CO 602/CM 740: Fundamentals of Optimization Problem Set 2

H. Wolkowicz

Fall 2011.
Handed out: 2011-Sep-26.
Due: Monday, 2011-Oct-3, before midnight.

Contents

1 Basic and Basic Feasible Solutions 1
2 Isomorphic Polyhedra 2

1 Basic and Basic Feasible Solutions

1. Suppose that $P=\left\{x \in \mathbb{R}^{n}: A x=a, B x \geq b\right\}$ is a given polyhedron, where A, B are $m_{A} \times n$ and $m_{B} \times n$ matrices, respectively.
(a) What conditions on the data guarantees that P has a nonempty set of extreme points?
(b) If P has a nonempty set of extreme points, prove that the number of extreme points is finite.
(c) What is the maximum number of extreme points that P can have? (An upper bound, not necessarily the best upper bound, is fine.)
2. Let
$A=\left[\begin{array}{ccccccc}1 & 1 & 1 & 10 & 2 & 2 & 1 \\ 1 & 1 & -1 & 0 & 4 & 2 & 1 \\ 2 & 3 & -2 & 3 & 10 & 5 & 3\end{array}\right] ; b=\left[\begin{array}{c}10 \\ 6 \\ 17\end{array}\right] ; c=\left[\begin{array}{lllllll}1 & 1 & 1 & 1 & 1 & 1 & 1\end{array}\right]^{T}$.
Consider the standard form polyhedron $P=\left\{x \in \mathbb{R}^{7}: A x=b, x \geq 0\right\}$. Write a MATLAB program that takes A, b, with A full row rank, as input, and then it outputs the following:
(a) verification that A is full row rank (or not);
(b) the maximum number of possible basic solutions for a polyhedron of type P dependent only on the size of A, call it $n C m$; (see Item (1c) above)
(c) the minimum number of 0 elements/components in a basic solution, call it ζ.
(d) an $n C m \times m$ matrix, call it RowsnCk, where each row of the matrix RowsnCk corresponds to the possible indices of columns of A (of nonzero components of basic solution x) corresponding to a basic solution; (Hint: use the MATLAB command: nchoosek)
(e) an $n \times k$ matrix X where each column corresponds to a basic solution;
(f) a vector with the indices of the columns of X that correspond to basic feasible solutions and a corresponding vector with the values of $c^{T} x$ and the basic feasible solutions for the maximum value and the minimum value for $c^{T} x$;
(g) a submatrix formed from the rows of the matrix RowsnCk where each row corresponds to a basic feasible solution, i.e. this new matrix provides the indices of columns that form feasible bases.

2 Isomorphic Polyhedra

The mapping of type $f(x)=A x+b$, where A is a matrix and b is a vector, is called an affine map. Let P, Q be polyhedra in \mathbb{R}^{n} and \mathbb{R}^{m}, respectively. The polyhedra P, Q are called isomorphic if there exist affine maps $f: P \rightarrow Q$ and $g: Q \rightarrow P$ such that $g(f(x))=x, \forall x \in P$ and $f(g(y))=y, \forall y \in Q$. Show the following:

1. If P, Q are isomorphic polyhedra, show that there is one-one correspondence between their extreme points. In particular, if f, g are as above, then show that x is an extreme point of P if and only if $y=f(x)$ is an extreme point of Q.
2. (slack/surplus variables) Let $P=\left\{x \in \mathbb{R}^{n}: A x \geq b, x \geq 0\right\}$, where A is $m \times k$. Let $Q=\left\{(x, z) \in \mathbb{R}^{n+k}: A x-z=b, x \geq 0, z \geq 0\right\}$. Show that P and Q are isomorphic.
