C&O 463/663 Convex Optimization and Analysis (Fall 2009)

Assignment 3 - Additional Problems

Instructor: Dr. Henry Wolkowicz

Due Date: Thursday, Nov. 12, 2009

1 Convex Functions, Convex Sets, Fenchel Conjugates

Suppose that f is a proper convex function from a Euclidean space \mathbb{E} to $\mathbb{R} \cup +\infty$.

1. Show that the following conditions are equivalent.

- (a) f is lower semi-continuous on \mathbb{E} .
- (b) The level set $L_{\alpha} = \{x \in \mathbb{E} : f(x) \leq \alpha\}$ is closed for every $\alpha \in \mathbb{R}$.
- (c) The epigraph of f is a closed set.
- 2. Let f(x) = |x| be the absolute value function on \mathbb{R} . Find the conjugate f^* .
- 3. Let \mathbb{E} and \mathbb{Y} be Euclidean spaces, let $f : \mathbb{E} \to (-\infty, +\infty]$ and $g : \mathbb{Y} \to (-\infty, +\infty]$, and let $A : \mathbb{E} \to \mathbb{Y}$ be a linear map. Consider the *constraint qualification* type condition

$$0 \in \operatorname{int} (\operatorname{dom} g - A \operatorname{dom} f). \tag{1}$$

Show that

$$\partial (f + g \circ A)(x) \supset \partial f(x) + A^* \partial g(Ax), \forall x \in \mathbb{E},$$

with equality if (1) holds.

- 4. Suppose that the set $S \subseteq \mathbb{R}^n$ is open and convex, and consider a function $f: S \to \mathbb{R}$. For points $x \notin S$ define $f(x) = +\infty$.
 - (a) Prove $\partial f(x)$ is nonempty for all $x \in S$ if and only if f is convex.
 - (b) Prove that a continuous function $h : \operatorname{cl} S \to \mathbb{R}$ is convex if and only if its restriction to S is convex. What about strictly convex functions?
- 5. If the function $f : \mathbb{R}^2 \to (-\infty, +\infty]$ is defined by

$$f(x_1, x_2) = \begin{cases} \max\{1 - \sqrt{x_1}, |x_2|\} & \text{if } x_1 \ge 0\\ +\infty & \text{otherwise,} \end{cases}$$

prove that f is convex but that dom ∂f is not convex.

- 6. Suppose that $f : \mathbb{E} \to \mathbb{R}$ is differentiable, not necessarily convex, and bounded below. Show that for each positive integer n, there exists $x_n \in \mathbb{E}$ such that $\|\nabla f(x_n)\| \leq \frac{1}{n}$. Can you get a similar result if f is convex but not necessarily differentiable?
- 7. (a) Suppose that $K = \{x \in \mathbb{R}^n : x_1 \ge \sqrt{x_2^2 + \ldots + x_n^2}\}$, the second order cone. Show that $N_K(0) = -K$.
 - (b) Suppose that $K = S^n_+$, the cone of positive semidefinite matrices. Show that $N_K(0) = -K$.

2 Convex Optimization Problems

1. Let A and B be non-empty compact convex subsets of $\mathbb E.$ Use Fenchel duality to show that

 $\min_{x \in A} \max_{y \in B} \langle x, y \rangle = \max_{y \in B} \min_{x \in A} \langle x, y \rangle$