CO 602/CM 740: Fundamentals of Optimization Problem Set 8

H. Wolkowicz

Fall 2011.
Handed out: 2011-Nov-28
Due: Thurs, 2011-Dec-8, by Midnight.

Contents

1 Convex Functions 1
2 Steepest Descent 1
3 Trust Region Subproblem, TRS 2

1 Convex Functions

Let $x \in \mathbb{R}^{n}$ and let $x_{[i]}$ denote the i-th largest component of x, i.e. $x_{[1]} \geq x_{[2]} \geq$ $\ldots \geq x_{[n]}$. Let $1<r<n$. Show that the function $g(x):=\sum_{i=1}^{r} x_{[i]}$ is convex. (HINT: Recall that the sup or max of convex functions is convex.)

2 Steepest Descent

1. Consider the function $f(x)=x_{1}^{2}+2 x_{2}^{2}+4 x_{1}+4 x_{2}$. Prove by induction that the method of steepest descent (with exact line search) with the initial point at the origin, $x^{0}=0$, produces the sequence of iterates

$$
x^{k}=\binom{\frac{2}{3^{k}}-2}{\left(-\frac{1}{3}\right)^{k}-1} .
$$

What is the minimizer of f ?
2. Apply the steepest descent algorithm (using MATLAB) with constant stepsize α to the function

$$
f(x)=\left\{\begin{array}{cl}
x^{2}\left(\sqrt{2}-\sin \left(\frac{5 \pi}{6}-\sqrt{3} \ln \left(x^{2}\right)\right)\right) & \text { if } x \neq 0 \\
0 & \text { if } x=0
\end{array}\right.
$$

Show that the gradient ∇f satisfies the Lipschitz condition

$$
\|\nabla f(x)-\nabla f(y)\| \leq L\|x-y\|, \quad \forall x, y \in \mathbb{R}
$$

for some constant L. Write a MATLAB program to verify that the method is a descent method for $\alpha \in(0,2 / L)$. Do you expect to converge to the global minimum $x^{*}=0$?
3. Consider the gradient method $x^{k+1}=x^{k}+\alpha^{k} d^{k}$ for the case where f is a positive definite quadratic, and let $\bar{\alpha}^{k}$ be the stepsize corresponding to the line minimization rule. Show that a stepsize α^{k} satisfies the inequalities of the Goldstein rule if and only if

$$
2 \sigma \bar{\alpha}^{k} \leq \alpha^{k} \leq 2(1-\sigma) \bar{\alpha}^{k}
$$

3 Trust Region Subproblem, TRS

Let $f(x)=10\left(x_{2}-x_{1}^{2}\right)^{2}+\left(1-x_{1}\right)^{2}$. At $x=(0,-1)^{T}$ draw the contour lines of the quadratic model

$$
m(p)=f(x)+\nabla f(x)^{T} p+\frac{1}{2} p^{T} \nabla^{2} f(x) p
$$

Draw the family of solutions of

$$
\min m(p) \text { s.t. }\|p\| \leq \delta
$$

as the trust region radius varies from $\delta=0$ to $\delta=2$. Repeat this at the point $(0,0.5)^{T}$. (Explain the details on how you found the points to do the drawing.)

