CO 602/CM 740: Fundamentals of Optimization Problem Set 7

H. Wolkowicz

Fall 2011.
Handed out: 2011-Nov-13
Due: Wed, 2011-Nov-23, by 3PM.

Contents

1 Consistent Matrix Balancing 1
2 Max-flow, Min-cut via Duality 2
3 Permutation and Doubly Stochastic Matrices 3
4 Convergence of the Bellman-Ford Algorithm 3

1 Consistent Matrix Balancing

Consider the matrices

$$
\begin{gathered}
B=\left[\begin{array}{lll}
9.4400 & 8.6600 & 8.0400 \\
6.2600 & 5.4100 & 8.4800
\end{array}\right] \\
\bar{B}=\left[\begin{array}{llll}
2.2900 & 1.5200 & 5.3800 & 0.7800 \\
9.1300 & 8.2600 & 9.9600 & 4.4300
\end{array}\right]
\end{gathered}
$$

Let e be the vector of ones of appropriate length, and let $R=B e, C=B^{T} e$ denote the row, column sums of B, respectively.

1. Use a network flow approach and formulate a mathematical model for the problem of consistent rounding of B, i.e. the problem is to round the elements of B (up or down) in order to obtain the rounded (up or down) row and column sums of B,

$$
\operatorname{round}(B) e=\operatorname{round}(B e), \quad \operatorname{round}\left(B^{T}\right) e=\operatorname{round}\left(B^{T} e\right),
$$

where round (v) refers to the specific rounding process used on the elements of the vector or matrix v. Write down both a mathematical model, call
it (P), and the corresponding directed graph. Your model should also guarantee consistency between the sum of the row sums and the sum of the column sums,

$$
e^{T} \operatorname{round}(B e)=e^{T} \operatorname{round}\left(B^{T} e\right)
$$

2. Transform the model for Item 1 (if needed) to formulate the mathematical model as a max-flow or network flow problem.
3. Write a MATLAB code that takes as input a given $m \times n$ matrix B with elements correct to single precision (say 8 decimal accuracy), and outputs round (B) with consistently rounded elements. (You can assume that the numbers are nice enough so that your computer can round the elements and sums correctly.) Use linprog to solve the linear programming model. Your MATLAB code should be able to:
(a) emphasize rounding up so that the total sum $e^{T} \operatorname{round}(B) e$ is a maximum;
(b) emphasize rounding down so that the total sum $e^{T} \operatorname{round}(B) e$ is a minimum;
(c) (BONUS-1) find a consistently rounded matrix for each of the possible values of the total sum $e^{T} \operatorname{round}(B) e$.

Test the MATLAB code on the given matrices B, \bar{B} above.
4. Use the F-F algorithm or network simplex method with phase I to solve problem (P) with the given matrix B, above.
5. (BONUS-2) Suppose that A is a general $m \times n$ matrix with elements correct to single precision. (You can assume again that the numbers are nice enough so that your computer can round the elements and sums correctly.) Prove that the model (P) for consistent rounding from Item 1 above, always has a feasible solution; or, provide a counterexample.

2 Max-flow, Min-cut via Duality

For the maximum flow problem, let λ_{i} be a (shadow) price variable for the conservation of flow constraint associated with node i. Let $\omega_{i j}$ be a (shadow) price variable associated with the capacity constraint for arc $i j$. Use the game theory approach introduced in class to derive a dual problem to the maximum flow problem. Prove the max-flow min-cut theorem with the aid of this dual problem.

3 Permutation and Doubly Stochastic Matrices

(Birkhoff-von Neumann Theorm) A nonnegative $n \times n$ matrix A is doubly stochastic if $A e=A^{T} e=e$, the vector of ones. A $\{0,1\} n \times n$ matrix P is a permutation matrix if each row and column has exactly one element equal to 1.

1. Let $P_{i}, i=1, \ldots, k$ be permutation matrices and let $\lambda_{i}, i=1, \ldots, k$ be nonnegative scalars with sum equal to 1 . Prove that $\sum_{i=1}^{n} \lambda_{i} P_{i}$ is a doubly stochastic matrix.
2. Let A be a doubly stochastic matrix. Show that there exist permutation matrices P_{1}, \ldots, P_{k} and nonnegative scalars $\lambda_{1}, \ldots, \lambda_{k}$ that sum to 1 , such that $A=\sum_{i=1}^{n} \lambda_{i} P_{i}$. Conclude that A is a doubly stochastic matrix if, and only if, A is a (finite) convex combination of permutation matrices. (Hint: Consider the assignment problem.)

4 Convergence of the Bellman-Ford Algorithm

(Text Section. 7.9) Assume that every cycle in the graph in nonnegative.

1. Prove that $p(t) \geq p^{*}, \forall t$, and conclude that $p(t)$ has a limit.
2. Prove that $p(t)$ can take only a finite number of values and therefore converges after a finite number of steps.
3. Prove that the limit satisfies Bellman's equation.
4. Prove that the algorithm converges to p^{*}.
