CO 663 – Assignment 1

Benson Joeris

October 19, 2009

Solution to Problem 1.1. This is an alternate solution to problem 1.1, which uses the supporting hyperplane theorem. Also, recall that the level set $S_{\alpha}(f) := \{x \in \mathbb{E} : f(x) \leq \alpha\}$.

Now, suppose the contrary, and let $x \in \Omega$ such that f is discontinuous at x. I.e., suppose that $\exists \{y^n\}_{n \in \mathbb{N}} \subseteq \Omega$ such that $\lim_{n \to \infty} y^n = x$ but $\lim_{n \to \infty} f(y^n) \neq f(x)$.

Claim 1. $\forall \epsilon > 0, x \in int(S_{f(x)+\epsilon}(f)).$

Proof of Claim 1. Suppose the contrary, i.e. $\exists \epsilon > 0$ such that $x \notin \operatorname{int}(S_{f(x)+\epsilon}(f))$. Fix such an ϵ . Note that $S_{f(x)+\epsilon}(f)$ is convex (because f is convex) and $x \in S_{f(x)+\epsilon}(f) \setminus \operatorname{int}(S_{f(x)+\epsilon}(f))$. Therefore, by the supporting hyperplane theorem, there exists a hyperplane $P = \{y \in \mathbb{E} : \langle y, a \rangle = b\}$ defining a closed half space $X = \{y \in \mathbb{E} : \langle y, a \rangle \leq b\}$ such that $x \in P$ and $S_{f(x)+\epsilon}(f) \subseteq X$.

Since Ω is open, $x + ta \in \Omega$ for sufficiently small t > 0. Therefore, there exists $\overline{t} > 0$ such that $x + \overline{t}a \in \Omega$ and $z = x + \overline{t}a \in X^c$ (complement of X). Since $z \notin S_{f(x)+\epsilon}$, we have $f(z) > f(x) + \epsilon$. Therefore, $x, z \in S_{f(z)}$ and hence, by convexity of $S_{f(z)}$, $\{\lambda x + (1-\lambda)z : \lambda \in [0,1]\} \subseteq S_{f(z)} \subseteq \Omega$. For all $\lambda > 0$, $(1 - \lambda)x + \lambda z \notin S_{f(x)+\epsilon}$, so $f((1 - \lambda)x + \lambda z) > f(x) + \epsilon$. For sufficiently small $\lambda > 0$,

$$(1 - \lambda)f(x) + \lambda f(z) < f(x) + \epsilon < f((1 - \lambda)x + \lambda z)$$

contradicting convexity of f.

Claim 2. $\forall \epsilon > 0, \exists N_{\epsilon} \in \mathbb{N}$ such that for all $n > N_{\epsilon}, f(y^n) < f(x) + \epsilon$

Proof of Claim 2. By claim 1, $\forall \epsilon > 0, x \in int(S_{f(x)+\epsilon}(f))$. I.e. $\exists \delta_{\epsilon} > 0$ such that $\forall z \in x + \delta_{\epsilon}B$, $f(z) < f(x) + \epsilon$. $\lim_{n \to \infty} y^n = x$, so $\exists N_{\epsilon} \in \mathbb{N}$ such that for all $n > N_{\epsilon}, ||y^n - x|| < \delta_{\epsilon} \Rightarrow y^n \in x + \delta_{\epsilon}B \Rightarrow f(y^n) < f(x) + \epsilon$. \Box (Claim 2)

Claim 3. $\exists \mu > 0, \forall N \in \mathbb{N}, \exists n_{\mu,N} > N \text{ such that } f(y^{n_{\mu,N}}) < f(x) - \mu.$

Proof of Claim 3. Suppose the contrary. I.e., $\forall \mu > 0$, $\exists N_{\mu} \in \mathbb{N}$ such that $\forall n > N_{\mu}$, $f(y^n) \geq f(x) - \mu$. By claim 2, $\exists N'_{\mu} \in \mathbb{N}$ such that $\forall n > N'_{\mu}$, $f(y^n) < f(x) + \mu$. Let $N''_{\mu} = \max\{N_{\mu}, N'_{\mu}\}$. Then for all $n > N''_{\mu}$, $\|f(y^n) - f(x)\| < \mu$. This being true for all $\mu > 0$, $\lim_{n \to \infty} f(y^n) = f(x)$, contradiction. \Box (Claim 3)

Claim 4. $\exists \mu > 0, \exists \delta > 0, \exists n \in \mathbb{N}$ such that

(i) $f(y^n) < f(x) - \mu$ (ii) $y^n \in x + \delta B$ (iii) $\forall z \in x + \delta B, f(z) < f(x) + \mu$ \Box (Claim 1)

Proof of Claim 4. By claim 3, $\exists \mu > 0$, $\forall N \in \mathbb{N}$, $\exists n > N$ such that $f(y^n) < f(x) - \mu$. Fix such a μ . By claim 1, $x \in \inf S_{f(x)+\mu}$, i.e. $\exists \delta > 0$ such that $\forall z \in x + \delta B$, $f(z) < f(x) + \mu$. Fix such a δ , and note that the choice of μ and δ satisfy (iii). Because $\lim_{n\to\infty} y^n = x$, $\exists N \in \mathbb{N}$ such that $\forall n > N$, $y^n \in x + \delta B$. Therefore, by claim 3, $\exists n > N$ such that $f(y^n) < f(x) - \mu$ and $y^n \in x + \delta B$, so μ , δ and n satisfy (i) and (ii). \Box (Claim 4)

Fix μ , δ and n with the properties (i)-(iii) in claim 4. Let

$$z = 2x - y^n = x - (y^n - x)$$

Note that $||y^n - x|| \le \delta$ (by claim 4, property (ii)), so $z \in \delta B + x$. Hence (by claim 4, property (iii)), $f(z) < f(x) + \mu$. Also (by claim 4, property (i)), $f(y^n) < f(x) - \mu$, so

$$\frac{1}{2}f(y^n) + \frac{1}{2}f(z) < \frac{1}{2}(f(x) - \mu) + \frac{1}{2}(f(x) + \mu) = f(x)$$

But $x = \frac{1}{2}y^n + \frac{1}{2}z$, so this contradicts convexity of f.

- **Theorem (Supporting Hyperplane Theorem).** If $C \subseteq \mathbb{R}^n$ and $x \in C \setminus int(C)$, then there exists a hyperplane $P = \{y \in \mathbb{R}^n : \langle y, a \rangle = b\}$ such that $\langle x, a \rangle = b$ and $\langle y, a \rangle \leq b$ for all $y \in C$ (i.e. C lies in a closed half space defined by P).
- **Proof of Theorem.** In finite dimensions, at least, this theorem follows easily from the hyperplane separation theorem. $x \notin \operatorname{int}(C)$, so there is a sequence $\{z^n \notin C\}_{n \in \mathbb{N}}$ which converges to x. For each n, find a hyperplane $P_n = \{y \in \mathbb{R}^n : \langle y, a_n \rangle = b_n\}$ separating z^n from C (hyperplane separation theorem). Assume wlog that $\langle y, a_n \rangle \leq b_n$ for all $y \in C$. Also assume wlog that $||a_n|| = 1$. The unit sphere is a compact manifold, so a_n has a convergent subsequence. Thus, (by throwing out everything not in a particular convergent subsequence) assume wlog that $a = \lim_{n \to \infty} a_n$ exists. Note that P_n separates x from z_n , so $\lim_{n \to \infty} d(x, P_n) = 0$ (where $d(x, P_n) = \min\{||x y|| : y \in P_n\}$). Hence

$$b = \lim_{n \to \infty} b_n = \lim_{n \to \infty} \langle x, a_n \rangle = \langle x, a \rangle$$

Finally, for all $y \in C$,

$$\langle y, a \rangle = \lim_{n \to \infty} \langle y, a_n \rangle \le \lim_{n \to \infty} b_n = b \quad \Box \text{ (Theorem)}$$

 \square (Problem 1.1)