CO 663 - Assignment 1

Benson Joeris

October 19, 2009

Solution to Problem 1.1. This is an alternate solution to problem 1.1, which uses the supporting hyperplane theorem. Also, recall that the level set $S_{\alpha}(f):=\{x \in \mathbb{E}: f(x) \leq \alpha\}$.
Now, suppose the contrary, and let $x \in \Omega$ such that f is discontinuous at x. I.e., suppose that $\exists\left\{y^{n}\right\}_{n \in \mathbb{N}} \subseteq \Omega$ such that $\lim _{n \rightarrow \infty} y^{n}=x$ but $\lim _{n \rightarrow \infty} f\left(y^{n}\right) \neq f(x)$.

Claim 1. $\forall \epsilon>0, x \in \operatorname{int}\left(S_{f(x)+\epsilon}(f)\right)$.
Proof of Claim 1. Suppose the contrary, i.e. $\exists \epsilon>0$ such that $x \notin \operatorname{int}\left(S_{f(x)+\epsilon}(f)\right)$. Fix such an ϵ. Note that $S_{f(x)+\epsilon}(f)$ is convex (because f is convex) and $x \in S_{f(x)+\epsilon}(f) \backslash \operatorname{int}\left(S_{f(x)+\epsilon}(f)\right)$. Therefore, by the supporting hyperplane theorem, there exists a hyperplane $P=\{y \in \mathbb{E}$: $\langle y, a\rangle=b\}$ defining a closed half space $X=\{y \in \mathbb{E}:\langle y, a\rangle \leq b\}$ such that $x \in P$ and $S_{f(x)+\epsilon}(f) \subseteq X$.
Since Ω is open, $x+t a \in \Omega$ for sufficiently small $t>0$. Therefore, there exists $\bar{t}>0$ such that $x+\bar{t} a \in \Omega$ and $z=x+\bar{t} a \in X^{c}$ (complement of X). Since $z \notin S_{f(x)+\epsilon}$, we have $f(z)>f(x)+\epsilon$. Therefore, $x, z \in S_{f(z)}$ and hence, by convexity of $S_{f(z)},\{\lambda x+(1-\lambda) z: \lambda \in[0,1]\} \subseteq S_{f(z)} \subseteq \Omega$. For all $\lambda>0,(1-\lambda) x+\lambda z \notin S_{f(x)+\epsilon}$, so $f((1-\lambda) x+\lambda z)>f(x)+\epsilon$. For sufficiently small $\lambda>0$,

$$
(1-\lambda) f(x)+\lambda f(z)<f(x)+\epsilon<f((1-\lambda) x+\lambda z)
$$

contradicting convexity of f.
(Claim 1)
Claim 2. $\forall \epsilon>0, \exists N_{\epsilon} \in \mathbb{N}$ such that for all $n>N_{\epsilon}, f\left(y^{n}\right)<f(x)+\epsilon$
Proof of Claim 2. By claim 1, $\forall \epsilon>0, x \in \operatorname{int}\left(S_{f(x)+\epsilon}(f)\right)$. I.e. $\exists \delta_{\epsilon}>0$ such that $\forall z \in x+\delta_{\epsilon} B$, $f(z)<f(x)+\epsilon . \quad \lim _{n \rightarrow \infty} y^{n}=x$, so $\exists N_{\epsilon} \in \mathbb{N}$ such that for all $n>N_{\epsilon},\left\|y^{n}-x\right\|<\delta_{\epsilon} \Rightarrow$ $y^{n} \in x+\delta_{\epsilon} B \Rightarrow f\left(y^{n}\right)<f(x)+\epsilon$.
(Claim 2)
Claim 3. $\exists \mu>0, \forall N \in \mathbb{N}, \exists n_{\mu, N}>N$ such that $f\left(y^{n_{\mu, N}}\right)<f(x)-\mu$.
Proof of Claim 3. Suppose the contrary. I.e., $\forall \mu>0, \exists N_{\mu} \in \mathbb{N}$ such that $\forall n>N_{\mu}, f\left(y^{n}\right) \geq$ $f(x)-\mu$. By claim $2, \exists N_{\mu}^{\prime} \in \mathbb{N}$ such that $\forall n>N_{\mu}^{\prime}, f\left(y^{n}\right)<f(x)+\mu$. Let $N_{\mu}^{\prime \prime}=\max \left\{N_{\mu}, N_{\mu}^{\prime}\right\}$. Then for all $n>N_{\mu}^{\prime \prime},\left\|f\left(y^{n}\right)-f(x)\right\|<\mu$. This being true for all $\mu>0, \lim _{n \rightarrow \infty} f\left(y^{n}\right)=f(x)$, contradiction.
(Claim 3)
Claim 4. $\exists \mu>0, \exists \delta>0, \exists n \in \mathbb{N}$ such that
(i) $f\left(y^{n}\right)<f(x)-\mu$
(ii) $y^{n} \in x+\delta B$
(iii) $\forall z \in x+\delta B, f(z)<f(x)+\mu$

Proof of Claim 4. By claim 3, $\exists \mu>0, \forall N \in \mathbb{N}, \exists n>N$ such that $f\left(y^{n}\right)<f(x)-\mu$. Fix such a μ. By claim 1, $x \in \operatorname{int} S_{f(x)+\mu}$, i.e. $\exists \delta>0$ such that $\forall z \in x+\delta B, f(z)<f(x)+\mu$. Fix such a δ, and note that the choice of μ and δ satisfy (iii). Because $\lim _{n \rightarrow \infty} y^{n}=x, \exists N \in \mathbb{N}$ such that $\forall n>N, y^{n} \in x+\delta B$. Therefore, by claim $3, \exists n>N$ such that $f\left(y^{n}\right)<f(x)-\mu$ and $y^{n} \in x+\delta B$, so μ, δ and n satisfy (i) and (ii).
$\square($ Claim 4$)$
Fix μ, δ and n with the properties (i)-(iii) in claim 4. Let

$$
z=2 x-y^{n}=x-\left(y^{n}-x\right)
$$

Note that $\left\|y^{n}-x\right\| \leq \delta$ (by claim 4, property (ii)), so $z \in \delta B+x$. Hence (by claim 4, property (iii)), $f(z)<f(x)+\mu$. Also (by claim 4, property (i)), $f\left(y^{n}\right)<f(x)-\mu$, so

$$
\frac{1}{2} f\left(y^{n}\right)+\frac{1}{2} f(z)<\frac{1}{2}(f(x)-\mu)+\frac{1}{2}(f(x)+\mu)=f(x)
$$

But $x=\frac{1}{2} y^{n}+\frac{1}{2} z$, so this contradicts convexity of f. (Problem 1.1)

Theorem (Supporting Hyperplane Theorem). If $C \subseteq \mathbb{R}^{n}$ and $x \in C \backslash \operatorname{int}(C)$, then there exists a hyperplane $P=\left\{y \in \mathbb{R}^{n}:\langle y, a\rangle=b\right\}$ such that $\langle x, a\rangle=b$ and $\langle y, a\rangle \leq b$ for all $y \in C$ (i.e. C lies in a closed half space defined by P).

Proof of Theorem. In finite dimensions, at least, this theorem follows easily from the hyperplane separation theorem. $x \notin \operatorname{int}(C)$, so there is a sequence $\left\{z^{n} \notin C\right\}_{n \in \mathbb{N}}$ which converges to x. For each n, find a hyperplane $P_{n}=\left\{y \in \mathbb{R}^{n}:\left\langle y, a_{n}\right\rangle=b_{n}\right\}$ separating z^{n} from C (hyperplane separation theorem). Assume wlog that $\left\langle y, a_{n}\right\rangle \leq b_{n}$ for all $y \in C$. Also assume wlog that $\left\|a_{n}\right\|=1$. The unit sphere is a compact manifold, so a_{n} has a convergent subsequence. Thus, (by throwing out everything not in a particular convergent subsequence) assume wlog that $a=\lim _{n \rightarrow \infty} a_{n}$ exists. Note that P_{n} separates x from z_{n}, so $\lim _{n \rightarrow \infty} d\left(x, P_{n}\right)=0\left(\right.$ where $\left.d\left(x, P_{n}\right)=\min \left\{\|x-y\|: y \in P_{n}\right\}\right)$. Hence

$$
b=\lim _{n \rightarrow \infty} b_{n}=\lim _{n \rightarrow \infty}\left\langle x, a_{n}\right\rangle=\langle x, a\rangle
$$

Finally, for all $y \in C$,

$$
\langle y, a\rangle=\lim _{n \rightarrow \infty}\left\langle y, a_{n}\right\rangle \leq \lim _{n \rightarrow \infty} b_{n}=b \quad \square \text { (Theorem) }
$$

