CO 602/CM 740: Fundamentals of Optimization Problem Set 7

H. Wolkowicz

Fall 2011. Handed out: 2011-Nov-13 Due: Wed, 2011-Nov-23, by 3PM.

Contents

1	Consistent Matrix Balancing	1
2	Max-flow, Min-cut via Duality	2
3	Permutation and Doubly Stochastic Matrices	3
4	Convergence of the Bellman-Ford Algorithm	3

1 Consistent Matrix Balancing

Consider the matrices

 $B = \begin{bmatrix} 9.4400 & 8.6600 & 8.0400 \\ 6.2600 & 5.4100 & 8.4800 \end{bmatrix}$ $\bar{B} = \begin{bmatrix} 2.2900 & 1.5200 & 5.3800 & 0.7800 \\ 9.1300 & 8.2600 & 9.9600 & 4.4300 \end{bmatrix}$

Let e be the vector of ones of appropriate length, and let $R = Be, C = B^T e$ denote the row, column sums of B, respectively.

1. Use a network flow approach and formulate a mathematical model for the problem of consistent rounding of B, i.e. the problem is to round the elements of B (up or down) in order to obtain the rounded (up or down) row and column sums of B,

 $\operatorname{round}(B)e = \operatorname{round}(Be), \quad \operatorname{round}(B^T)e = \operatorname{round}(B^Te),$

where round(v) refers to the specific rounding process used on the elements of the vector or matrix v. Write down both a mathematical model, call it (P), and the corresponding directed graph. Your model should also guarantee consistency between the sum of the row sums and the sum of the column sums,

 e^T round $(Be) = e^T$ round $(B^T e)$.

- 2. Transform the model for Item 1 (if needed) to formulate the mathematical model as a *max-flow* or *network flow* problem.
- 3. Write a MATLAB code that takes as input a given $m \times n$ matrix B with elements correct to single precision (say 8 decimal accuracy), and outputs round(B) with consistently rounded elements. (You can assume that the numbers are *nice enough* so that your computer can round the elements and sums correctly.) Use linprog to solve the linear programming model. Your MATLAB code should be able to:
 - (a) emphasize rounding up so that the total sum e^T round(B)e is a maximum;
 - (b) emphasize rounding down so that the total sum e^T round(B)e is a minimum;
 - (c) (BONUS-1) find a consistently rounded matrix for each of the possible values of the total sum e^T round(B)e.

Test the MATLAB code on the given matrices B, \overline{B} above.

- 4. Use the F-F algorithm or network simplex method with phase I to solve problem (P) with the given matrix *B*, above.
- 5. (BONUS-2) Suppose that A is a general $m \times n$ matrix with elements correct to single precision. (You can assume again that the numbers are *nice enough* so that your computer can round the elements and sums correctly.) Prove that the model (P) for consistent rounding from Item 1, above, always has a feasible solution; or, provide a counterexample.

2 Max-flow, Min-cut via Duality

For the maximum flow problem, let λ_i be a (shadow) price variable for the conservation of flow constraint associated with node *i*. Let ω_{ij} be a (shadow) price variable associated with the capacity constraint for arc *ij*. Use the *game theory* approach introduced in class to derive a dual problem to the maximum flow problem. Prove the max-flow min-cut theorem with the aid of this dual problem.

3 Permutation and Doubly Stochastic Matrices

(Birkhoff-von Neumann Theorm) A nonnegative $n \times n$ matrix A is doubly stochastic if $Ae = A^T e = e$, the vector of ones. A $\{0,1\}$ $n \times n$ matrix P is a permutation matrix if each row and column has exactly one element equal to 1.

- 1. Let $P_i, i = 1, ..., k$ be permutation matrices and let $\lambda_i, i = 1, ..., k$ be nonnegative scalars with sum equal to 1. Prove that $\sum_{i=1}^{n} \lambda_i P_i$ is a doubly stochastic matrix.
- 2. Let A be a doubly stochastic matrix. Show that there exist permutation matrices P_1, \ldots, P_k and nonnegative scalars $\lambda_1, \ldots, \lambda_k$ that sum to 1, such that $A = \sum_{i=1}^n \lambda_i P_i$. Conclude that A is a doubly stochastic matrix if, and only if, A is a (finite) convex combination of permutation matrices. (*Hint:* Consider the assignment problem.)

4 Convergence of the Bellman-Ford Algorithm

(Text Section. 7.9) Assume that every cycle in the graph in nonnegative.

- 1. Prove that $p(t) \ge p^*, \forall t$, and conclude that p(t) has a limit.
- 2. Prove that p(t) can take only a finite number of values and therefore converges after a finite number of steps.
- 3. Prove that the limit satisfies Bellman's equation.
- 4. Prove that the algorithm converges to p^* .