C\&O 463/663 Convex Optimization and Analysis (Fall 2009)

Assignment 2-Additional Problems

Instructor: Dr. Henry Wolkowicz
Due Date: Tuesday, Oct. 20, 2009

1 Convex Functions and Convex Sets

1. Show that the image and the inverse image of a convex cone under a linear transormation is a convex cone. Is this true for an affine transformation? Why or why not?
2. Let $\emptyset \neq C \subseteq \mathbb{E}=\mathbb{R}^{n}$ be a convex set. Suppose that f is a convex function on \mathbb{E} with $C \subset \operatorname{dom} f$, and that $g: \mathbb{R} \rightarrow \mathbb{R}$ is a convex function that is monotonically nondecreasing over the convex hull, conv $\{f(x): x \in C\}$. Show that the composite function $h(x):=g(f(x))$ is convex over C. In addition, if g is monotonically increasing and f is strictly convex, then h is strictly convex.
Recall: h is strictly convex on D if

$$
h(\lambda x+(1-\lambda) y)<\lambda h(x)+(1-\lambda) h(y), \quad \forall 0<\lambda<1, \forall x, y \in D .
$$

3. (Characterizations of Convex Functions) Suppose that $f: \mathbb{E} \rightarrow \mathbb{R} \cup+\infty$ and C is an open set satisfying $C \subseteq \operatorname{dom} f$. Moreover, assume sufficient differentiability for f as needed. Show that the following are equivalent:
(a) (zero order conditions) f is convex on C, i.e.

$$
f(\lambda x+(1-\lambda) y) \leq \lambda f(x)+(1-\lambda) f(y), \quad \forall 0 \leq \lambda \leq 1, \forall x, y \in C
$$

(b) (first order condition)

$$
\nabla f(x)^{T}(y-x) \leq f(y)-f(x), \quad \forall x, y \in C
$$

(c) (first order condition)

$$
(\nabla f(y)-\nabla f(x))^{T}(y-x) \geq 0, \quad \forall x, y \in C
$$

(d) (second order condition)

$$
\nabla^{2} f(x) \succeq 0, \quad \forall x \in C
$$

4. Suppose that $K \subseteq \mathbb{E}$. Show that K is a closed convex cone if and only $K=\left(K^{-}\right)^{-}$. Hint: Use the hyperplane separation theorem for the difficult part.

2 Convexification

Let $\emptyset \neq X \subseteq \mathbb{E}$ and let f be defined on \mathbb{E} and bounded below on X. Let $F:=\operatorname{conv}(f)$. Show that

$$
\inf _{\operatorname{conv}(X)} F(x)=\inf _{X} f(x),
$$

and, moreover,

$$
x^{*} \in \operatorname{argmin}_{X} f(x) \Longrightarrow x^{*} \in \operatorname{argmin}_{\operatorname{conv}(X)} F(x) .
$$

3 Subgradients

1. (Subgradients of maximum eigenvalue) Prove

$$
\partial \lambda_{\max }(0)=\left\{Y \in \mathcal{S}_{+}^{n}: \operatorname{tr} Y=1\right\}
$$

2. * Define a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ by $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\max _{j}\left\{x_{j}\right\}$. Let $\bar{x}=0$ and $d=$ $(1,1, \ldots, 1)^{T}$, and let $e_{k}=(1,1, \ldots, 1,0,0, \ldots, 0)^{T}$ (ending in $k-1$ zeros). Calculate the functions p_{k} defined in the proof of Theorem 3.1.8 (Max formula), using Proposition 2.3.2 (directional derivatives of max functions). (The theorem and proposition are from the text.)
