vn ranges over all orthonormal representations
of G and d ranges over all unit vectors, then

θ(G) = max
∑
i

〈d, vi〉2.

Proof. Let u1, . . . , un and v1, . . . , vn be orthonormal representations (of G
and G respectively, and let c and d be any vectors. Then

〈ui ⊗ vi, uj ⊗ vj〉 = δi,j,

hence the vectors ui ⊗ vi are orthogonal and therefore
n∑
i=1
〈c⊗ d, ui ⊗ vi〉2 ≤ 〈c⊗ d, c⊗ d〉 = 〈c, c〉〈d, d〉.

Accordingly
n∑
i=1
〈c, ui〉2〈d, vi〉2 ≤ 〈c, c〉〈d, d〉

and if we assume that u1, . . . , un is optimal and c is a handle for it, we
deduce that

n∑
i=1
〈d, vi〉2 ≤ θ(G).

To complete the proof we must show that equality holds. Let N a matrix
in the set Ω of Theorem 4.7.1. Since N < 0, it is the Gram matrix of a set
of vectors w1, . . . , wn where

1 = tr(N) =
∑
i

〈wi, wi〉
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and
θ(G) = 〈J,N〉 = 1TN1 = 〈

∑
i

wi,
∑
i

wi〉.

If we define
vi = 1

‖wi‖
, d = 1

‖∑iwi‖
∑
i

wi,

then v1, . . . , vn is an orthonormal representation of G and, using Cauchy-
Schwarz, we have

∑
i

〈d, vi〉2 =
(∑

i

〈wi, wi〉
)(∑

i

〈d, vi〉2
)

≥
(∑

i

‖wi‖〈d, vi〉
)2

=
(∑

i

〈d, wi〉
)2

= 〈d,
∑
i

wi〉2

= 〈
∑
i

wi,
∑
i

wi〉

= θ(G).

Suppose v1, . . . , vn is an orthonormal representation for G and let B
denote the matrix with v1, . . . , vn as its columns. Then BTB is the Gram
matrix of v1, . . . , vn, and it is a positive semidefinite matrix with Bi,i = 1
for all vertices i abd Bi,j = 0 if i and j are not adjacent. We also note that
for any vector d ∑

i

〈d, vi〉 = dTBBTd,

and therefore the maximum value of the sum over unit vectors d is λ1(BBT ).

4.8.2 Lemma. If B is an m×n matrix and C is an n×m matrix, then BC
and CB have the same non-zero eigenvalues with the same multiplicities.

From this lemma we see that λ1(BBT ) = λ1(BTB), from which we get:

4.8.3 Corollary. Let Ψ be the set of the Gram matrices of the orthonormal
representations of G. Then

θ(G) = max
Q∈Ψ

λ1(Q).

40



4.9. Other Bounds on the Shannon Capacity

4.9 Other Bounds on the Shannon Capacity
4.9.1 Theorem. For any graph G we have θ(G) ≤ αf (G).

Proof. Let u1, . . . , un be an orthonormal representation of G and let c be a
unit vector such that

θ(G) =
∑
i

〈c, ui〉2.

(The representation and the vector c exist by Theorem ??.) If C is a clique
in G then the vectors

{ui : i ∈ C}

are orthogonal and therefore∑
i∈C
〈c, ui〉2 ≤ 〈c, c〉 = 1.

So if N is the vertex-clique incidence matrix of G and z is the vector with
zi = 〈c, ui〉2, then

zTN ≤ 1T

and 〈1, z〉 is bounded above by αf (G).
Note that αf (G) = χf (G) = χf (G).

4.9.2 Theorem. If G admits an orthonormal representation in Rd, then
θ(G) ≤ d.

Proof. Let u1, . . . , un be an orthonormal representation of G in Rd. Then
the vectors ui ⊗ ui also provide an orthonormal representation of G. Let
e1, . . . , ed be an orthonormal basis for Rd and set

b = 1√
d

∑
i

ui ⊗ ui.

Then 〈b, b〉 = 1 and

〈ui ⊗ ui, b〉 = 1√
d

∑
k

〈ek ⊗ ek, uk ⊗ uk〉 = 1√
d

∑
k

〈ek, ui〉2 = 1√
d
.

We conclude that θ(G) ≤ d.
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Chapter 5

Duality and Semidefinite
Programs

We study duality in conic optimization problems: this is a class of opti-
mization problems just general enough to include linear and semidefinite
optimization as special cases.

5.1 Conic Programs
If K is a closed convex cone, the optimization problem

sup〈C,X〉, 〈Ai, X〉 = bi (i = 1, . . . ,m), X ∈ K

is a conic programming problem. There are three important special cases:

(a) K = (Rn)≥0 (non-negative vectors in Rn).

(b) K = {(x, t) ∈ Rn × R : ‖x‖ ≤ t}, the Lorentz cone.

(c) K is the set of positive semidefinite matrices.

Each of these cones in homogeneous and self-dual. There is a second opti-
mization problem related to the above conic programming problem:

inf yT b,
∑
i

yTAi − C ∈ K∗.

(Here b = (b1, . . . , bm)T .) We declare this to be the dual to previous primal
problem.
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We have

yT b− 〈C,X〉 =
∑
i

yibi − 〈
∑
i

yiAi, X〉+ 〈
∑
i

yiAi, X〉 − 〈C,X〉

=
∑
i

yi(bi − 〈Ai, X〉) + 〈
∑
i

yiAi − C,X〉

If X is primal feasible and y is dual feasible, then the first term in this
sum is zero and, since ∑i yiAi − C ∈ K∗ and C ∈ K, the second term is
non-negative. This has brought us to the weak duality theorem for conic
programs:

5.1.1 Theorem. If y is dual feasible and X is primal feasible, then

yT b ≥ 〈C,X〉

and equality holds if and only if

〈
∑
i

yiAi − C,X〉 = 0.

We note that if M,N < 0, then 〈M,N〉 = 0 if and only if MN = 0.

5.2 Difficulties with Duality
In dealing with linear programming, we learnt that if an LP and its dual
were both feasible, then both the primal and dual had optimal solutions,
and the value of these solutions were equal. For conic programs, life is not
so kind, as we illustrate by examples.

We assume our primal program is sup〈C,X〉 subject to conditions

〈Ai, X〉 = bi, X ∈ K.

(Here K is a pointed, closed, convex cone.) Thus we can specify both
problems by giving C, the matrices A1, . . . , Am, the vector b, and K. The
dual program requires us to find inf yT b subject to the condition∑

i

yiAi − C ∈ K∗.

In understanding these examples, it will be useful to recall that for symmet-
ric matrices,

〈M,N〉 = tr(MN) = sumM ◦N.
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For our first example

C =
(

0 −1
−1 0

)
; A1 =

(
1 0
0 0

)
, A2 =

(
0 0
0 1

)
; b =

(
1
0

)
.

The constraint 〈A1, X〉 = 1 implies that X1,1 = 1; the constraint 〈A2, X〉 =
0 implies that X2,2 = 0 and, since X < 0, this implies that X1,2 = X2,1 = 0.
Consequently

X =
(

1 0
0 0

)

is the only feasible solution, hence it is optimal with value 1.
The dual program to find inf y1 subject to

y1

(
1 0
0 0

)
+ y2

(
0 0
0 1

)
−
(

0 −1
−1 0

)
< 0.

The left side here is (
y1 1
1 y2

)

which you may verify is positive semidefinite if and only y1, y2 ≥ 0 and
y1y2 ≥ 0. From this it is clear that value of the dual is 0, but it is not
attained.

For the second example

C =

−1 0 0
0 −1 0
0 0 0

 , A1 =

1 0 0
0 0 0
0 0 0

A2 =

0 0 1
0 1 0
1 0 0

 , b =
(

0
1

)
.

These constraints on the primal imply that

X1,1 = 0, 2X1,3 +X2,2 = 1,

whence the first row and column of X must be zero and X2,2 = 1. Therefore
all feasible solutions have X2,2 = 1 and their value is −1. In particular the
matrix

E2,2 =

0 0 0
0 1 0
0 0 0
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is optimal with value −1. Turning to the dual we find that

y1A1 + y2A2 − C =

y1 + 1 0 y2
0 y2 + 1 0
y2 0 0


and for this to be positive semidefinite, we must have y2 = 0. The value of
a feasible solution is −y2. Hence the optimal value is 0 and this is realized
when y = 0. In this example both the primal and dual programs attain
their optimal solutions, by we have a duality gap, that is 〈C,X〉 < yT b for
the optimal X and y.

To summarize, we have seen two ways in which duality for conic pro-
grams might fail:

(a) The value of the dual (or primal) might not be attained, or

(b) There is a duality gap.

5.3 Duals of Duals
Our formulation of the primal and dual conic programming problems ap-
pears to lack symmetry. Here we show that, despite this, the dual of the
dual is the primal. To this end, we rewrite the primal and dual programs.

We assume K is a closed pointed convex cone; our primal program is

sup〈C,X〉, 〈Ai, X〉 = bi (i = 1, . . . ,m), X ∈ K

and its dual is
inf yT b,

∑
i

Ai − C ∈ K∗.

Start with the primal. Assuming it is feasible, choose X0 such that

〈Ai, X0〉 = bi

and define L to be the space of symmetric matrices X such that

〈Ai, X〉 = 0

for each i. Its orthogonal complement is

L⊥ = {
∑
i

yiAi : yi ∈ R}.
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We see that 〈Ai, X〉 = bi for all i if and only if X ∈ X0 + L. (Here X0 + L
is a coset of L.) So our primal becomes

sup〈C,X〉, X ∈ (X0 + L) ∩ K.

For the dual

yT b =
∑
i

yi〈Ai, X0〉 = 〈
∑
i

yiAi, X0〉 = 〈C,X0〉+ 〈
∑
i

yiAi − C,X0〉

and so we can write as

〈C,X0〉+ inf〈X0, Z〉, Z ∈ (−C + L⊥) ∩ K∗.

5.4 Strong Duality
We continue to work with primal and dual conic programs in canonical
form:

sup〈C,X〉, 〈Ai, X〉 = bi (i = 1, . . . ,m), X ∈ K

and
inf yT b,

∑
i

yiAi − C ∈ K∗

respectively.

5.4.1 Theorem. If there is a vector y such that ∑i yiAi−C ∈ int(K∗) and
the value of the dual is bounded below, the primal problem has an optimal
solution and there is no duality gap.

Proof. Let d∗ denote the optimal value of the dual. We define

M =
{∑

i

yiAi − C, yT b ≤ d∗
}
.

(Note thatM∩K∗ is the set of dual-optimal solutions and, since the dual
is feasible,M 6= ∅.)

There is one trivial case: if b = 0 then X = 0 is optimal and both primal
and dual have the value 0. The rest of the proof breaks into three parts
(and some window dressing.)

47



5. Duality and Semidefinite Programs

We claim first thatM∩ int(K∗) = ∅. Otherwise there is a vector y such
that ∑

i

yiAi − C ∈ int(K∗), yT b ≤ d∗.

Since b 6= 0, there is an index i such that bi 6= 0, say i = 1. If b1 < 0, then

(y1 + ε)A1 +
∑
i>1

yiAi − C ∈ K∗

for small enough positive values of ε and therefore,

(y1 + ε)b1 +
∑
i>1

yibi < yT b ≤ d∗.

This contradicts our assumption that d∗ is the value of the dual. If b1 > 0,
repeat the above with ε small and negative.

SinceM and K are convex sets whose relative interiors are disjoint, they
can be separated by an affine hyperplane. So there is X such that

sup{〈X,Z〉 : Z ∈M} ≤ inf{〈X,Z〉 : Z ∈ K∗}. (5.4.1)

We use this X to construct an optimal solution to the primal.
First we show that X ∈ K. For this it is enough to show that

inf
Z∈K∗
〈X,Z〉 ≥ 0,

because this implies X ∈ (K∗)∗ = K. If Z1 ∈ K∗ and 〈X,Z1〉 < 0 then

〈X,λZ1〉 → −∞

as λ increases, and this contradicts our assumption that the value of the
dual is finite.

Next we claim that there is a positive real number µ such that 〈Ai, X〉 =
µbi for all i and 〈C,X〉 ≥ µd∗. Since 0 ∈ K∗, we have that

inf
Z∈K∗
〈X,Z〉 = 0

and by Equation (5.4.1) we find that

sup
X∈M
〈X,Z〉 ≤ 0.
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Therefore if y is such that yT b ≤ d∗, then

〈X,
∑
i

yiAi − C〉 ≤ 0

or, equivalently that if yT b ≤ d∗, then∑
i

yi〈Ai, X〉 ≤ 〈C,X〉.

Consequently we have shown that that the half-space

{y : yT b ≤ d∗}

is contained in the half-space

{y :
∑
i

yi〈Ai, X〉 ≤ 〈C,X〉};

this implies that the normal vectors for these half-spaces must be parallel.
In other words there is a non-negative real number µ such that

〈Ai, X〉 = µbi (i = 1, . . . ,m)

and
µd∗ ≤ 〈C,X〉.

To complete the proof of the claim, we show µ > 0. If µ = 0, the previous
inequality implies that 〈C,X〉 ≥ 0. By hypothesis there is a vector ȳ such
that ∑i ȳiAi − C ∈ int(K∗). If µ = 0 then for this vector, since X 6= 0,

0 < 〈
∑
i

ȳiAi − C,X〉 = −〈C,X〉.

and 〈C,X〉 < 0. This is a contradiction.
To complete the proof of the theorem, we observe that

〈C, µ−1X〉 ≥ d∗

and therefore by complementary slackness µ−1X is an optimal solution to
the primal with value d∗.

Despite our efforts, we have not proved that, under the hypotheses of
the theorem, the optimum value of the dual is obtained.

A dual feasible point in intK∗ is sometimes called a Slater point.

49



5. Duality and Semidefinite Programs

5.5 Farkas’s Lemma
Farkas’s lemma tells us that if the system

Ax = b, x ≥ 0

has no solution, there is a vector y such that

yTA ≥ 0, yT b < 0.

Thus y can be viewed as certifying that our system is infeasible.
Nothing so strong holds for conic programs, but there is a good approx-

imation (which ought to be enough for an optimization course).

5.5.1 Theorem. Let K be a pointed closed convex cone with non-empty
interior and assume that the equations

〈Ai, X〉 = bi, (i = 1, . . . ,m)

have a solution. Then exactly one of the following statements is true:

(a) There is X in int(K) such that 〈Ai, X〉 = bi for all i.

(b) There is y such that ∑i yiAi ∈ K∗ \{0} and yT b ≤ 0.

Proof. If X satisfies (a) and y satisfies (b), then

0 ≤ 〈
∑
i

yiAi, X〉 =
∑
i

yi〈Ai, X〉 = yT b ≤ 0

but, as ∑i yiAi ∈ int(K∗) and X ∈ int(K), we have

〈
∑
i

yiAi, X〉 > 0.

Hence (a) and (b) cannot both hold.
Assume now that our system of linear equations does not admit a solu-

tion in int(K). Define the subspace L by

L = {X : 〈Ai, X〉 = 0, i = 1, . . . ,m}.

Let X0 be a feasible solution to the system; then the set of feasible solutions
is the affine space X0 + L and by assumption (X0 + L) ∩ int(K) = ∅.
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There there is a hyperplane separating X0 +L and int(K), equivalently
there is a ‘vector’ C and a scalar β such that for all X in K we have
〈C,X〉 ≥ β and, for all X in X0 + L we have 〈C,X〉 ≤ β. Since 0 ∈ K
it follows that β ≤ 0 and, since 〈C, tX〉 ≥ β for all X in K and t > 0, it
follows that C ∈ K∗.

Further, if X ∈ L and t ∈ R, we have

〈C, tX +X0〉 ≤ β,

whence 〈C,X〉 = 0. This implies that C ∈ L⊥ and consequently C is a
linear combination of A1, . . . , Am, say

C =
∑
i

yiAi

for some y. We know that C ∈ K∗ \0 and as X0 ∈ X0 + L, we have

yT b =
∑
i

yi〈Ai, X0〉 = 〈C,X0〉 ≤ β ≤ 0.

5.6 A Second Approach to Duality
[We’re following Barvinok.] We take our primal program to be

inf〈C,X〉, 〈A,Xi〉 = bi (i = 1, . . .m), X ∈ K

with dual
sup yT b,

∑
j

yjAj − C ∈ K∗.

Note that we have swapped our inf and sup and so, as you should verify,
complementary slackness now implies that yT b ≤ 〈C,X〉 (with the right
weasel words in place).

Given n×nmatricesA1, . . . , Am, we define a linear map Â : Matn×n(R)→
Rm+1 by

Â(X) = (〈A1, X〉, . . . , 〈Am, X〉, 〈C,X〉).

5.6.1 Theorem. Let K be a convex cone and suppose that the cone Â(K)
is closed. If there is a primal feasible solution, then the duality gap is zero
and, if the primal is bounded below, there is a primal optimal solution.
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Proof. If the primal is not bounded below, there are no primal feaasible
solutions and the duality gap is zero.

We assume that that the primal is bounded below, with value γ. Fix
b in Rm and consider the line L = (b, τ). The intersection L ∩ Â(K) is a
closed set of points

{(b, 〈C,X〉)

where X is primal feasible. Since there is a primal feasible solution and the
primal is bounded below, this intersection is a closed bounded interval or a
closed ray that is bounded below. Hence there is a primal feasible solution
X such that 〈C,X〉 = γ, and this solution is optimal.

Let β denote the optimal value of the dual. By complementary slackness,
β ≤ γ. We claim that if ε > 0, there is a dual feasible solution y such that
yT b ≥ γ − ε. This would imply that β = γ.

If our claim was false, then

(b, γ − ε) /∈ Â(K)

and, since Â(K) is closed, this point can be strictly separated from Â(K)
by a hyperplane. Hence there is a point (y, σ) in Rm ⊕ R and a number α
such that for all dual-feasible y

yT b+ σ(γ − ε) > α

and, for all primal feasible X,∑
j

yj〈Aj, X〉+ σ〈C,X〉 < α.

As we may take X = 0, we may assume α > 0.
Next we show σ < 0. If c is positive we have∑

j

yj〈Aj, cX〉+ σ〈C, cX〉 = c
∑
j

yj〈Aj, X〉+ cσ〈C,X〉 < α.

Since K is a cone, this implies that∑
j

yj〈Aj, X〉+ σ〈C,X〉 ≤ 0

for all X in K.
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So, for all X in K we must have

yT b+ σ(γ − ε) > 0,
∑
j

yTj 〈Aj, X〉+ σ〈C,X〉 ≤ 0.

If X0 is primal optimal, then 〈C,X0〉 = γ and

ipAjX = bj, (j = 1, . . . ,m)

and consequently
yT b− (γ − ε) > 0

and, for all x in K,∑
j

yj〈Aj, X〉 − 〈C,X〉 = 〈X,
∑
j

yjAj〉 − 〈C,X〉 = 〈X,
∑
j

yjAj − C〉 ≤ 0.

Therefore C −∑j yjAj ∈ K∗. We conclude that y is dual feasible with
yT b ≥ γ − ε.

5.7 Strong Duality, Again
We use the theorem from the previous section to derive strong duality. The
following lemma will be useful.

5.7.1 Lemma. Let T : V → W be linear and let K be a cone in V with a
compact convex base. If ker(T ) ∩K = {0}, then T (K) is a closed convex
cone in W .

Proof. Let B be a compact base for K and set C = T (B). Then C is
compact and convex and 0 /∈ C and, further, T (K) is generated (as a cone)
by T (C). By Lemma 3.10.1, we conclude that T (K) is a closed convex
cone.

As in the previous section, our primal problem is

inf〈C,X〉, 〈Ai, X〉 = bi (i = 1, . . . ,m), X < 0.

5.7.2 Lemma. If there exist real numbers y1, . . . , ym and a real number ρ
such that ∑i yiAi + ρC � 0, and the primal is feasible, then the duality
gap is zero. Moreover, if the primal is bounded below, there is an optimal
solution for the primal.
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Proof. We apply our map Â from the previous section. If X ∈ ker(Â), then

〈A1, X〉 = · · · = 〈Am, X〉 = 〈C,X〉 = 0

and therefore 〈B,X〉 = 0. Since B � 0, it follows that X = 0. Since
the cone of positive semidefinite matrices has a compact base, the lemma
follows from the above lemma and Theorem 5.6.1.
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Chapter 6

Algorithms

We discuss the standard approach to solving semidefinite programs.

6.1 Convex Functions
The epigraph of a real f function on a real vector space V is the subset of
V × R:

{(x, y) : y ≥ f(x), x ∈ V }.

A function is convex if its domain is convex and its epigraph is a convex
subset of V × R. We call f concave if −f is convex.

Any norm on a vector space is a convex function.
Note that if f is convex according to the above definition and 0 ≤ a ≤ 1

and x1 ≤ x2, then

a(x1, f(x1)) + (1− a)(x2, f(x2)) = (ax1 + (1− a)x2, af(x1) + (1− a)f(x2))

belongs to the epigraph of f , whence we have

af(x1) + (1− a)f(x2) ≥ af(x1) + (1− a)f(x2).

Conversely if this holds for all x1 and x2, then f is convex. This inequality
is often used as the definition of a convex function. If the above inequality
is tight except when t = 0 or t = 1, we say f is strictly convex.

If x and y belong to a convex set D and f is a function on D. Then

f((1− a)x+ ay) = f(x+ a(y − x)) =: g(a)
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and thus f is convex on the line segment joining x to y if and only if g
is convex on [0, 1]. (This is an easy exercise.) Hence we can reduce the
problem of deciding if f is convex to a collection of one-variable problems.

6.2 Differentiable Functions
If f is twice-differentiable, there is a vector-valued function∇f and a matrix-
valued function ∇2f such that, ignoring terms of degree greater than two
in ‖x‖,

f(a+ x) = f(a) + 〈∇f(a), x〉+ 1
2〈∇

2f(a)x, x〉

The function ∇f is the gradient of f and ∇2f is its Hessian. Of course

(∇f(a))i = ∂f

∂xi
, (∇2f(a))i,j = ∂2f

∂xi∂xj
.

6.2.1 Lemma. A twice-differentiable function on an open convex subset D
of a real vector space V is convex if and only ∇2f is positive semidefinite
at all points in D.

Proof. We define the function g on R by

f((1− s)a+ sx) = f(a+ s(x− a))

and if we define g(s) = f(a+ s(x− a)), then

g′′(0) = 〈∇2f(a)(x− a), x− a〉

and g is convex at zero if and only if ∇2f(a) < 0.

6.2.2 Theorem. The function f(X) = − log(det(X)) is convex on the set
of positive semidefinite matrices.

Proof. Assume X � 0 and H is symmetric. For any t,

X + tH = X1/2(I + tX−1/2HX−1/2)X1/2

and accordingly

det(X + tY ) = det(X) det(I + tX−1/2HX−1/2).
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Let λ1, . . . , λn denote the eigenvalues of X−1/2HX−1/2; then

det(I +X−1/2HX−1/2) =
∏
i

(1 + λi).

Hence

log(det(X + tH)) = log(det(X)) + log(I + tX−1/2HX−1/2)

= log(det(X)) + log
(∏

i

(1 + tλi)
)

= log(det(X)) +
∑
i

log(1 + tλi).

We have
log(1 + tλ)′′ = − λ2

(1 + tλ)2 ≤ 0

and therefore − log(1 + tλi) is a convex function of t. Since a convex com-
bination of convex functions is convex, we conclude that − log(det(X)) is
convex.

We compute the gradient of log(det(X)). We use the notation of the
theorem and define

Ĥ = X−1/2HX−1/2.

If we ignore quadratic and higher order terms in t,

det(I + tĤ) = 1 + t tr(Ĥ).

and it follows that

〈∇f(X), H〉 = − tr(X−1/2HX−1/2) = −〈X−1, H〉.

It can also be shown that

〈∇2f(X)H,H〉 = − tr(X−1HX−1H) = − tr((X−1/2HX−1/2)2).

6.3 An Interior Point Method
We sketch an algorithm for solving semidefinite programs. The basic idea
is to solve a sequence of problems of the form

max〈C,X〉+ µ det(log(X)), 〈Ai, X〉 = bi (i = 1, . . . ,m), X � 0.
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(Note that X is constrained to be positive definite, not just positive semidef-
inite.) Here µ > 0. We claim that for each positive value of µ, this problem
has a unique optimum solution X∗(µ) and that, as µ → 0, the solutions
X∗(µ) converge to a solution of our standard semidefinite program, i.e, the
above problem with µ = 0 and X < 0.

The key point is that because of the barrier function µ log det(X), in
solving this problems we can ignore the constraint X � 0. Thus the actual
problem is to maximize a convex function over an affine space; this is a
completely standard problem and can be solved by Newton’s method. To
apply Newton’s method, we need the gradient and Hessian of the barrier
function, but we have already determined these.

58



Chapter 7

Codes, Colourings, Packings

We present applications of semidefinite optimization to coding theory, and
related topics.

7.1 Geometry of Code Words
We fix an integer n and define a word to be an element of Zn2 . The Hamming
distance h(α, β) between words α and β is defined by

h(α, β) = |{i : αi 6= βi}|.

This is a metric on the set of all words. A code C is simply a set of words,
we may refer to its elements as code words. If C is a subspace of Zn2 , it is
a linear code.

The set of words at distance at most r from a code word x is the ball of
radius r about x. The packing radius of a code C is the maximum integer
e such that the balls of radius e about the code words in C are pairwise
disjoint. The covering radius of C is the maximum distance r such that
each binary vector of length n lies in the ball of radius r about some code
word. The minimum distance of a code C is the minimum distance between
two distinct words in C.

If Bk(x) denote the ball of radius k about the word x, then

|Bk(x)| =
k∑
i=0

(
n

i

)
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This leads us to the the so-called sphere-packing bound: if the packing
radius of C is e, then

|C| ≤ 2n∑e
i=0

(
n

i

)
.

A code is perfect if we have equality in this bound. In general though,∑e
i=0

(
n
i

)
is not a power of two, and so most codes are not perfect. The

question we will be concerned with is to derive good upper bounds on the
size of a code with packing radius e.

We can express this as a problem in graph theory. The Hamming graph
H(n, 2) has vertex set Zn2 , where two words are adjacent if they differ in
exactly one position, ie., their Hamming distance is 1. This is an n-regular
graph on 2n vertices, probably better known as the d-cube. If X denotes the
Hamming graph, its i-th distance graphXi is the graph with V (Xi) = V (X),
and with words α and β adjacent in Xi if and only if they are at distance
i in X. (So X1 = X.) If Ye denote the edge-disjoint union of the graphs
X1, . . . , Xe, then our coding theory problem is equivalent to determining
the maximum size of a coclique in Ye.

7.2 A Matrix Algebra
We denote the adjacency matrix of the i-th distance graph Xi by Ai and
set A0 = I.

7.2.1 Lemma. Let A)i denote the adjacency matrix of the i-th distance
graph of H(n, 2). There are constants bi and ci such that

A1Ai = ciAi−1 + biAi−1.

7.2.2 Corollary. There are polynomials p1, . . . , pn such that deg(pi) = i
and Ai = pi(A1).

These results have many consequences. Let B denote the vector space
spanned by the matrices A0, . . . , An. This space is closed under multiplica-
tion by A1 and, consequently, it is closed under multiplication. A vector
space of matrices that contains I and is closed under matrix multiplication
is a matrix algebra. Since Ai ◦ Aj = 0 if i 6= j, the set

{0, A0, . . . , An}
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is closed under Schur multiplication, and it follows that B is also Schur-
closed. As ∑iA0 = J , it contains the Schur identity J . Finally

trAiAj = sumAi ◦ Aj =

sum(Ai), i = j;
0, i 6= j.

This shows that A0, . . . , An is an orthogonal basis for B.
There is a second useful orthogonal basis for B. Assume A = A1 and let

A =
∑
i

θiEi

be the spectral decomposition of A. Then the spectral idempotents Ei
span B. As tr(EiEj) = 0 if i 6= j, we see that these idempotents form
an orthogonal basis for B, and it follows that A has exactly n + 1 distinct
eigenvalues. As Ej represents orthogonal projection onto the θj eigenspace,
tr(Ej) is equal to the dimension of this eigenspace or, equivalently, to the
multiplicity of θj as an eigenvalue of A.

7.3 A Projection
7.3.1 Theorem. LetM be a matrix with rows and columns indexed by Zn2
and let M̂ denote the orthogonal projection of M onto the subspace B of
Mat2×2n(R). Then

M̂ =
n∑
i=0

〈Ai,M〉
〈Ai, Ai〉

Ai =
n∑
j=0

〈Ej,M〉
〈Ej, Ej〉

Ej.

If M ≥ 0, then M̂ ≥ 0; if M < 0, then M̂ < 0.

Proof. The two expressions for M̂ are just the usual formula for the image
of a projection onto a subspace, given an orthogonal basis for the subspace.
For the final two claims note first that

〈Ai,M〉 = sum(Ai ◦M)

and this is non-negative if M is non-negative. Next, the idempotents Ej
are positive semidefinite, and so if M < 0, then 〈Ej,M〉 ≥ 0.

61



7. Codes, Colourings, Packings

The coefficient
〈Ej,M〉
〈Ej, Ej〉

in the expansion of M̂ relative to the Ej’s is the eigenvalue of M̂ on the
θj-eigenspace of A1.

We will develop formulas for the entries of the matrices Ej later, but we
can determine one of these almost for free. Since J ∈ B, there are scalars
µ0n such that

J =
∑
j

µjEj.

As J < 0, each eigenvalue µj is non-negative and accordingly

1 = rk(J) =
∑

j:µj 6=0
rk(Ej).

It follows that exactly one of the eigenvalues µj is not zero, and therefore
J is a scalar multiple of Ej for some j. It is traditional to assume µ0 6= 0,
and then J = 2nE0, or

E0 = 1
2nJ.

This implies that EjJ = 0 if j 6= 0.

7.3.2 Lemma. Let M be a matrix with rows and columns indexed by Zn2
and let M̂ denote the orthogonal projection of M onto the subspace B of
Mat2×2n(R). Then tr(M̂) = tr(M) and sum(M̂) = sum(M).

Proof. As A0 = I and ∑iAi = J , we have tr(Aj) = 0 if j 6= 0. It follows
immediately that

tr(M̂) = 〈I,M〉
〈I, I〉

tr(I) = 〈I,M〉 = tr(M).

If j 6= 0, then

sum(Ej) = sum(J ◦ Ej) = n sum(E0 ◦ Ej) = n tr(E0Ej) = 0

and consequently

sum(M̂) = 〈E0,M〉 sum(E0) = sum(J ◦M) = sum(M).
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7.4 A Bound on Codes
Suppose C is a code with packing radius as least e, so the minimum distance
between two distinct words of C is at least 2e + 1. We determine a linear
program which optimum value is an upper bound on C.

Let x be the characteristic vector of C and set M = xxT . From Theo-
rem 7.3.1, we have

M̂ =
n∑
i=0

〈Ai,M〉
〈Ai, Ai〉

Ai.

Further
〈Ai,M〉 = sum(Ai ◦M),

which shows that 〈Ai,M〉 is equal to the number of ordered pairs of elements
(u, v) of C, such that h(u, v) = i. We conclude that 〈Ai,M〉 = 0 when
1 ≤ i ≤ 2e.

From Lemma 7.3.2 we have

tr(M̂) = tr(M) = |C|, sum(M̂) = sum(M) = |C|2

and therefore
|C| = sum(M̂)

tr(M̂)
.

7.4.1 Lemma. The maximum size of a code of length n and packing radius
e is equal to the maximum value of sum(N)/ tr(N), where N runs over the
positive semidefinite matrices in the algebra B such that N ◦ Ai = 0 if
1 ≤ i ≤ 2i.

Thus we see that we can compute an upper bound on the size of a code
by solving a semidefinite optimization problem. In fact, we only need to
deal with a linear program. To see this we first note that each matrix Ai is
a linear combination of the spectral idempotents E0, . . . , En and therefore
there are scalars pi(j) such that

Ai =
∑
j

pi(j)Ej.

The scalars pi(j) for j = 0, . . . , n are eigenvalues of Ai. If N ∈ B, we also
have

N =
∑
i

νiAi
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and therefore

N =
∑
i,j

νipi(j)Ej =
∑
j

(∑
i

νipi(j)
)
Ej.

Here the coefficient of Ej is an eigenvalue of N , and therefore N < 0 if and
only if ∑

i

νipi(j) ≥ 0

for j = 0, . . . , n.
Accordingly our upper bound is the value of the linear program

max
∑
i

νi sum(Ai)

subject to
ν0 = 2−n, νi ≥ 0, (i = 1, . . . , n)

and ∑
i

νipi(j) ≥ 0.

These bounds were first derived by Delsarte in his 1973 Ph. D. thesis.
The bounds were good and no major improvements were found until work
of Schrijver in 2005. We discuss this in the following sections.

7.5 Schur-Closed Algebras
We discuss work of Schrijver’s which lead to significant improvements in
the upper bounds on the size of codes. The key step is to work with a
superalgebra of the algebra B. This larger algebra is not commutative, and
so we have to work a little harder.

We introduce diagonal 01-matrices, with rows and columns index by
V (H(n, 2)). These are defined by the constraint that (Di)u,u = 1 if and
only if h(0, u) = r. Clearly ∑

iDi = I. We define T to be the matrix
algebra generated by the matrices D0, . . . , Dn together with the matrices in
B. Thus

T = 〈A0, . . . , An, D0, . . . , Dn〉.

7.5.1 Lemma. The algebra T is closed under transposes.
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We leave the proof of this lemma as an exercise.
We also need to use the groups of automorphism of the graph H(n, 2),

which we denote by G. In fact we are only concerned with the subgroup G0
of G, consisting of the elements of G that fix 0. We view automorphisms of
H(n, 2) as permutation matrices that commute with A1 = A(H(n, 2)). It
can be shown that G0 ∼= Sym(n), but we will not need this. We will make
use of the following:

7.5.2 Lemma. The algebra T is equal to the set of matrices that commute
with each permutation matrix in G0.

In other terms, T is the commutant of G0. One direction of this is
immediate—the matrices A0, . . . , An and D0, . . . , Dn lie in the commutant
of G0, and so the commutant contains T—the more difficult step to prove
the reverse inclusion.

7.5.3 Lemma. The commutant of a set of permutation matrices is a Schur-
closed matrix algebra that contains J .

Proof. If A and B are matrices that commutes with permutation matrix P ,
you may easily verify that A ◦B commutes with P .

7.5.4 Corollary. A Schur-closed matrix algebra that contains J has a basis
of 01-matrices that sums to J (and hence is orthogonal).

7.5.5 Corollary. If M is a non-negative matrix, the orthogonal projection
of M onto T is non-negative.

7.6 Properties of Projections
We aim to prove that orthogonal projection on to T sends positive semidef-
inite matrices to positive semidefinite matrices. It will be convenient to
denote the orthogonal projection map by E .

To begin we establish some important properties of E . Note that we
have a direct sum decomposition

Matn×n(R) = T ⊕ T ⊥.

7.6.1 Lemma. For all matrices M we have tr(E(M)) = tr(M).
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Proof. As
E(M − E(M)) = E(M)− E(M) = 0,

we see that M − E(M) ∈ T ⊥. Consequently M − E(M) is orthogonal to I
and hence

0 = 〈I,M − E(M)〉 = tr(M − E(M)).

7.6.2 Lemma. For any matrix M and for any matrix N in T , we have

E(MN) = E(M)N, E(NM) = NE(M).

Proof. We see that

MN − E(MN) ∈ T ⊥, M − E(M) ∈ T ⊥.

Since T is transpose-closed, it is NT -invariant and hence T ⊥ is N -invariant.
It follows that

MN − E(M)N = (M − E(M))N ∈ T ⊥

and therefore
E(M)N − E(MN) ∈ T ⊥.

As E(M)N − E(MN) ∈ T , it follows that E(M)N − E(MN) = 0.
The second claim follows similarly.

7.7 Projections are Positive
We aim to rpove that the image E(M) in T of a positive semidefinite matrix
M is positive semidefinite.

7.7.1 Lemma. For all matrices M we have E(MT ) = E(M)T .

Proof. If N ∈ T , then

tr(E(MT )N) = tr(E(MTN)) = tr(MTN) = tr(NTM)
= tr(NTE(M))
= tr(E(M)TN).

Therefore
tr((E(MT )− E(M)T )N) = 0

for all N in T and hence E(MT ) = E(M)T .
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7.7.2 Theorem. If M < 0 then E(M) < 0.

Proof. By the lemma, N = E(M) is symmetric and so using the spectral
decomposition of N we have

N = E − F

where E,F < 0 and EF = FE = 0. We assume F 6= 0 and derive a
contradiction. If F 6= 0, there is a spectral idempotent F1 of N associated
to a negative eigenvalue λ of N and FF1 = λF1. Now

0 > tr(NF1) = tr(E(M)F1) = tr(E(MF1)) = tr(MF1)

but M and F1 are both positive semidefinite and therefore tr(MF1) ≥ 0.

The strategey for deriving an upper bound on the size of code now runs
as follows. If x were the the characteristic vector of a code and M = xxT ,
then E(M) is a non-negative and positive semidefinite matrix in T . We can
derive an upper bound by computing the maximum value of sum(N)/ tr(N)
where N runs over the non-negative positive semidefinite matrices in T .

7.8 Vector Colourings
Suppose −1 ≤ α ≤ 1. The vertices of the graph S(d, α) are the unit vectors
in Rd, with unit vectors x and y adjacent if 〈x, y〉 ≤ α. (In practice α will be
negative.) A graph G has a vector β-colouring if there is a homomorphism

G→ S

(
d,− 1

β − 1

)

for some dimension d. We have β = 1−1/α. The least value of β such that
G has a vector β-colouring is the vector chromatic number of G, denoted
χvec(G).

To take care of one trivial case, we note that S(d,−1) is a disjoint union
of copies ofK2, and so a vector 2-colourable graph is bipartite. We also note
that if there is a homomorphism from H to G and G is vector β-colourable,
so is H.

7.8.1 Lemma. The complete graph Kn has a vector n-colouring.
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Proof. Let e1, . . . , en be the standard basis for Rn and define vectors
v1, . . . , vn by

vi = 1√
1− 1

n

(
ei −

1
n
1
)
.

Then ‖vi‖ = 1 and, if i 6= j, we find that

〈vi, vj〉 = − 1
n− 1

Therefore the map i 7→ vi is a vector (n− 1)-colouring of Kn.
Not too surprisingly, χvec(Kn) = n − 1; this is one consequwnce of the

following.

7.8.2 Lemma. We have ω(G) ≤ χvec(G).

Proof. Suppose C is a clique in G and the map i 7→ vi is a vector β-colouring.
Define

vC =
∑
i∈C

vi.

Then

0 ≤ 〈vC , vC〉 = |C|+
∑
i 6=j
〈vi, vj〉

= |C|+ (|C|2 − |C|)
(
− 1
β − 1

)

= |C|
(

1− |C| − 1
β − 1

)

and consequently β ≥ |C|.

7.9 Semidefinite Programs for χvec(G)
Assume G is a graph with adjacency matrix A. The value of the following
problem is χvec(G):

minα
subject to

M ◦ I = I, M ◦ A ≤ αA, M < 0.
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Any matrix that satisfies these constraints is the Gram matrix of a vector
β-colouring, with β = 1 − 1

α
. We assert that the dual to this problem can

be written as
min tr(N)

given that
sum(N) = 1, N ◦ (J − I − A) = 0, N ≥ 0, N < 0.

To see the relation between these problems, note that if M is primal
feasible and N is dual feasible, then

0 ≤ tr(MN) = sum(M ◦N) = tr(DN) + sum(M ◦ (N − (N ◦ I)))
≤ tr(N) + α(sum(N)− tr(N))
= α + (1− α) tr(N).

It follows that
1− 1

α
≤ 1

tr(N) .

From this we conclude that if N is dual feasible, then 1/ tr(N) is an upper
bound on the vector-chromatic number of G.

Referring back to Theorem 4.7.1, we have that θ(G) is equal to
max sum(N)

given that
tr(N) = 1, N ◦ (J − I − A) = 0, N < 0.

You may prove that this is equal to

max 1
tr(N)

subject to
sum(N) = 1, N ◦ (J − I − A) = 0, N < 0.

An immediate consequence of this is that:

7.9.1 Corollary. For any graph G we have χvec(G) ≤ θ(G).

Let S=(d, α) denote the graph with the unit vectors in Rd as its vertices,
with two unit vectors u and v adjacent if and only if 〈u, v〉 = α. If we set
β = 1− 1

α
, then we say a graph G has a strict vector β-colouring if there is

a homomorphism from G to S=(d, α).
The strict vector-chromatic number of G is equal to θ(G).

69



7. Codes, Colourings, Packings

7.10 Bounds for χvec(G)
We work with the dual version of the optimization problem for χvec(G)
(actually 1/χvec(G)):

min tr(N)
given that

sum(N) = 1, N ◦ (J − I − A) = 0, N ≥ 0, N < 0.

Suppose A = A(G) and τ is the least eigenvalue of A. We assume G has
v vertices and e edges and that e > 0, whence τ < 0. Therefore A − τI is
positive semidefinite and non-negative and

tr(A− τI)
sum(A− τI) = − vτ

2e− vτ = 1
1− 2e/v

τ

.

This is an upper bound on the value of problem, and implies that

χvec(G) ≥ 1− 2e/v
τ

.

We point out that 2e/v is the average valency of a vertex in G.

7.10.1 Lemma. Let G be a k-regular graph with least eigenvalue τ and let
Eτ denote the corresponding spectral idempotent. If there are constants x
and y such that

Eτ ◦ I = xI, Eτ ◦ A = yA

then χvec(G) = 1− k
τ
.

Proof. IfM and N are primal and dual optimal solutions, then tr(MN) = 0
and therefore MN = NM = 0. Let us be optimistic and suppose that N
is scalar multiple of A − τI. Then the columns of M lie in ker(A − τI)
and therefore they are eigenvectors for A with eigenvalue τ . Accordingly
M must be a positive semidefinite matrix whose columns are eigenvectors
for A with eigenvalue τ . This suggests we should take M to be a scalar
multiple of the spectral idempotent Eτ .

Assume v = |V (G)| and let m denote the multiplicity of τ . Suppose
that Eτ satisfies the hypotheses of the lemma. Then

vx = sum(xI) = sum(Eτ ◦ I) = tr(Eτ ) = m
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and, since 2e = vk,

vky = sum(yA) = sum(Eτ ◦ A) = tr(EτA) = τ tr(Eτ ) = mτ.

This shows that x = m/v and y = mτ/(vk). We define

M = v

m
Eτ .

Then M ◦ I = I and M < 0 and

M ◦ A = v

m
Eτ ◦ A = v

m

mτ

vk
A = τ

k
A.

Therefore τ/k is an upper bound on the value α of the primal, and so G is
vector β-colourable with

β = 1− k

τ
.

We have shown that χvec(G) ≤ 1 − k
τ
. Comparing this with the upper

bound derived previously, we conclude that equality holds.
A careful reading of this proof will show that, in this case, χvec(G) =

θ(G), since the vector colouring constructed is strict.
An arc in a graph is an ordered pair of adjacent vertices, and a graph G

is arc-transitive if its automorphism group acts transitively on the arcs of
G. (An arc-transitive graph is necessarily vertex and edge transitive.) The
hypotheses of the lemma hold for all arc-transitive graphs, and so:

7.10.2 Corollary. If G is arc transitive with valency k and least eigenvalue
τ , then χvec(G) = 1− k

τ
.

7.11 The Kissing Number
The kissing number τd is the maximum number of pairwise disjoint copies
of the unit sphere in Rd that we can arrange so that so that each of the
τd spheres touches some given sphere. (We regard spheres as disjoint if
their interiors are disjoint.) It is not hard to convince yourself that τ2 = 6.
Newton and Gregory had a famous dispute over whether τ3 was 12 or 13.
Newton argued for 12, whereas Gregory thought that 13 might be possible.
Newton was proved right, eventually. We are going to discuss a proof that
τ8 = 240.
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We define a spherical cap with centre x to be the set

{y : ‖y‖ = 1, xTy ≥ cos γ}.

(In general γ ≤ π/2.) Suppose have N pairwise disjoint unit spheres touch-
ing the unit sphere centred at the origin. Then the intersections of these N
spheres with the sphere S of radius two centred at the origin form a set of
N pairwise disjoint caps on S. So the problem of determining the kissing
number can be solved if we determine the maximum size of a set of pairwise
disjoint caps on S (with the right size.) To determine the size of the caps,
note that if three spheres of the same size are touching then their centres
are the vertices of an equilateral triangle.

7.11.1 Lemma. The kissing number τd is the maximum size of a set C of
unit vectors such that xTy ≤ 1/2 for all distinct x and y in C.

We will shortly write down a semidefinite program which gives an upper
bound on τd, but we need an additional concept. We will be working with
symmetric bivariate functions on the unit sphere, such function may be
referred to as a kernel. By way of (a very pertinent) example, if p(t) is a
real polynomial, then the function p(xTy) is a kernel. We say that a kernel
is positive semidefinite if, for each set of unit vectors x1, . . . , xm, the matrix

(K(xr, xs))r,s

is positive semidefinite. A real function f defined on [−1, 1] is positive
semidefinite if the kernel f(xTy) is positive semidefinite; if f is positive
semidefinite, we write f < 0.

7.11.2 Lemma. The value of the semidefinite program

inf λ, p(1) = λ, p(t) ≤ −1 (if t ≤ 1/2), p < 0

is an upper bound on τd.

Proof. Suppose C = {x1, . . . , xm}. Then, since p ≥ 0, we have

0 ≤
∑
r,s

p(xTr xs) ≤ |C|(λ− 1) + |C|(|C| − 1)(−1) = |C|(λ− |C|)

and so |C| ≤ λ.
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7.12 Gegenbauer Polynomials
If f and g are continuous functions on the unit sphere Ω, then we have an
inner product

〈f, g〉 =
∫

Ω
f(z)g(z) dz.

A function f on the unit sphere is zonal relatiove to the unit vector a if
f(z) is determined by the value aT z. For zonal functions it can be shown
that ∫

Ω
f(aT z)g(aT z) dz = 1

γd

∫ 1

−1
f(t)g(t)(1− t2)(d−3)/2,

where γd is a scalar whose value will not play a role. We can view the right
side as an inner product on the space of continuous functions on [−1, 1].
Hence we can apply Gram-Schmidt to the sequence of polynomial

1, t, t2, . . .

to form an orthogonal set of polynomials gi, where deg(gi) = i. These are
known as Gegenbauer polynomials. These polynomials are only determined
up to multiplication by a nonzero scalar; we say they are normalized if
gi(1) = 1. (There could be a problem if gi(1) = 0 for some i, you might
show that this cannot happen.) We define functions ga,i on Ω by

ga,i(z) = gi(aT z).

One very important property of the functions ga,i is the addition rule:

7.12.1 Theorem. For any two points a and b on the unit sphere,

〈ga,i, gb,j〉 = δi,jga,i(b).

We do not prove this. We note that ga,i(b) = gi(aT b). Our chief appli-
cation of this result is the following:

7.12.2 Lemma. The kernel associated to the Gegenbauer polynomial gi is
positive semidefinite.

Proof. By the addition rule

gi(xTy) =
∫

Ω
gi(xT z)gi(zTy) dz
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and therefore ∑
r,s

argi(xTy)as =
∑
r,s

∫
Ω
argi(xT z)gi(zTy)as dz

=
∫

Ω

(
gi(xTr z)

)2

≥ 0.

It follows that gi is positive semidefinite.

Any polynomial f(t) can be exressed as a linear combination of Gegen-
bauer polynomials and, if

f(t) = f0g0 + · · · fdgd

then f is positve semidefinite if the Gegenbauer coefficients fk are non-
negative. (The converse is true, but we will not need it.) Therefore we can
rewrite our semidefinite program bounding τd as follows:

inf λ, f0 + · · ·+ fd = λ− 1,
∑
r

frgr(t) ≤ −1 (t ≤ 1/2), f1, . . . , fd ≥ 0.

There is one significant difficulty with this formulation, in that the con-
straint that f(t) ≤ −1 when t ∈ [−1, 1/2] is actually an infinite set of
constraints. We will see how to deal with this later.

7.13 The Optimal Solution
We define

f(t) = −1 + 320
3 (t+ 1)

(
t+ 1

2

)2
t2
(
t− 1

2

)
.

You may show that f(1) = 239 and

f(−1=f(−1/2) = f(0)f(1/2) = −1

We claim that f(t) ≤ −1 if t ∈ [−1, 1/2] (which can be verified by plotting
software) and that the Gegenbauer coefficients of f are non-negative. In
consequence

τ8 ≤ 240.
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Let C be the set consisting of the 112 vectors

±eiωej, (1 ≤ i, j ≤ 8)

along with the 128 vectors
(±1)

of length eight and with even number of minus signs. In the exercises you
are invited to use these vectors to prove that τ8 ≥ 240 (these vectors can
serve as the centres of the kissing spheres).
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Chapter 8

Quantum Channels

8.1 Systems
A quantum system is a complex inner product space, and a state of the
system is a 1-dimensional subspace. We could represent a state by a unit
vector z that spans it, but then if a is complex number of norm 1, the unit
vectors az and z determine the same state. In this context, physicists refer
to a as a phase factor. The matrix P = zzT represents projection onto the
line spanned by z, but does not depend on the choice unit vector. In our
terms, each state is specified by positive semidefinite matrix with rank 1
and trace 1.

Physicists find it convenient to work with a more general class of objects.
For them, a density matrix is a positive semidefinite matrix with trace 1
and density matrices specify so-called mixed states. In this context they
refer to the states specified by density matrices with rank 1 as pure states.
A mixed state can be viewed as a convex combination of pure states. To see
this, recall that a positive semidefinite matrix P is Hermitian, hence has a
spectral decomposition

P =
∑
r

θrEr

where the idempotents Er are positive semidefinite. If P < 0, then θr ≥ for
all r and if tr(P ) = 1, then ∑r θr = 1. However in ??? we saw that any pos-
itive semidefinite matrix can be expressed as a sum of positive semidefinite
matrices of rank 1, and these expressions are not unique.

If a quantum system is a complex inner product space, a composite
quantum system is an inner product space which can be expressed as a
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tensor product of smaller systems. This simple fact is the cause of much of
the weirdness of quantum physics.

8.2 Complex and Hermitian Matrices
If M is a complex matrix, M∗ will denote its congugate-transpose. (Physi-
cists normally use M †, which doesn’t work so well on the blackboard.) We
have an inner product

〈M,N〉 = tr(M∗N) = sum(M ◦N)

for which
〈N,M〉 = 〈M,N〉.

A matrix M is Hermitian if M∗ = M . If M and N are Hermitian then
〈M,N〉 is real. A real matrix is Hermitian if and only if it is symmetric.
If M is Hermitian then, in general, the matrix iM is not Hermitian, hence
the Hermitian matrices do not form a vector space over C. They do form a
real vector space. The matrices(

1 0
0 0

)
,

(
0 0
0 1

)
,

(
0 1
1 0

)
,

(
0 −i
i 0

)

form an orthogonal basis for the space of 2×2 Hermitian matrices, and it is
not hard to prove that the space of d×d Hermitian matrices has dimension
d2.

A real matrix S is skew symmetric if ST = −S, and a real matrix is
skew-symmetric if and only if iS is Hermitian.

A complex matrix M is positive semidefinite if it Hermitian and

〈z,Mz〉 ≥ 0

for all vectors z. (Note that 〈z,Mz〉 = z∗Mz and so is guaranteed to be
real.) The 2 × 2 positive semidefinite matrices over C with trace 1 are of
the form (

1
2 + a c+ di
c− di 1

2 − a

)
where a, c, d are real and

a2 + c2 + d2 ≤ 1
4 .
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Thus there is a bijection from the set of 2×2 positive semidefinite matrices
with trace 1 and the points of a sphere in R3. Physicists refer to the image
of this bijection as the Bloch sphere. Note that the points on its surface
correspond to pure states. Note also that the 2 × 2 positive semidefinite
matrices with trace 1 are a subset of Mat2×2(C), and this subset is not a
sphere.

8.3 Measurement and Channels
Suppose the state space of a quantum system has dimension d. Then the
result of a measurement of the system will take one of d values. For our
purposes a measurement M of this system is a sequence of d matrices
M1, . . . ,Md such that Mi < 0 and ∑

Mi = I. The spectral idempotents
of a Hermitian matrix H provide an example, but we do not require that
the components Mi commute in general (and in particular, they are not
orthogonal). If the state of the system is given by a density matrix D, then
the result of a measurement modelled byM is i, with probability

tr(DMi).

We see that tr(DMi) ≥ 0 because D and Mi are positive semidefinite, and
also ∑

i

tr(DMi) = tr
(
D
∑
i

Mi

)
= tr(D) = 1.

One key point is that the result of the measurement is a random variable
on {1, . . . , d}.

One way of describing general operations on quantum systems is by
means of channels. Suppose we are given two quantum systems X and Y
of respective dimensions d and e. A channel is a linear map L from d × d
Hermitian matrices to e× e hermitian matrices such that

(a) tr(L(M)) = tr(M).

(b) If M < 0, then L(M) < 0.

If (a) holds, we say that cŁ is trace preserving . Condition (b) is not all we
need, the technical term is that L must be completely positive. We point
out that L is necessarily of the form

L(M) =
∑
i

AiMB∗i
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for suitable matrices Ai, Bi.

8.4 Hermitian SDPs
We consider optimization problems of the form

sup〈A,X〉, Φ(X) = B, X < 0.

Here A and B are Hermitian matrices and Φ is a linear map from the space
of d× d Hermitian matrices to the space of e× e Hermitian matrices. Note
that if X is Hermitian and C is arbitrary, then

〈C,X〉 = tr(C∗X) = tr(X∗C) = tr(XC) = tr(CX) = 〈C∗, X〉

and therefore
〈C,X〉 = 1

2(〈C,X〉+ 〈C∗, X〉).

Thus there is no loss of generality in assuming A is Hermitian. Previ-
ously the linear constraints for our semidefinite programs were of the form
〈Mi, X〉 = bi; we can convert this to the above form by taking B to be
diagonal with Bi,i = bi. (We then need to rewrite the left sides, but we
leave this as an exercise.) The program above is in primal form, its dual is

inf〈Y,B〉, Φ∗(Y ) < A, Y = Y ∗.

Observe that

〈A,X〉 ≤ 〈Φ∗(Y ), X〉 = 〈Y,Φ(X)〉 = 〈Y,B〉.

If X and Y are both optimal then

〈A,X〉 = 〈Φ∗(Y ), X〉

and so
〈Φ∗(Y )− A,X〉 = 0.

Since Φ∗(Y )− A < 0 and X < 0, this implies that

Φ∗(Y )X = AX.

We also have (trivially)
Y Φ(X) = Y B.
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8.5 Optimal Measurements
We consider an optimal measurement problem. A quantum system is
prepared in a state with density matrix Da with probability pa, for a ∈
{1, . . . , d}. Supposed we have a measurement

M = (M1, . . . ,Md).

If we carry out this measurement on the system and it is in state i, we
will conclude after our measurement that it is in state j with probability
〈Di,M〉j. The probability that we correctly identify the state is 〈Di,Mi〉.
Our problem is then to chooseM so that∑

a

pa〈Da,Ma〉

is as large as possible. Here we produce a characterization of the optimal
measurements.

8.5.1 Lemma. AmeasurementM = (M1, . . . ,Md) maximizes∑i pi〈Dai,Mi〉
if and only if, for each j in {1, . . . , d}, we have∑

i

piMiDi < pjDj.

Proof. We want to find

max
∑
i

pi〈Mi, Di〉,
∑
i

Mi = I, Mi < 0.

The dual problem is

min tr(X), X < piDi (i ∈ {1, . . . , d}), X = X∗.

We have

tr(X)−
∑
i

pi〈Di,Mi〉 = tr(X)−
∑
i

〈piDi,Mi〉

= tr(X)−
∑
i

〈X,Mi〉+
∑
i

〈X,Mi〉 −
∑
i

〈piDi,Mi〉

= 〈X, I −
∑
i

Mi〉+
∑
i

〈X − piDi,Mi〉

=
∑
i

〈X − piDi,Mi〉
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and since X − piDi and Mi are positive semidefinite, the last term is non-
negative. Both the primal and dual have Slater points and it follows that
if X is primal optimal, ∑

i

〈X − piDi,Mi〉 = 0

and this holds if and only if

(X − piDi)Mi = 0

for all i. Summing this over i yields

X =
∑
i

paDiMi.

As X is Hermitian we also have X = ∑
i paMiDi.
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Chapter 9

Copositive, Completely
Positive

9.1 Motkin-Straus
We start by presenting an influential result due to Motzkin and Straus.

9.1.1 Theorem. For any graph G we have

1
α(G) = min{xT (A+ I)x : 1Tx = 1, x ≥ 0}.

Proof. Let f(G) denote the value of this program. If S is a coclique with
characteristic vector z and x := |S|−1z then x is feasible and

xT (A+ I)x = xTAx+ xTx = 0 = 1
|S|

.

Therefore f(G) ≤ α(G)−1.
We proceed by induction on n = |V (G)| to show that f(G) ≥ α(G)−1.

If n = 1, the result holds trivially. We assume inductively that f(H) ≥
α(H)−1 for all proper induced subgraphs H of G. Let y be an optimal
solution to the program. We distinguish two cases.

First, suppose there is a vertex i in G such that yi = 0, and set H = G\i.
Then

α(G)−1 ≤ α(H)−1 ≤ f(H) ≤ 2
∑

ij∈E(H)
yiyj +

∑
j 6=i

y2
j = f(G),
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9. Copositive, Completely Positive

which proves the inequality we need.
So now we assume there is an optimum solution y such that all entries

of y are positive. If 1Th = 0, then

(y + h)T (A+ I)(y + h) = yT (A+ I)y + 2yT (A+ I)h+ hT (A+ I)h

and, if h is small enough we may ignore the final term. Hence we deduce
that if y is optimal, then 1Th = 0 implies that yT (A + I)h = 0. It follows
that the subspace 1⊥ is contained in the subspace ((A+I)y)⊥, and therefore
for some scalar λ we have

(A+ I)y = λ1.

(You may reach the same conclusion using Lagrange multipliers, if you
prefer.)

If G has no edges, y = λ1 and since 1Ty = 1, we have λ = 1/n and

yT (A+ I)y = 1
n
.

Hence f(x) = 1/n as expected. Otherwise, if ij is an edge in G we set
h = ε(ei − ej) and calculate

(y + h)T (A+ I)(y + h) = yTAy + 2yT (A+ I)h+ hT (A+ I)h.

Here hT (A+I)h = 0 and, since (A+I)y = λ1, we also see that yT (A+I)h =
0. By choosing ε appropriately, we can arrange that y + h ≥ 0 and some
entry of y + h is zero. The theorem now follows by induction.

9.2 Copositive and Completely Positive
Matrices

A matrix M is copositive if it is symmetric and xTMx ≥ 0 for all non-
negative vectors x. Clearly positive semidefinite matrices are copositive,
as are symmetric non-negative matrices. The set of copositive matrices
is evidently a closed convex cone which contains both the cone of positive
semidefinite matrices and the cone of symmetric non-negative matrices. We
denote the cone of symmetric copositive matrices of order n× n by Cn.
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9.2. Copositive and Completely Positive Matrices

If we refer to a copositive matrix, you may assume we mean a symmetric
copositive matrix.

A matrix is completely positive is it can be expressed as a sum of ma-
trices

xxT , x ≥ 0.

Note that if xxT ≥ 0, we may assume x ≥ 0. It is immediate that the
copositve matrices form a convex cone.

9.2.1 Lemma. The completely positive matrices form a closed convex cone.

Proof. The problem is to show that this cone is closed. The first step, which
we leave as an exercise, is to show that there is an integer N such that any
n×n completely positive matrix is a sum of at most N matrices of the form
xxT , where x ≥ 0. Now prove that the set {xxT : x ≥ 0} is closed, and that
the Minkowski sum of a finite number of closed sets is closed.

9.2.2 Lemma. The cone of completely positive matrices is the dual of the
cone of copositive matrices.

Proof. If M = ∑
i xix

T
i for non-negative vectors x1, . . . , xm, then

〈M,N〉 = tr
(∑

i

xix
T
i N

)
=
∑
i

tr(xixTi N) =
∑
i

xTi Nxi.

Hence if N is copositive, 〈M,N〉 ≥ 0 and so N lies in the dual to the cone
of completely positive matrices.

If N is not copositive, there is a vector y such that y ≥ 0 and 〈N, yyT 〉 <
0 Therefore N does not lie in the dual to the cone of completely positive
matrices.

If P denotes the cone of completely positive matrices, we have shown
that Cn = P∗ and therefore

C∗n = (P∗)∗.

Since P is closed, we have (P∗)∗ = P .

Because of this result, we can use C∗n to denote the cone of completely
positive matrices.
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9. Copositive, Completely Positive

9.3 Motzkin-Straus as a Conic Program
We aim to show that the problem

min{xT (A+ I)x : x ≥ 0, 1Tx = 1}

(with value α(G)−1) is equivalent to

min{〈A+ I,X〉 : 〈J,X〉 = 1, X ∈ C∗n}.

We present part of the argument as separate lemma.

9.3.1 Lemma. A matrix Y is an extreme point of the set

{X ∈ C∗n, 〈J,X〉 = 1}

if and only if Y = yyT , where y ≥ 0 and 1Ty = 1.

Proof. In the exercises you will have the opportunity to prove that the
extreme points of the feasible region of the conic program in the theorem
are the matrices yyT where y ≥ 0 and 1Ty = 1.

Now suppose Y is an extreme point of M . Then for some k,

Y =
k∑
i=1

yiy
T
i

where yi > 0 for all i. Then 1Tyi > 0 for all i and we may define matrices
Zi by

Zi = (1T ei)−2yiy
T
i .

Then Zi is completely positive and 〈J, Zi〉 = 1, hence Zi ∈M. Now

1 = 1TY 1 =
∑
i

(1Tyi)2

and
Y =

∑
i

(1Tyi)2Zi,

we see that Y is a convex combination of matrices in M . Since it is an
extreme point we must have Y = Zi for some i.
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9.3.2 Theorem. For any graph G, we have

α(G)−1 = min{〈A+ I,X〉 : 〈J,X〉 = 1, X ∈ C∗n}.

Proof. Note that
xT (A+ I)x = 〈A+ I, xxT 〉

and so the difference btween the Motzkin-Straus problem and the one just
stated is that in the Motzkin-Straus problem our feasible set is

{xxT : x ≥ 0, 1Tx = 1}

whereas in the conic program above, it is

{X : 〈J,X〉 = 1, X ∈ C∗n}.

Since 1Tx = 1 if and only if 〈J, xxT 〉, we see that in the conic program we
are minimizing 〈A + I,X〉 over the setM of completely positive matrices
X with sum(X) = 1, and in the Motzkin-Straus problem we are minimizing
〈A + I,X〉 over the extreme points X = xxT of M. Since our objective
function is convex on the set of non-negative vectors in Rn, as you should
prove, it assumes its minimum on an extreme point. Hence our result
follows.

The dual of the program in this theorem is

max{λ : I + A− λJ ∈ Cn}.

9.4 Copositive Programs for α(G)
Recall that

θ(G) = max{〈J,X〉 : A ◦X = 0, tr(X) = 1, X < 0}.

If S is a coclique in G with characteristic vector x and we set X = |S|−1xxT ,
then X is feasible in the above program for θ(G), and its value is |S|. Hence
α(G) ≤ θ(G), as we have seen before. By replacing the semidefinite cone
by the copositive cone, we get the following:

9.4.1 Theorem. If G is a graph on n vertices, then

α(G) = max{〈J,X〉 : A ◦X = 0, tr(X) = 1, X ∈ C∗n}.
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9. Copositive, Completely Positive

Proof. The extreme rays of the convex cone

{X ∈ C∗n : A ◦X = 0}

are generated by the matrices xxT with x ≥ 0, and therefore the extreme
points of the feasible region in our program above are the matrices xxT with
x ≥ 0 and tr(xxT ) = 1.

Since the optimum value must be attained at an extreme point, there
is an optimal solution Y = yyT with y ≥ 0 and ‖y‖ = 1. Since A ◦ Y = 0,
we see that supp(y) must be a coclique, S say. If we denote the optimum
value by λ, then

λ = max{(1Tx)2 : ‖x‖ = 1, x ≥ 0, supp(x) = supp(y)}.

it is not hard to show that this maximum is realized when x is constant on
its support, and hence that λ = α(G).

Beacuse the matrices X in C∗n are non-negative, A ◦X = 0 if and only
if tr(AX) = 0, and so we may rewrite the program in the theorem as

max{〈J,X〉 : 〈A,X〉 = 0, tr(X) = 1, X ∈ C∗n},

and this dual of this is

inf
λ,y∈R
{λI + yA− J ∈ Cn}.

The dual is strictly feasible—the matrix (n + 1)I − J is feasible, but the
primal is not, because some entries of X must be zero. To deal with this,
we will make use of the following lemma.

9.4.2 Lemma. If ε ≥ 0, then the matrix (1+ε)α(G)(I+A)−J is copositive.

Proof. Let Qε denote the matrix (1 + ε)α(G)(I + A)− J and let ∆ denote
the simplex formed by the vectors x with x ≥ 0 and 1Tx = 1. If 1Tx = 1,
then

xTQεx = (1 + ε)α(G)(xTx+ xTAx)− xTJx
= (1 + ε)α(G)(xTx+ xTAx)− 1.

We sketch the remaining steps. Choose x feasible. If supp(x) contains
a pair of adjacenct vertices i and j, we can adjust the values of xi and xj to
get a new feasible vector x with xi or xj zero. Thus we reduce to the case
where supp(x) is a coclique, and then we show that x must constant on its
support.
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9.4. Copositive Programs for α(G)

Since the cone of copositive matrices is closed, we conclude that

Q0 = λ(G)(I + A)− J

is copositive. As an immediate corollary, we have:

9.4.3 Corollary. For any graph G,

α(G) = min{λ : λ(I + A)− J ∈ Cn}.
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