# CO 602: Fundamentals of Optimization 

Fall 2010

## Second Practice Final Exam

S. Vavasis

Handed out: 2010-Dec-5, web only.

1. [20 points] Consider a linear programming problem in standard equality form. Suppose the simplex algorithm is at a BFS given by $(\mathbf{x}, B)$. Recall the following definitions of a pivot step. The reduced costs are defined as $\bar{c}_{j}=c_{j}-\mathbf{c}(B)^{T} A(:, B)^{-1} A(:, j)$ for $j \in N$. Let $j \in N$ be a nonbasic variable with negative reduced cost. Direction $\mathbf{d}$ is defined so that $d(j)=1, d(i)=0$ for $i \in N-\{j\}$, and $\mathbf{d}(B)$ is chosen (uniquely) to satisfy $A \mathbf{d}=\mathbf{0}$. Parameter $\theta$ is defined as $\min \{-x(i) / d(i): i \in B, d(i)<0\}$. Finally $\mathbf{x}^{\text {NEW }}=\mathbf{x}+\theta \mathbf{d}$.

Describe in 2-3 words each what is the interpretation of the following conditions that might hold during the pivot step.
(a) No $j \in N$ with negative reduced cost exists.
(b) No $i \in B$ exists such that $d(i)<0$.
(c) $\theta=0$.
2. [20 points] Let $P=\left\{\mathbf{x} \in \mathbf{R}^{n}:\left|x_{1}\right|+\cdots+\left|x_{n}\right| \leq 1\right\}$.
(a) Draw a figure of this set in the case $n=2$. In the drawing, identify all four extreme points.
(b) This set $P$ can be defined with $2^{n}$ linear inequalities. Explain.
(c) If one is allowed to introduce $n$ auxiliary variables, then one can describe $P$ with many fewer inequalities. Provide such a system of inequalities, which should have at most const $n$ inequalities. (In other words, come up with a system of linear inequalities involving $x_{1}, \ldots, x_{n}, t_{1}, \ldots, t_{n}$ such that the set of $\mathbf{x}$ 's for which there exists a feasible ( $\mathbf{x}, \mathbf{t}$ ) is exactly $P$.)
3. [20 points] Suppose $a_{1}, \ldots, a_{n}$ and $b_{1}, \ldots, b_{n}$ are positive real numbers. Consider the linear programming problem of minimizing $a_{1} x_{1}+\cdots+a_{n} x_{n}$ subject to the constraints that $b_{1} x_{1}+\cdots+b_{n} x_{n}=1, x_{1}, \ldots, x_{n} \geq 0$.
Figure out the optimal solution, and demonstrate that it is truly optimal using duality or complementarity. Hint: The optimal solution has a single nonzero entry.
4. [20 points] Consider an instance of the max-flow problem in which the network $G$ consists entirely of $k$ disjoint directed paths from $s$ to $t$. For consistency, use the following notation. For $i=1, \ldots, k$, let the vertices on the $i$ th such path be denoted $v_{i, 1}, \ldots, v_{i, l_{i}-1}$ and let the arcs on the $i$ th such path be denoted $a_{i, 1}, \ldots, a_{i, l_{i}}$. Here, $l_{i}$ denotes the length (number of arcs) of the $i$ th path. Let the capacities be denoted $u\left(a_{i, j}\right)$ for $i=1, \ldots, k$ and $j=1, \ldots, l_{i}$.
(a) Describe an efficient algorithm to find the maximum flow in such a network.
(b) Describe an efficient algorithm to find the minimum cut in such a network.

Both algorithms should involve a single pass over the nodes and arcs of $G$.
5. [20 points] Consider an assignment problem with costs $c_{i, j}$ for $i=1, \ldots, n$ and $j=$ $1, \ldots, n$, where there are $n$ tasks and $n$ workers. Write the dual as in lecture, namely, maximize

$$
\sum_{i=1}^{n} r_{i}+\sum_{j=1}^{n} p_{j}
$$

subject to $r_{i}+p_{j} \leq c_{i, j}$ for all $i, j$. Suppose one is given an optimal (integer) solution $x_{i, j}^{*}$ to the assignment problem and is also given the optimal values for $r_{i}^{*}, i=1, \ldots, n$. Explain how to deduce the optimal values for $p_{j}^{*}, j=1, \ldots, n$, and how to confirm that all these variable settings are indeed optimal.
6. For the following graph, describe the steps of Prim's algorithm to find a minimum cost spanning tree, assuming that the tree is initialized with node set $\{1\}$. In particular, indicate on each step which edge and node is inserted into the tree built by Prim. Note: the node numbers are in smaller typesize, and the edge weights are in a larger typesize.

7. (a) [20 points] Consider applying the Armijo line-search to the univariate quadratic objective function $f(x)=x^{2}$ at current iterate $x^{k}>0$. Let $d^{k}$ be a descent direction. Show that if $\sigma \in(1 / 2,1)$, then $x^{k+1}$ will have the same sign as $x^{k}$.
(b) [10 points] Suppose $d^{k}$ is the Newton step for this problem. Show that the Newton step with $\alpha^{k}=1$ (i.e., $m=0$ if $\alpha^{k}=\beta^{m}$ ) will be accepted by the Armijo inequality if and only if $\sigma \leq 1 / 2$.
8. [20 points] Let $\mathbf{a}_{1}$ be a nonzero vector in $\mathbf{R}^{n}, n>1$. Consider the function $f(\mathbf{x})=$ $\left(\mathbf{a}_{1}^{T} \mathbf{x}-b_{1}\right)^{2}$.
(a) Rewrite $f$ in the standard form for a quadratic function (i.e., using a symmetric matrix). [Hint: the square of a scalar may be written as the inner product of the scalar with itself.]
(b) Argue that $f$ is convex.
(c) Argue that $f$ has an infinite number of minimizers.

