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Solution to Problem 1.1. This is an alternate solution to problem 1.1, which uses the supporting hy-
perplane theorem. Also, recall that the level set Sα(f) := {x ∈ E : f(x) ≤ α}.
Now, suppose the contrary, and let x ∈ Ω such that f is discontinuous at x. I.e., suppose that
∃{yn}n∈N ⊆ Ω such that limn→∞ yn = x but limn→∞ f(yn) 6= f(x).

Claim 1. ∀ǫ > 0, x ∈ int(Sf(x)+ǫ(f)).

Proof of Claim 1. Suppose the contrary, i.e. ∃ǫ > 0 such that x 6∈ int(Sf(x)+ǫ(f)). Fix such an
ǫ. Note that Sf(x)+ǫ(f) is convex (because f is convex) and x ∈ Sf(x)+ǫ(f) \ int(Sf(x)+ǫ(f)).
Therefore, by the supporting hyperplane theorem, there exists a hyperplane P = {y ∈ E :
〈y, a〉 = b} defining a closed half space X = {y ∈ E : 〈y, a〉 ≤ b} such that x ∈ P and
Sf(x)+ǫ(f) ⊆ X.

Since Ω is open, x + ta ∈ Ω for sufficiently small t > 0. Therefore, there exists t̄ > 0 such that
x+ t̄a ∈ Ω and z = x+ t̄a ∈ Xc (complement of X). Since z 6∈ Sf(x)+ǫ, we have f(z) > f(x)+ǫ.
Therefore, x, z ∈ Sf(z) and hence, by convexity of Sf(z), {λx+(1−λ)z : λ ∈ [0, 1]} ⊆ Sf(z) ⊆ Ω.
For all λ > 0, (1 − λ)x + λz 6∈ Sf(x)+ǫ, so f((1 − λ)x + λz) > f(x) + ǫ. For sufficiently small
λ > 0,

(1 − λ)f(x) + λf(z) < f(x) + ǫ < f((1 − λ)x + λz)

contradicting convexity of f . (Claim 1)

Claim 2. ∀ǫ > 0, ∃Nǫ ∈ N such that for all n > Nǫ, f(yn) < f(x) + ǫ

Proof of Claim 2. By claim 1, ∀ǫ > 0, x ∈ int(Sf(x)+ǫ(f)). I.e. ∃δǫ > 0 such that ∀z ∈ x + δǫB,
f(z) < f(x) + ǫ. limn→∞ yn = x, so ∃Nǫ ∈ N such that for all n > Nǫ, ‖yn − x‖ < δǫ ⇒
yn ∈ x + δǫB ⇒ f(yn) < f(x) + ǫ. (Claim 2)

Claim 3. ∃µ > 0, ∀N ∈ N, ∃nµ,N > N such that f(ynµ,N ) < f(x) − µ.

Proof of Claim 3. Suppose the contrary. I.e., ∀µ > 0, ∃Nµ ∈ N such that ∀n > Nµ, f(yn) ≥
f(x)−µ. By claim 2, ∃N ′

µ ∈ N such that ∀n > N ′

µ, f(yn) < f(x)+µ. Let N ′′

µ = max{Nµ,N ′

µ}.
Then for all n > N ′′

µ , ‖f(yn)− f(x)‖ < µ. This being true for all µ > 0, limn→∞ f(yn) = f(x),
contradiction. (Claim 3)

Claim 4. ∃µ > 0, ∃δ > 0, ∃n ∈ N such that

(i) f(yn) < f(x) − µ

(ii) yn ∈ x + δB

(iii) ∀z ∈ x + δB, f(z) < f(x) + µ
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Proof of Claim 4. By claim 3, ∃µ > 0, ∀N ∈ N, ∃n > N such that f(yn) < f(x)− µ. Fix such a
µ. By claim 1, x ∈ int Sf(x)+µ, i.e. ∃δ > 0 such that ∀z ∈ x + δB, f(z) < f(x) + µ. Fix such
a δ, and note that the choice of µ and δ satisfy (iii). Because limn→∞ yn = x, ∃N ∈ N such
that ∀n > N , yn ∈ x + δB. Therefore, by claim 3, ∃n > N such that f(yn) < f(x) − µ and
yn ∈ x + δB, so µ, δ and n satisfy (i) and (ii). (Claim 4)

Fix µ, δ and n with the properties (i)-(iii) in claim 4. Let

z = 2x − yn = x − (yn − x)

Note that ‖yn − x‖ ≤ δ (by claim 4, property (ii)), so z ∈ δB + x. Hence (by claim 4, property
(iii)), f(z) < f(x) + µ. Also (by claim 4, property (i)), f(yn) < f(x) − µ, so

1

2
f(yn) +

1

2
f(z) <

1

2
(f(x) − µ) +

1

2
(f(x) + µ) = f(x)

But x = 1
2yn + 1

2z, so this contradicts convexity of f . (Problem 1.1)

Theorem (Supporting Hyperplane Theorem). If C ⊆ R
n and x ∈ C \ int(C), then there exists a

hyperplane P = {y ∈ R
n : 〈y, a〉 = b} such that 〈x, a〉 = b and 〈y, a〉 ≤ b for all y ∈ C (i.e. C lies in

a closed half space defined by P ).

Proof of Theorem. In finite dimensions, at least, this theorem follows easily from the hyperplane sep-
aration theorem. x 6∈ int(C), so there is a sequence {zn 6∈ C}n∈N which converges to x. For each
n, find a hyperplane Pn = {y ∈ R

n : 〈y, an〉 = bn} separating zn from C (hyperplane separation
theorem). Assume wlog that 〈y, an〉 ≤ bn for all y ∈ C. Also assume wlog that ‖an‖ = 1. The unit
sphere is a compact manifold, so an has a convergent subsequence. Thus, (by throwing out every-
thing not in a particular convergent subsequence) assume wlog that a = limn→∞ an exists. Note
that Pn separates x from zn, so limn→∞ d(x, Pn) = 0 (where d(x, Pn) = min{‖x − y‖ : y ∈ Pn}).
Hence

b = lim
n→∞

bn = lim
n→∞

〈x, an〉 = 〈x, a〉

Finally, for all y ∈ C,

〈y, a〉 = lim
n→∞

〈y, an〉 ≤ lim
n→∞

bn = b (Theorem)
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