CO 602/CM 740: Fundamentals of Optimization Problem Set 8

H. Wolkowicz

Fall 2016. Handed out: Thursday 2016-Nov-24. Due: Monday Dec. 5, by 10AM (no penalty).

Contents

1 Steepest Descent

1 3

2 Karush-Kuhn-Tucker Optimality Conditions

1 Steepest Descent

1. Apply the steepest descent algorithm (using MATLAB) with constant stepsize α to the function

$$f(x) = \begin{cases} x^2 \left(\sqrt{2} - \sin\left(\frac{5\pi}{6} - \sqrt{3}\ln(x^2)\right)\right) & \text{if } x \neq 0\\ 0 & \text{if } x = 0. \end{cases}$$

Show that the gradient ∇f satisfies the Lipschitz condition

$$\|\nabla f(x) - \nabla f(y)\| \le L \|x - y\|, \qquad \forall x, y \in \mathbb{R},$$

for some constant L. Write a MATLAB program to verify that the method is a descent method for $\alpha \in (0, 2/L)$. Do you expect to converge to the global minimum $x^* = 0$?

Proof. The first derivative is

$$f'(x) = 2\sqrt{3}x\,\cos\left(\frac{5\pi}{6} - \sqrt{3}\ln(x^2)\right) - 2x\,\left(\sin\left(\frac{5\pi}{6} - \sqrt{3}\ln(x^2)\right) - \sqrt{2}\right)$$

This holds at $x \neq 0$. By taking limits we see the derivative is 0 at x = 0,

$$f'(0) = 0.$$

f is twice differentiable $\forall x \neq 0$. Its second derivative is

$$f''(x) = 10\,\sin\left(\frac{5\,\pi}{6} - \sqrt{3}\,\ln(x^2)\right) + 6\,\sqrt{3}\,\cos\left(\frac{5\,\pi}{6} - \sqrt{3}\,\ln(x^2)\right) + 2\,\sqrt{2}$$

which is clearly bounded, i.e., $|f''(x)| \leq L := 10 + 6\sqrt{3} + 2\sqrt{2}, \forall x \neq 0$. By using the mean value theorem applied to f', we conclude that

$$|f'(x) - f'(y)| \le L|x - y|, \qquad \forall x, y \in \mathbb{R}_+.$$

and

$$|f'(x) - f'(y)| \le L|x - y|, \qquad \forall x, y \in \mathbb{R}_-$$

Now suppose that x < 0 < y. Let $x_n = \frac{1}{n}x, y_n = \frac{1}{n}y$ Then

$$\begin{aligned} |f'(x) - f'(y)| &= |f'(x) - f'(\frac{1}{n}x) + f'(\frac{1}{n}x) - f'(\frac{1}{n}y) + f'(\frac{1}{n}y) - f'(y)| \\ &\leq |f'(x) - f'(\frac{1}{n}x)| + |f'(\frac{1}{n}x) - f'(\frac{1}{n}y)| + |f'(\frac{1}{n}y) - f'(y)| \end{aligned}$$

As $n \to \infty$, we see that the first term is bounded by

$$\lim_{n \to \infty} |f'(x) - f'(\frac{1}{n}x)| \le L|x|$$

The second term converges to 0

$$\lim_{n \to 0} |f'(\frac{1}{n}x) - f'(\frac{1}{n}y)| \to \infty.$$

As $n \to \infty$, the last term is bounded by

$$\lim_{n \to \infty} |f'(y) - f'(\frac{1}{n}y)| \le L|y|$$

Adding these three terms together and noting that x < 0 < y implies that |x - y| = |x| + |y|, yields the Lipschitz condition with a constant 2L.

To see the function, one can use:

x=linspace(-10,10.1,500); f=x.^2.* (sqrt(2)- sin(((5*pi)/6) - sqrt(3)*log(x.^2))); plot(x,f)

- 2. Let $A \in \mathbb{S}^m$, $B \in \mathbb{S}^n$, the vector spaces of $m \times m$, $n \times n$ real symmetric matrices, respectively. Let $C \in \mathcal{M}^{mn}$, the vector space of $m \times n$ real matrices. Let $\gamma \in \mathbb{R}$. Consider the quadratic function

$$q(X) = \operatorname{trace} AXBX^T + \operatorname{trace} CX^T + \gamma, \qquad q: \mathcal{M}^{mn} \to \mathbb{R}.$$

Let $X0 \in \mathcal{M}^{mn}$ be an initial approximation for the minimum.¹

(a) State the direction of steepest descent d at X0. Derive the steplength for exact minimization for d, i.e., explicitly solve

$$\bar{\alpha} \in \operatorname{argmin}_{\alpha > 0} q(X0 + \alpha d).$$

- (b) Code the steepest descent algorithm with this exact steplength to find the minimum correct to 10 decimals accuracy. How many iterations did it take?
- (c) Derive and code Newton's method. How many iterations did the code take? Why?

¹The values for the data A, B, C, X0 are in the file ABCX0matass8.mat. Let $\gamma = 1$.

2 Karush-Kuhn-Tucker Optimality Conditions

1. Suppose that $a, b, c \in \mathbb{R}_{++}$. Use Lagrange multipliers to solve

$$\min\{x+y+z: \frac{a}{x} + \frac{b}{y} + \frac{c}{z} = 1, \, x, y, z \in \mathbb{R}_{++}\}.$$

2. Consider the problem

$$\begin{array}{ll} \min & \frac{1}{2}\alpha(x_1-1)^2 - x_1 - x_2 \\ \text{s.t.} & x_1 \ge x_2^2, \, x_1^2 + x_2^2 \le 1. \end{array}$$