CO 602/CM 740: Fundamentals of Optimization 23 minute Quiz,

H. Wolkowicz

Wed. Nov. 9, 2011

Consistent Rounding

Consider the matrix

$$
B=\left[\begin{array}{ll}
3.1 & 6.8 \\
9.6 & 2.5
\end{array}\right]
$$

Let $B e=\alpha, B^{T} e=\beta$ denote the row, column sums of B, respectively.

1. (3 Marks) Use a network flow approach and formulate a mathematical model for the problem of consistent rounding of B, i.e. the problem is to round the elements of B (up or down) in order to obtain the rounded (up or down) row and column sums of B,

$$
\operatorname{round}(B) e=\operatorname{round}(B e), \quad \operatorname{round}\left(B^{T}\right) e=\operatorname{round}\left(B^{T} e\right),
$$

where round (v) refers to the rounding process on the elements of the vector or matrix v. Write down both a mathematical model, call it (P), and the corresponding directed graph.
2. (3 Marks) Transform the model for Item \square (if needed) to formulate the mathematical model as a max-flow or network flow problem. (It might help to consider rounding up being preferable to rounding down.)
3. (4 Marks) Suppose that A is a general $m \times n$ matrix with rational elements. Prove that the model (P) for consistent rounding from Item $\mathbb{1}$ above, always has a feasible solution; or, provide a counterexample.
4. (BONUS) Use the F-F algorithm or network simplex method with phase I to solve problem (P) with the given matrix B.

