CO 602/CM 740: Fundamentals of Optimization Problem Set 4

H. Wolkowicz

Fall 2011.
Handed out: 2011-Oct-13
Due: Fri, 2011-Oct-21, before 6PM.

Contents

1 Two Phase Simplex Method 1
2 Duality 2
3 Optimality and Perturbations 2

1 Two Phase Simplex Method

1. Use the Phase I and Phase II simplex method and solve the following LP.

$$
\begin{array}{cccccccccc}
\min & 2 x_{1} & +3 x_{2} & + & 3 x_{3} & + & x_{4} & - & 2 x_{5} & \\
\text { s.t. } & x_{1} & + & 3 x_{2} & & & + & 4 x_{4} & + & x_{5} \\
& = & 2 \tag{1}\\
& x_{1} & + & 2 x_{2} & & - & 3 x_{4} & + & x_{5} & = \\
& -x_{1} & - & 4 x_{2} & + & 3 x_{3} & & & & \\
& x \geq 0 & & & & & & & & \\
& x \geq 0
\end{array}
$$

2. Use the Phase I and Phase II simplex method and solve the following LP. But use only ONE artificial variable!

$$
\begin{array}{cccccccccccc}
\min & -x_{1} & +2 x_{2} & - & 3 x_{3} & + & x_{4} & + & 3 x_{5} & - & x_{6} & \\
\text { s.t. } & x_{1} & & & & & 2 x_{4} & + & x_{5} & + & x_{6} & = \\
& & & x_{2} & & & - & 2 x_{4} & + & -2 x_{5} & + & x_{6}
\end{array}=\frac{3}{-6}
$$

$$
\begin{equation*}
x \geq 0 \tag{2}
\end{equation*}
$$

Hint: Start with a basic (infeasible) solution. Then add one artificial variable with a coefficient -1 in each row, e.g. $-y$ in each row. Then let this artificial variable enter the basis but choose the leaving variable by picking the row with the most negative b_{i} component. Show/prove
that this yields a BFS. You can now proceed as in the usual Phase I to eliminate the artificial variable.
3. Use the MATLAB LP solver and verify the two solutions in Parts 1 and (2) above.

2 Duality

1. Consider the general LP:

$$
\begin{array}{cccccc}
\max & c^{1} x^{1}+c^{2} x^{2}+c^{3} x^{3} & \\
\text { s.t. } & A_{11} x^{1}+A_{12} x^{2}+A_{13} x^{3}=b^{1} \\
& A_{21} x^{1}+A_{22} x^{2}+A_{23} x^{3} \leq b^{2} \tag{3}\\
& A_{31} x^{1}+A_{32} x^{2}+A_{33} x^{3} \geq b^{3} \\
& x^{1} \geq 0 & x^{2} \text { free } & x^{3} \leq 0 &
\end{array}
$$

for appropriate size vectors c^{i}, x^{i}, b^{i}, and matrices $A_{i j}$. Use the game theory/min-max approach and derive a dual LP problem.
2. Give an example of a pair (primal and dual) of linear programming problems, both of which have multiple optimal solutions.
3. Let A be a symmetric square matrix. Consider the LP

$$
\begin{array}{cc}
\min & c^{T} x \\
\mathrm{s.t.} & A x \geq c \tag{4}\\
& x \geq 0
\end{array}
$$

Prove that if x^{*} satisfies $A x^{*}=c$, and $x^{*} \geq 0$, the x^{*} is an optimal solution.

3 Optimality and Perturbations

Consider the LP

$$
\begin{array}{cc}
\min & (c+\lambda \bar{c})^{T} x \\
\text { s.t. } & A x=a \tag{5}\\
& B x \geq b
\end{array}
$$

Suppose that \bar{x} is an optimal solution if $\lambda=0$ and also is optimal if $\lambda=\alpha$, for a given fixed $\alpha>0$. Show that \bar{x} remains an optimal solution for the LP for all $0 \leq \lambda \leq \alpha$.

