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Abstract
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1 Euclidean Spaces, Linear Manifolds, Hyperplanes

Definition 1.1 A Euclidean space E is a finite dimensional vector space over the reals, R, equipped
with an inner product, 〈·, ·〉.

Definitions and basic results on the following well know results are available at e.g.
wikipedia. Hyperlinks are provided for several of them here:
linear manifold, polyhedral set/polyhedron, Minkowski-Weyl Theorem, hyperplanes and halfspaces,
affine hull, span, linear transformation, adjoint, relative interior, closure, boundary,
Bolzano-Weierstrass Theorem.

1.1 Basics for Background

• Unit ball in E. B = {x ∈ E : ‖x‖ ≤ 1}

• Open set S ⊆ E. ∀x ∈ S,∃δ > 0, {x} + δB ⊆ S

• Interior of S ⊆ E. int(S) = {x ∈ E : {x}+δB ⊆ S for some δ > 0} = union of all open sets contained in S

• Closed set S ⊆ E. ∀x /∈ S,∃δ > 0, ({x} + δB) ∩ S = ∅

• Closure of S ⊆ E. cl(S) = {x ∈ E : ∀δ > 0, ({x}+δB)∩S 6= ∅} = intersection of all closed sets containing S

• Linear subspace S ⊆ E. ∀x, y ∈ S,∀λ, µ ∈ R, λx + µy ∈ S

• Linear function f : E → (−∞,+∞]. ∀x, y ∈ dom(f),∀λ, µ ∈ R, f(λx+ µy) = λf(x) + µf(y)

• Lower semicontinuous function f : E → (−∞,+∞] at x. lim infy→x f(y) ≥ f(x)

• Linear map L : E → Y. ∀x, y ∈ E,∀λ, µ ∈ R, L(λx + µy) = λL(x) + µL(y)

• Adjoint of linear map A : E → Y. Linear map Aadj : Y → E satisfying ∀x ∈ E,∀y ∈
Y, 〈Aadjy, x〉E = 〈y,Ax〉Y

• Affine subspace S ⊆ E. (1) ∀x, y ∈ S,∀λ ∈ R, λx+ (1− λ)y ∈ S
(2) S = V + {x} for some linear subspace V and vector x
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• Affine function a : E → (−∞,+∞]. (1) ∀x, y ∈ dom(a),∀λ ∈ R, a(λx + (1− λ)y) = λa(x) + (1− λ)a(y)

(2) a : x 7→ f(x) + r for some linear function f and real number r

• Affine map A : E → Y. (1) ∀x, y ∈ E,∀λ ∈ R, A(λx + (1− λ)y) = λA(x) + (1− λ)A(y)

(2) A : x 7→ L(x) + b for some linear map L and vector b

• Affine hull of S ⊆ E. Aff(S) = {λx + (1 − λ)y : x, y ∈ S, λ ∈ R} = intersection of all affine
subspaces containing S

• Cone K ⊆ E. ∀x ∈ K,∀λ > 0, λx ∈ K

• Positively-homogeneous function f : E → [−∞,+∞]. (1) ∀x ∈ E,∀λ > 0, f(λx) = λf(x)

(2) epi(f) is a cone

• Relatively open set S ⊆ E. ∀x ∈ S,∃δ > 0, ({x} + δB) ∩Aff(S) ⊆ S

• Relative interior of S. ri(S) = {x ∈ Aff(S) : ({x} + δB) ∩Aff(S) ⊆ S for some δ > 0}

• Domain of f : E → [−∞,+∞]. dom(f) = {x ∈ E : f(x) < +∞}

• Proper function f : E → [−∞,+∞]. dom(f) 6= ∅ and f(x) > −∞ for all x ∈ E

• Epigraph of f : E → [−∞,+∞]. epi(f) = {(x, r) ∈ E ⊕ R : f(x) ≤ r}

• Sub-level set of f : E → [−∞,+∞] at level r ∈ R. Sr(f) = {x ∈ E : f(x) ≤ r}

• Closure of f : E → [−∞,+∞]. cl(f) : x ∈ E 7→ lim infy→x f(y)

• Infimum convolution of f, g : E → (−∞,+∞]. f⊙ g : x ∈ E 7→ inf{f(y) + g(x− y)}

• Indicator function of S ⊆ E. δS : x ∈ E 7→ 0 if x ∈ S, + ∞ otherwise

2 Convex Sets and Functions

2.1 Convex Sets

Definition 2.1 The set S ⊂ E is a convex set if

λx+ (1− λ)y ∈ S,∀λ ∈ (0, 1),∀x, y ∈ S.

Proposition 2.2 For a nonempty convex set C:

1. We have relintC 6= ∅ and the affine hulls aff C = aff relint (C). Moreover, for any x ∈ relintC
and y ∈ clC, the line segment [x, y) ⊂ relintC and thus relintC is convex. Furthermore,

clC = cl relintC, relintC = relint cl C.

2. relintC ⊂ C ⊂ cl C.

Include definitions and basic results on: Basic (strong, strict) separation theorems; convex hull;
convex combination, recession cones, Caratheodory Theorem.
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2.2 Convex Functions

Definition 2.3 The epigraph of a function f : R
n → (−∞,+∞] is defined as

epi (f) = {(x, r) : f(x) ≤ r}.

Definition 2.4 The function f : R
n → (−∞,+∞] is a convex function if

f(λx + (1− λ)y) ≤ λf(x) + (1− λ)f(y),∀x, y ∈ R
n ,∀λ ∈ [0, 1].

Definition 2.5 The convex hull or convex envelope of a function f : R
n → R is defined as

conv (f)(x) = inf{t : (x, t) ∈ conv epi f}.

Proposition 2.6 A convex function f is locally Lipschitz on the interior of its domain.

Include definitions and basic results on: composing convex functions, convex growth
conditions, locally Lipschitz

2.3 Basics for Convex Functions and Convex Sets

• Convex set. ∀x, y ∈ S,∀λ ∈ (0, 1), λx + (1− λ)y ∈ S

• Convex function f : E → [−∞,+∞]. epi(f) is convex; note that f is a proper convex function
if its domain is nonempty and it does not take on the value −∞.

• Sublinear function f : E → [−∞,+∞]. f is positively-homogeneous and convex

• Subadditive function f : E → [−∞,+∞]. ∀x, y ∈ dom(f), f(x + y) ≤ f(x) + f(y)

• Convex hull of S ⊆ E. conv(S) = {λx + (1− λ)y : x, y ∈ S, λ ∈ (0, 1)}

• Convex hull of f : E → [−∞,+∞]. conv(f) : x 7→ inf{r : (x, r) ∈ conv(epi(f))}

• Locally Lipschitz f at x ∈ dom(f). ∃K > 0,∃δ > 0,∀y, z ∈ {x} + δB, |f(y) − f(z)| ≤ K‖y − z‖

3 Duality of Functions and Sets

3.1 Conjugate, Positively Homogeneous, Sublinear Functions

Definition 3.1 The Fenchel conjugate of h : E → [−∞,+∞] is

h∗(φ) := sup
x∈E

{〈φ, x〉 − h(x)}.

Proposition 3.2 1. f ≥ g ⇒ f∗ ≤ g∗
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3.2 Indicator Functions, Support Functions and Sets, Closures

Definition 3.3 The indicator function of a set S ⊂ E is

δS(x) :=

{
0 if x ∈ S
∞ otherwise

Definition 3.4 The support function of a set S ⊂ E is

σS(φ) := sup
x∈S

{〈φ, x〉}.

Definition 3.5 A function f is positively homogeneous if

f(λx) = λf(x),∀λ > 0,∀x ∈ E.

Remark 3.6 Equivalently, the function f is positively homogeneous if

f(λx) ≤ λf(x),∀λ > 0,∀x ∈ E.

And, a support function is positively homogeneous.

Definition 3.7 A function is sublinear if it is subadditive and positively homogeneous, equivalently,
if

f(αx+ βy) ≤ αf(x) + βf(y),∀α > 0,β > 0,∀x, y ∈ E.

Definition 3.8 The set Sf := {φ : 〈φ, x〉 ≤ f(x),∀x} is the set supported by f.

Proposition 3.9 Suppose that the function f is positively homogeneous. Then the conjugate func-
tion

f∗ = δSf
.

3.2.1 Closures of Sets and Functions

Proposition 3.10 δ∗∗S = δS iff S is closed and convex.

Proposition 3.11 The second conjugate function f∗∗ = f iff f is a closed and convex function.

Definition 3.12 The closure of a function f is defined as

cl (f)(x) = inf

{
lim

k→∞
f(xk) : xk → x and lim

k→∞
f(xk) exists

}

Proposition 3.13 The second conjugate functions:

δ∗∗S = δcl (conv (S))

σ∗∗S = σcl (conv (S))

f∗∗ = cl (conv (f))

Proposition 3.14 The second polar S◦◦ = cl (conv (S ∪ {0})).
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3.2.2 Convex Cones

Proposition 3.15 If K is a nonempty cone, then K−− = cl (conv (K)).

3.2.3 More on Support Functions

Theorem 3.16 1. If ∅ 6= S ⊂ E is a closed, convex set, then the support function σS is a proper,
closed, sublinear function.

2. Moreover, if f is a proper, closed and sublinear function, then

f = σSf
,

i.e. it is the support function of the set supported by f.

3. Thus S ↔ σS is a bijection between {closed, convex sets} and {closed, sublinear functions}.

3.3 Gauge Functions, Polar of a Function, Norms and Dual Norms

Definition 3.17 The function defined by γS(x) := inf{λ ≥ 0 : x ∈ λS} is called the gauge of S.

Definition 3.18 The polar of a function g is

g◦(φ) := inf{λ > 0 : 〈φ, x〉 ≤ λg(x),∀x}

Proposition 3.19 1. The support function of the polar set of S, σs◦, is majorized by the gauge
function of S, γS.

2. γS ≥ 0 and γ(0) = 0.

3. γS is positively homogeneous.

4. If S is convex, then γS is sublinear.

5. If S is closed and convex, then γS is closed and sublinear.

6.
γS = γ∗∗S = δ∗S◦ = σS◦ .

7. A gauge function is a non-negative sublinear function which maps the origin to 0.

8. A norm is a gauge function. Conversely, the gauge function of a closed, convex set containing
0 is a norm.

Proposition 3.20 Given a norm ‖ · ‖, then the polar function ‖ · ‖◦, is also a norm, called the
dual norm. Moreover,

S‖·‖ = {φ : ‖φ‖◦ ≤ 1}, S‖·‖◦ = {x : ‖x‖ ≤ 1} = S◦‖·‖.
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3.4 Subdifferentials, Directional Derivatives, Set Constrained Optimization

3.4.1 Subdifferentials and Directional Derivatives

Theorem 3.21 Let f be a differentiable function on an open convex subset S ⊂ E. Each of the
following conditions is necessary and sufficient for f to be convex on S:

1. f(x) − f(y) ≥ 〈x − y,∇f(y)〉,∀x, y ∈ S.

2. 〈∇f(x) − ∇f(y), x − y〉 ≥ 0,∀x, y ∈ S.

3. ∇2f(x) is positive semidefinite for all x ∈ S whenever f is twice differentiable on S.

To extend results as in Theorem 3.21 to the nondifferentiable case, we use the following.

Definition 3.22 The vector φ is called a subgradient of f at x if

f(y) − f(x) ≥ 〈φ,y − x〉,∀y ∈ E .

The subdifferential of f at x is

∂f(x) = {φ : f(y) − f(x) ≥ 〈φ,y − x〉,∀y ∈ E .

∂f(x) = ∅, if x /∈ dom (f).

Proposition 3.23 Suppose that f is convex. Then ∂f(x) is a closed convex set. And, x ∈
argminx f(x) if and only if 0 ∈ ∂f(x).

Proposition 3.24 Suppose that f : E → (−∞,+∞] is convex. Let

g(t) :=
f(x+ td) − f(x)

t
.

Then for all x, d ∈ E, x ∈ dom (f), the function g is monotonically nondecreasing for t > 0 (and
for t < 0).

Definition 3.25 The directional derivative of f at x (in dom (f)) along d is

f′(x;d) := lim
t↓0

1

t
f(x + td) − f(x)

if it exists.

Theorem 3.26 Suppose that f is convex. Then for all x, d ∈ E, x ∈ dom (f), the directional
derivative

f′(x;d) = lim
t↓0

f(x+ td) − f(x)

t

exists in [−∞,+∞].
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3.4.2 Properties of f′(x;d), ∂f(x)

Proposition 3.27 Let f be convex and x ∈ dom (f). Then φ is a subgradient of f at x iff f′(x;d) ≥
〈φ,d〉,∀d ∈ E.

Proposition 3.28 Let f, g be proper convex functions.

1. f′(x; ·) is positively homogeneous.

2. If f is convex, then f′(x; ·) is convex; hence it is sublinear.

3. If f is convex, then ∀x ∈ dom (f) we have

∂f(x) = Sf′(x;·).

4.
∂(f + g)(x) ⊃ ∂f(x) + ∂g(x).

5. With f(x) finite:

(a) ∂f(x) 6= ∅ ⇒ f(x) = f∗∗(x).

(b) f(x) = f∗∗(x) ⇒ ∂f(x) = ∂f∗∗(x).

(c) y ∈ ∂f(x) ⇒ x ∈ ∂f(y).

Example 3.29 Let X ∈ S
n, f(X) := λmax(X) denote the largest eigenvalue of X, and let V be the

corresponding eigenspace, i.e. the subspace of eigenvectors V = {v : Xv = λmax(X)v}. Then the
directional derivative in the direction D ∈ S

n is

f′(X;D) = max
‖v‖=1,v∈V

vTDv = σ∂f(X).

Therefore, f is differentiable if ∂f(X) is a singleton, i.e. if the eigenvalue λmax(X) is a singleton so
the dimension of the eigenspace V is 1.

3.5 Basics for Duality of Functions and Sets

• Polar set of S ⊆ E. S◦ =
⋂

x∈S{φ ∈ E : 〈φ, x〉 ≤ 1}

• Polar cone of K ⊆ E. K− =
⋂

x∈K{φ ∈ E : 〈φ, x〉 ≤ 0}

• Fenchel conjugate of f : E → [−∞,+∞]. f∗ : φ ∈ E 7→ supx∈dom(f){〈φ, x〉 − f(x)}

• Support function of S ⊆ E. σS = δ∗S : φ 7→ sup{〈φ, x〉 : x ∈ S}

• Set supported by f : E → [−∞,+∞]. Sf = {φ ∈ E : ∀x ∈ E, 〈φ, x〉 ≤ f(x)}
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4 Optimization

4.1 Set Constrained Optimization and Normal Cones

Proposition 4.1 Suppose that f is a differentiable convex function and S is an open convex set.
Then x̄ ∈ argminx∈S f(x) iff ∇f(x̄) = 0.

Definition 4.2 The normal cone to the convex set C in E at x̄ ∈ C is

NC(x̄) := {d ∈ E : 〈d, x− x̄〉 ≤ 0,∀x ∈ C}.

Definition 4.3 The (convex) tangent cone to the convex set C in E at x̄ ∈ C is

TC(x̄) := cl cone (C − x̄).

Definition 4.4 The set of feasible directions to the convex set C in E at x̄ ∈ C is

DC(x̄) := cone (C− x̄).

Proposition 4.5 Suppose that C is a convex set and f : C → R. If x̄ is a local minimum of f on
C, then

f′(x̄; x− x̄) ≥ 0,∀x ∈ C. (4.1)

If f is differentiable, this is equivalent to ∇f(x̄) ∈ −NC(x̄).
If, in addition, f is convex on C, then the condition (4.1) is sufficient for x̄ to be a minimum of f
on C, i.e. we get (if f is lsc on S) that

x̄ ∈ argmin
x∈C

f(x) iff ∃φ ∈ (−NC(x̄)) ∩ ∂f(x̄).

4.2 Basics for Optimization

• Subdifferential of f at x ∈ dom(f). ∂f(x) = {φ ∈ E : ∀y ∈ dom(f), 〈φ,y − x〉 ≤ f(y) − f(x)}

• Subgradient of f at x ∈ dom(f). φ ∈ ∂f(x)

• Directional derivative of f at x ∈ dom(f) in direction d ∈ E. f ′(x;d) = limt↓0
1
t
[f(x +

td) − f(x)], if exists

• Differentiability of f at x ∈ dom(f). ∃∇f(x) ∈ E,∀d ∈ E, f ′(x;d) = 〈∇f(x), d〉; ∇f(x) is
called the gradient

• Normal cone to convex set S at x ∈ S. NS(x) =
⋂

y∈S{φ ∈ E : 〈φ,y − x〉 ≤ 0} = ∂δS(x)

5 Theorems

5.1 Convexity

• Relative interior.
S convex =⇒ ∅ 6= ri(S) = {x ∈ S : ∀y ∈ S,∃δ > 0, x + δ(x − y) ∈ S} = {x ∈ S :

⋃
t≥0 t(S −

{x}) is a linear subspace}
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• Convexity preserving operations. Suppose that {St : t ∈ T } is a collection of convex sets,
{ft : t ∈ T } is a collection of convex functions, and A is an affine map. Then the following are
convex:

–:
⋂

t∈T St –
⊕

t∈T St (T finite) –:
∑

t∈T St (T finite)

–: A(St) (t ∈ T) – A−1(St) (t ∈ T) – ri(St) (t ∈ T) – cl(St) (t ∈ T)

–: supt∈T ft –
∑

t∈T ft (T finite) –:
⊙

t∈T ft (T finite) – ft ◦A (t ∈ T)

• Monotonicity of gradient. Suppose f continuous over dom(f) and differentiable over int(dom(f)),
dom(f) convex, and int(dom(f)) 6= ∅.

–: f convex ⇐⇒ ∀x, y ∈ int(dom(f)), 〈∇f(x) − ∇f(y), x − y〉 ≥ 0

–: f strictly convex over int(dom(f)) ⇐⇒ ∀x, y ∈ int(dom(f)), 〈∇f(x) − ∇f(y), x − y〉 > 0

• Interior representation of convexity. –: S ⊆ E is convex ⇐⇒ S = conv(S)

–: f : E → [−∞,+∞] is convex ⇐⇒ f = conv(f)

• Basic separation. S is a closed, convex set and x /∈ S =⇒ ∃a ∈ E,∃b ∈ R,∀y ∈ S, 〈a, x〉 >
b ≥ 〈a, y〉.
If S is a cone, we may take b = 0.

• Characterization of sublinearity. f is sublinear ⇐⇒ f is positively-homogeneous and
subadditive.
f is proper, closed and sublinear ⇐⇒ Sf 6= ∅ and f = σSf

• Continuity of convex functions. f is proper and convex, and x ∈ int(dom(f)) =⇒ f is
locally Lipschitz at x

5.2 Duality

• Exterior representation of convexity.

–: S ⊆ E is closed, convex and contains 0 ⇐⇒ S = (S◦)◦

–: f : E → [−∞,+∞] is closed and convex ⇐⇒ f = (f∗)∗

• Fenchel-Young inequality. ∀φ, x ∈ E, f(x) + f∗(φ) ≥ 〈φ, x〉, with equality iff φ ∈ ∂f(x)

• Polar Calculus. Suppose S, T are nonempty sets, K a nonempty cone.

–: (S◦)◦ = cl(conv(S ∪ {0}))

–: (K−)− = cl(conv(K))

–: (S ∪ T)◦ = S◦ ∩ T◦

–: (S ∩ T)◦ ⊇ cl(conv(S◦ ∪ T◦)), with equality when S, T are closed, convex and contain 0

• Conjugate calculus. Suppose f, g, f1, . . . , fm are proper.

–: (f∗)∗ = cl(conv(f))

–: f, g convex =⇒ (f⊙ g)∗ = f∗ + g∗

–: f, g convex =⇒ (f + g)∗ ≤ f∗ ⊙ g∗. Equality holds when int(dom(f)) ∩ dom(g) 6= ∅
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–: f convex, and A a linear map =⇒ (f ◦A)∗(φ) ≤ inf{f∗(ψ) : Aadjψ = φ}.
Equality holds when ∃y,Ay ∈ int(dom(f)), in which case infimum is attained when finite

–: f1, . . . , fm convex with common domain =⇒ (maxi fi)
∗(φ) ≤ inf{

∑m
i=1λif

∗
i(φ

i) :
∑m

i=1λi(φ
i, 1) =

(φ, 1), λi ≥ 0}.
Equality holds when int(dom(fi)) 6= ∅, in which case the infimum is attained when finite

• Fenchel duality. Suppose f, g are proper and convex

–: inf{f(x) + g(x)} ≥ sup{−f∗(−φ) − g∗(φ)}

–: Equality holds when int(dom(f)) ∩ dom(g) 6= ∅, in which case the supremum is attained
when finite

• Convex conic duality. Suppose K is a convex cone, and A,D are linear maps

–: infx{〈c, x〉 : b−Ax ∈ K,Dx = e} ≥ supφ,η{〈b,φ〉 + 〈e, η〉 : Aadjφ +Dadjη = c,φ ∈ K−}

–: Equality holds when ∃x,Dx = e, b−Ax ∈ int(K), in which case the supremum is attained if
finite

• Lagrange duality. Suppose f, g1, . . . , gm are proper, L : (x, λ) ∈ E⊕R
m 7→ f(x)+

∑m
i=1λigi(x),

and D = dom(f) ∩ (
⋂m

i=1dom(gi)).

–: inf{f(x) : gi(x) ≤ 0, i = 1, . . . ,m} ≥ supλ≥0 infxL(x, λ)

–: ∃x ∈ D,λ ≥ 0, (gi(x) ≤ 0, i = 1, . . . ,m) ∧ (x minimizes y 7→ L(y, λ) over D) ∧ (λigi(x) =

0, i = 1, . . . ,m)

=⇒ equality holds with x and λ attaining the infimum and supremum respectively

–: (f, g1, . . . , gm convex) ∧ (∃y ∈ dom(f),∀i ∈ {1, . . . ,m}gi(y) < 0) ∧ (x attains the infimum)
=⇒ equality holds and ∃λ ≥ 0, (x minimizes y 7→ L(y, λ) over D) ∧ (λigi(x) = 0, i =

1, . . . ,m)

–: (f, g1, . . . , gm closed and convex) ∧ (∃λ ≥ 0, x 7→ L(x, λ) has bounded sub-level sets
=⇒ equality holds and the infimum is attained if finite

5.3 Optimization

• Convex optimality conditions. Suppose f, g1, . . . , gm are proper and convex, and S is
nonempty and convex

–: x minimizes f ⇐⇒ 0 ∈ ∂f(x)

–: 0 ∈ ∂f(x)+NS(x) =⇒ x minimizes f over S. The converse is true when int(dom(f))∩S 6= ∅

–: (KKT condition) Suppose S = {y : gi(y) ≤ 0, i = 1, . . . ,m}, x ∈ S and f, g1, . . . , gm are
differentiable at x.
∃λ ≥ 0, (∇f(x) +

∑m
i=1λi∇g(x) = 0) ∧ (λigi(x) = 0, i = 1, . . . ,m) =⇒ x minimizes f over S.

The converse is true when ∃y ∈ dom(f),∀i ∈ {1, . . . ,m}, gi(y) < 0

• Subdifferential calculus. Suppose f, g, f1, . . . , fm are proper and convex with f1, . . . , fm shar-
ing same domain, and A is a linear map.

–: ∀x ∈ dom(f) ∩ dom(g), ∂(f + g)(x) ⊇ ∂f(x) + ∂g(x). Equality holds when int(dom(f)) ∩
dom(g) 6= ∅
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–: ∀x ∈ dom(f ◦A)), ∂(f ◦A)(x) ⊇ Aadj∂f(Ax). Equality holds when ∃y,Ay ∈ int(dom(f))

–: ∀x ∈ dom(fi), ∂(maxi fi)(x) =
⋃

{∂(
∑

i∈Iλifi)(x) :
∑

i∈Iλi = 1, λi ≥ 0} ⊇ conv(
⋃

i∈I∂fi(x)),
where I = {i : fi(x) = f(x)}. Equality holds when int(dom(fi)) 6= ∅.

• Sublinearity of directional derivatives. Suppose f is proper and convex.

–: x ∈ dom(f) =⇒ f ′(x; ·) : d ∈ E 7→ f ′(x;d) is sublinear and ∂f(x) = Sf′(x;·) is closed and
convex

–: x ∈ int(dom(f)) =⇒ ∂f(x) is closed, convex and bounded, and f ′(x; ·) = maxφ∈∂f(x)〈φ, ·〉
is closed.

–: x ∈ dom(f) \ int(dom(f)) =⇒ ∂f(x) is either empty or unbounded.

• Directional derivatives of max-function. f1, . . . , fm are proper and convex, x ∈
⋂m

i=1 int(dom(fi))

and I = {i : fi(x) = f(x)} =⇒ ∀d ∈ E, f ′(x;d) = maxi∈I{f
′
i(x;d)}

• Unique subgradient. Suppose f is proper and convex and x ∈ dom(f)

–: f is differentiable at x ⇐⇒ ∂f(x) is a singleton

12



6 Nonsmooth (Nonconvex)

6.1 Definitions

• Dini directional derivative of locally Lipschitz f at x in direction d. f−(x;d) =

lim inft↓0
1
t
[f(x+ td) − f(x)]

• Michel-Penot directional derivative of locally Lipschitz f at x in direction d.
f⋄(x;d) = supu∈E lim supt↓0

1
t
[f(x + tu+ td) − f(x+ tu)]

• Clarke directional derivative of locally Lipschitz f at x in direction d.
f◦(x;d) = lim supy→x,t↓0

1
t
[f(y + td) − f(y)]

• Dini subdifferential of locally Lipschitz f at x. ∂−f(x) = {φ ∈ E : ∀d ∈ E, 〈φ,d〉 ≤ f−(x;d)}

• Michel-Penot subdifferential of locally Lipschitz f at x. ∂⋄f(x) = {φ ∈ E : ∀d ∈
E, 〈φ,d〉 ≤ f⋄(x;d)}

• Clarke subdifferential of locally Lipschitz f at x. ∂◦f(x) = {φ ∈ E : ∀d ∈ E, 〈φ,d〉 ≤
f◦(x;d)}

• Nonsmooth subgradients. members of nonsmooth subdifferentials

• Regularity of locally Lipschitz f at x. ∀d ∈ E, f ′(x;d) = f◦(x;d)

• Distance function of S. dS : x ∈ E 7→ inf{‖x − y‖ : y ∈ S}

• Clarke normal cone of S at x ∈ S. NS(x) = cl(
⋃

t≥0 t∂◦dS(x))

• Clarke tangent cone of S at x ∈ S. TS(x) = NS(x)− = {d ∈ E : d◦S(x;d) = 0}

6.2 Theorems

• Bounded nonsmooth directional derivatives. f locally Lipschitz at x with Lipschitz con-
stant K
=⇒ ∀d ∈ E, f−(x;d) ≤ f⋄(x;d) ≤ f◦(x;d) ≤ K‖d‖

• Bounded nonsmooth subdifferentials. f locally Lipschitz at x with Lipschitz constant K
=⇒ ∂−f(x) ⊆ ∂⋄f(x) ⊆ ∂◦f(x) ⊆ KB

• Sublinarity of nonsmooth directional derivatives. Suppose f locally Lipschitz at x

– f⋄(x; ·) : d ∈ E 7→ f⋄(x;d) and f◦(x; ·) : d ∈ E 7→ f◦(x;d) are sublinear and finite everywhere

– f⋄(x; ·) = σ∂⋄f(x) and f◦(x; ·) = σ∂◦f(x)

• Characterization of regularity. Suppose f locally Lipschitz at x.
f is regular at x ⇐⇒ ∀d ∈ E, f−(x;d) = f⋄(x;d) = f◦(x;d)

• Regularity of convex functions. f is proper and convex, and x ∈ int(dom(f)) =⇒ f is
regular at x.
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• Nonsmooth subdifferential calculus. Suppose f1, . . . , fm are locally Lipschitz at x.
It holds ∂⋄(

∑m
i=1 fi)(x) ⊆

∑m
i=1∂⋄fi(x), ∂◦(

∑m
i=1 fi)(x) ⊆

∑m
i=1∂◦fi(x),

∂⋄(maxi fi)(x) ⊆ conv(
⋃

i∈I∂⋄fi(x)), and ∂◦(maxi fi)(x) ⊆ conv(
⋃

i∈I∂◦fi(x)), where I = {i :

fi(x) = f(x)}

Equalities hold throughout when f1, . . . , fm are regular at x.

• Nonsmooth directional derivatives of max-function. f1, . . . , fm locally Lipschitz at x
and I = {i : fi(x) = f(x)} =⇒ ∀d ∈ E, (f⋄(x;d) ≤ maxi∈I{f

⋄
i(x;d)})∧(f◦(x;d) ≤ maxi∈I{f

◦
i(x;d)})

• Nonsmooth optimality conditions. Suppose f, g1, . . . , gm locally Lipschitz at x, and S

nonempty

– x minimizes f =⇒ 0 ∈ ∂⋄f(x) ⊆ ∂◦f(x)

– x minimizes f over S =⇒ 0 ∈ ∂◦f(x) +NS(x) =⇒ ∀d ∈ TS(x), f◦(x;d) ≥ 0

– x minimizes f over {y : gi(y) ≤ 0, i = 1, . . . ,m}

=⇒ ∃λ ≥ 0, (
∑m

i=0λi > 0) ∧ (λ0∂◦f(x) +
∑m

i=1λi∂◦g(x) = 0) ∧ (λigi(x) = 0, i = 1, . . . ,m).
We can take λ0 = 1 when ∃d ∈ E, (gi(x) < 0) ∨ (g◦i(x;d) < 0)
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