CO 602/CM 740: Fundamentals of Optimization Problem Set 4

H. Wolkowicz

Fall 2011. Handed out: 2011-Oct-13 Due: Fri, 2011-Oct-21, before 6PM.

Contents

1	Two Phase Simplex Method	1
2	Duality	2
3	Optimality and Perturbations	2

1 Two Phase Simplex Method

1. Use the Phase I and Phase II simplex method and solve the following LP.

2. Use the Phase I and Phase II simplex method and solve the following LP. But use only ONE artificial variable!

Hint: Start with a basic (infeasible) solution. Then add one artificial variable with a coefficient -1 in each row, e.g. -y in each row. Then let this artificial variable enter the basis but choose the leaving variable by picking the row with the most negative b_i component. Show/prove

that this yields a BFS. You can now proceed as in the usual Phase I to eliminate the artificial variable.

3. Use the MATLAB LP solver and verify the two solutions in Parts 1 and 2, above.

2 Duality

1. Consider the general LP:

for appropriate size vectors c^i, x^i, b^i , and matrices A_{ij} . Use the game theory/min-max approach and derive a dual LP problem.

- 2. Give an example of a pair (primal and dual) of linear programming problems, both of which have multiple optimal solutions.
- 3. Let A be a symmetric square matrix. Consider the LP

$$\begin{array}{ll}
\min & c^T x \\
\text{s.t.} & Ax \ge c \\
& x \ge 0.
\end{array} \tag{4}$$

Prove that if x^* satisfies $Ax^* = c$, and $x^* \ge 0$, the x^* is an optimal solution.

3 Optimality and Perturbations

Consider the LP

$$\begin{array}{ll} \min & (c + \lambda \bar{c})^T x \\ \text{s.t.} & Ax = a \\ & Bx > b \end{array}$$
 (5)

Suppose that \bar{x} is an optimal solution if $\lambda = 0$ and also is optimal if $\lambda = \alpha$, for a given fixed $\alpha > 0$. Show that \bar{x} remains an optimal solution for the LP for all $0 \le \lambda \le \alpha$.