C&O 463/663 Convex Optimization and Analysis (Fall 2009)

Assignment 1 - Additional Problems

Instructor: Dr. Henry Wolkowicz

Due Date: Tuesday, Sept. 29, 2009

1 Convex Functions and Convex Sets

Recall that dom $f = \{x : f(x) < +\infty\}.$

- 1. Suppose that $f : \mathbb{R}^n \to \mathbb{R} \cup +\infty$ is convex with dom $f = \Omega \subset \mathbb{R}^n$, an open set. Show that f is continuous on Ω .
- 2. Suppose that $f : \mathbb{R}^n \to \mathbb{R}$ is convex, $(\text{dom } f = \mathbb{R}^n)$ and bounded above on \mathbb{R}^n . Show that f is constant.
- 3. Suppose that $f : \mathbb{R} \to \mathbb{R} \cup +\infty$ is convex with $\mathbb{R}_+ \subseteq \text{dom } f$. Show that the running average F is convex, where

$$F(x) := \frac{1}{x} \int_0^x f(t) dt, \quad \text{dom} F = \mathbb{R}_{++}$$

4. What is the distance between two parallel hyperplanes?

2 Convex Optimization Problems

1. Consider the Best Uniform Approximation Problem (Tschebyshev approximation): given an $m \times n$ matrix A, and a vector $b \in \mathbb{R}^m$,

$$\min_{x} \|Ax - b\|_{\infty},$$

i.e. the norm is the infinity norm. This objective function is nonlinear. Rephrase this problem as an LP problem.

2. (*) Suppose a matrix $A \in \mathcal{S}^n_+$ satisfies $I \succeq A$. Prove that the iteration

$$Y_0 = 0, Y_{n+1} = \frac{1}{2}(A + Y_n^2)$$
 $(n = 0, 1, 2, ...)$

is nondecreasing (that is $Y_{n+1} \succeq Y_n$ for all n) and converges to the matrix $I - (I - A)^{1/2}$. (Hint. Consider diagonal matrices A.)