C\&O 463/663 Convex Optimization and Analysis (Fall 2009)

Assignment 3 - Additional Problems

Instructor: Dr. Henry Wolkowicz

Due Date: Thursday, Nov. 12, 2009

1 Convex Functions, Convex Sets, Fenchel Conjugates

Suppose that f is a proper convex function from a Euclidean space \mathbb{E} to $\mathbb{R} \cup+\infty$.

1. Show that the following conditions are equivalent.
(a) f is lower semi-continuous on \mathbb{E}.
(b) The level set $L_{\alpha}=\{x \in \mathbb{E}: f(x) \leq \alpha\}$ is closed for every $\alpha \in \mathbb{R}$.
(c) The epigraph of f is a closed set.
2. Let $f(x)=|x|$ be the absolute value function on \mathbb{R}. Find the conjugate f^{*}.
3. Let \mathbb{E} and \mathbb{Y} be Euclidean spaces, let $f: \mathbb{E} \rightarrow(-\infty,+\infty]$ and $g: \mathbb{Y} \rightarrow(-\infty,+\infty]$, and let $A: \mathbb{E} \rightarrow \mathbb{Y}$ be a linear map. Consider the constraint qualification type condition

$$
\begin{equation*}
0 \in \operatorname{int}(\operatorname{dom} g-A \operatorname{dom} f) \tag{1}
\end{equation*}
$$

Show that

$$
\partial(f+g \circ A)(x) \supset \partial f(x)+A^{*} \partial g(A x), \forall x \in \mathbb{E}
$$

with equality if (1) holds.
4. Suppose that the set $S \subseteq \mathbb{R}^{n}$ is open and convex, and consider a function $f: S \rightarrow \mathbb{R}$. For points $x \notin S$ define $f(x)=+\infty$.
(a) Prove $\partial f(x)$ is nonempty for all $x \in S$ if and only if f is convex.
(b) Prove that a continuous function $h: \mathrm{cl} S \rightarrow \mathbb{R}$ is convex if and only if its restriction to S is convex. What about strictly convex functions?
5. If the function $f: \mathbb{R}^{2} \rightarrow(-\infty,+\infty]$ is defined by

$$
f\left(x_{1}, x_{2}\right)= \begin{cases}\max \left\{1-\sqrt{x_{1}},\left|x_{2}\right|\right\} & \text { if } x_{1} \geq 0 \\ +\infty & \text { otherwise }\end{cases}
$$

prove that f is convex but that $\operatorname{dom} \partial f$ is not convex.
6. Suppose that $f: \mathbb{E} \rightarrow \mathbb{R}$ is differentiable, not necessarily convex, and bounded below. Show that for each positive integer n, there exists $x_{n} \in \mathbb{E}$ such that $\left\|\nabla f\left(x_{n}\right)\right\| \leq \frac{1}{n}$. Can you get a similar result if f is convex but not necessarily differentiable?
7. (a) Suppose that $K=\left\{x \in \mathbb{R}^{n}: x_{1} \geq \sqrt{x_{2}^{2}+\ldots+x_{n}^{2}}\right\}$, the second order cone. Show that $N_{K}(0)=-K$.
(b) Suppose that $K=\mathcal{S}_{+}^{n}$, the cone of positive semidefinite matrices. Show that $N_{K}(0)=-K$.

2 Convex Optimization Problems

1. Let A and B be non-empty compact convex subsets of \mathbb{E}. Use Fenchel duality to show that

$$
\min _{x \in A} \max _{y \in B}\langle x, y\rangle=\max _{y \in B} \min _{x \in A}\langle x, y\rangle
$$

