CO 602/CM 740: Fundamentals of Optimization Problem Set 2

H. Wolkowicz

Fall 2016. Handed out: Thursday 2016-Sep-29. Due: Thursday 2016-Oct-6 in class before lecture starts.

Contents

1	Extreme Points and Linear Transformations	1
2	Polyhedrons	1
3	Basic Solutions with Interval Constraints	2
4	Basic Solution	3

1 Extreme Points and Linear Transformations

- 1. Let S_n, S_m be convex sets in $\mathbb{R}^n, \mathbb{R}^m$, respectively. Let $T : \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation that establishes a one-one correspondence between elements in the set S_n and elements in the set S_m . Show that there is a one-one correspondence between extreme points in S_n and extreme points in S_m .
- 2. Let $P = \{x \in \Re^n : Ax \ge b, x \ge 0\}$, where A is a $k \times n$ matrix. Let $Q = \{(x, z) \in \Re^{n+k} : Ax z = b, x \ge 0, z \ge 0\}$. Show that P, Q are isomorphic, i.e. that there exist affine mappings f, g from P to Q and from Q to P such that $g(f(x)) = x, \forall x \in P$ and $f(g(y)) = y, for all y \in Q$.

2 Polyhedrons

For each of the following (feasible) sets, determine whether it is a polyhedron.

1. The of all $(x,y) \in \mathbb{R}^2$ satisfying the constraints

$$\begin{aligned} x\cos\theta + y\sin\theta &\leq 1, \quad \forall \theta \in [0, \pi/2] \\ x &\geq 0 \\ y &\geq 0 \end{aligned}$$
 (1)

- 2. The set of all $x \in \mathbb{R}$ satisfying the constraint $x^2 8x + 15 \leq 0$.
- 3. The empty set.

3 Basic Solutions with Interval Constraints

First consider the constraints Ax = b and $x \ge 0$ and assume that the $m \times n$ matrix A has linearly independent rows. Recall that vector $\bar{x} \in \mathbb{R}^n$ is a basic solution if

- 1. all equality constraints are active at \bar{x} ;
- 2. out of the constraints that are active at \bar{x} , there are n of them that are linearly independent.

Recall the procedure for finding basic solutions:

- 1. Choose *m* linearly independent columns A[:, B], where $B \subseteq \{1, \ldots, n\}$.¹
- 2. Set $x_i = 0, \forall i \notin B$. (called *nonbasic* variables)
- 3. Solve the system of m equations Ax = b.

Now consider the constraints Ax = b as above but with the upper and lower bounds $\ell \le x \le u, \ell < u$.

- 1. Provide a procedure to the one above for finding basic solutions.
- 2. Prove that all basic feasible solutions, BFSs, can be found this way.
- 3. Now suppose that $\ell = 0, u = 1$, i.e., the lower bounds are all zero and the upper bounds are all ones. Write a MATLAB code that outputs all the basic solutions and counts the number of basic and number of basic feasible solutions. Test it on the instance with A, b given by

A=[
	0	1	0	1	-1	0	0	-1
	0	0	0	0	-2	1	0	-2
	0	0	-1	2	1	0	0	-1
	1	0	0	-1	1	0	3	-1
];								
b =[-1 -3								
	2 2];							

¹ The are called *basic columns*; they exist because rank A = m.

4 Basic Solution

Consider the standard form polyhedron $P = \{x \in \Re^n : Ax = b, x \ge 0\}$, where the rows of A are linearly independent. Let x be a basic solution and let $J = \{i | x_i \neq 0\}$. Show that a basis is associated with the basic solution x if, and only if, every column $A_i, i \in J$ is in the basis.