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CONVEX OPT. AND ANALYSIS — Assignment 4

1 Conjugate Duality

Question 1.

(a) We first prove that if f,−g : E → R ∪ {+∞} are proper convex function, then f ⊙ g is concave.

For any y, z ∈ E, λ ∈ [0, 1], let zλ = z + λ(y − z) = λy + (1 − λ)z. For any x ∈ E, since zλ − x =

λ(y − x) + (1− λ)(z − x), by concavity of g we have

λg(z − x) + (1− λ)g(y − x) ≤ g(zλ − x)

=⇒ λ[f(x) + g(z − x)] + (1− λ)[f(x) + g(y − x)] ≤ f(x) + g(zλ − x).

Taking infimum over all x ∈ E,

λ inf
x

[f(x) + g(z − x)] + (1− λ) inf
x

[f(x) + g(y − x)] ≤ inf
x
{λ[f(x) + g(z − x)] + (1− λ)[f(x) + g(y − x)]}

≤ inf
x
{f(x) + g(zλ − x)} .

Therefore we have λ(f ⊙ g)(z) + (1− λ)(f ⊙ g)(y) ≤ (f ⊙ g)(λz + (1− λ)y).

We go straight to Q.2; the claims in Q.1 follow easily from Q.2.

Question 2.

(a) Before we prove that
⊙k

i=1 fi := f1 ⊙ · · · ⊙ fk is convex, we prove the following lemmas:

Lemma 1 f : E → R ∪ {+∞} is convex if and only if the strict epigraph epi
s
(f) := {(x, r) : f(x) < r} is

convex.

Proof. If f is convex, then for all (x, r), (y, s) ∈ epi
s
(f) and λ ∈ [0, 1],

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y) < λr + (1 − λ)s,
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so λ(x, r) + (1 − λ)(y, s) = (λx + (1− λ)y, λr + (1− λ)s) ∈ epi
s
(f). Hence epi

s
(f) is convex.

Conversely, if epi
s
(f) is convex, then for all x, y ∈ dom(f), n ∈ N, (x, f(x) + 1/n), (y, f(y) + 1/n) ∈ epi

s
(f).

By convexity of this set, for any λ ∈ [0, 1], we have

(λx + (1− λ)y, λf(x) + (1− λ)f(y) + 1/n) = λ(x, f(x) + 1/n) + (1− λ)(y, f(y) + 1/n) ∈ epi
s
(f) ,

which means f(λx + (1 − λ)y) < λf(x) + (1 − λ)f(y) + 1/n. This holds for all n ∈ N; taking n → ∞ we have

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y), showing that f is convex. �

Lemma 2 For any finite collection of functions f1, . . . , fk : E→ R ∪ {+∞}

epis

(

k
⊙

i=1

fi

)

=
k
∑

i=1

epis (fi) .

Proof. If (xi, ri) ∈ epis (fi) for i = 1, . . . , k, then fi(xi) < ri for i = 1, . . . , k. Summing up these k

inequalities, we have

k
⊙

i=1

fi(x1 + · · ·+ xk) = inf
y1,...,yk

{

k
∑

i=1

fi(yi) : y1 + · · · + yk = x1 + · · · + xk

}

≤

k
∑

i=1

fi(xi) <

k
∑

i=1

ri,

so (x1 + · · ·+ xk, r1 + · · ·+ rk) ∈ epis

(

⊙k
i=1 fi

)

. This shows that
∑k

i=1 epis (fi) ⊆ epis

(

⊙k
i=1 fi

)

.

Conversely, if (x, r) ∈ epis

(

⊙k
i=1 fi

)

, then

inf
y1,...,yn

{

k
∑

i=1

fi(xi) : x1 + · · ·+ xk = x

}

< r ⇐⇒ ∃x1, . . . , xk ∈ E s.t.
∑

i

xi = x,

k
∑

i=1

fi(xi) < r

For this choice of x1, . . . , xk, fix an ε > 0 such that

k−1
∑

i=1

[fi(xi) + ε] + fk(xk) < r.

Then we have

(xi, fi(xi) + ε) ∈ epis (fi) for i = 1, . . . , n− 1, and

(

xk, r −

k−1
∑

i=1

[

fi(xi) + ε
]

)

∈ epis (fk) .

Hence (x, r) =
∑k−1

i=1 (xi, fi(xi) + ε) +
(

xk, r −
∑k−1

i=1

[

fi(xi) + ε
]

)

∈
∑k

i=1 epis (fi). This shows that

epis

(

⊙k
i=1 fi

)

⊆
∑k

i=1 epis (fi). Therefore epis

(

⊙k
i=1 fi

)

=
∑k

i=1 epis (fi). �
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Now observe that any function f : E→ R∪{+∞} is convex if and only if epis (f) ∈ E×R is a convex

set. With this observation, we can easily see that if f1, . . . , fk : E → R ∪ {+∞} are all convex, then

epis (f1) , . . . , epis (fk) ∈ E× R are all convex sets, so epis

(

⊙k
i=1 fi

)

=
∑k

i=1 epis (fi) is a convex set,

implying that
⊙k

i=1 fi is a convex function. �

Remark We saw a nice interpretation of infimal convolution, that the strict epigraph of f ⊙ g is simply the

Minkowski sum of those of f and g, even if these functions are not convex. Unfortunately, we don’t have

epi (f ⊙ g) = epi (f) + epi (g) in general. A simple example is f, g : R→ R defined by f(t) = exp(t) and g ≡ 0.

f ⊙ g ≡ 0, so epi (f ⊙ g) = R× R+. By epi (f) + epi (g) = R× R++.

(b) Next we prove that
(

⊙k
i=1 fi

)∗
= f∗1 + · · ·+ f∗k . In fact, for any x∗ ∈ E,

(

k
⊙

i=1

fi

)∗

(x∗) = sup
x

{

〈x∗, x〉 − inf
x1,...,xk

{f1(x1) + · · ·+ fk(xk) : x1 + · · ·+ xk = x}
}

= sup
x

{

〈x∗, x〉 − inf
x1,...,xk−1

{

f1(x1) + · · ·+ fk−1(xk−1) + fk
(

x− (x1 + · · ·+ xk−1)
)}

}

= sup
x

sup
x1,...,xk−1

{

〈x∗, x〉 −
[

f1(x1) + · · ·+ fk−1(xk−1) + fk
(

x− (x1 + · · ·+ xk−1)
)]

}

=
k
∑

i=1

sup
xi

[

〈x∗, xi〉 − fi(xi)
]

=

k
∑

i=1

f∗i (x
∗).

Therefore,
(

⊙k
i=1 fi

)∗
= f∗1 + · · · + f∗k .
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2 Entropy Minimization

Question 1.

(a) For any γ ∈ R, let q(t) := γt+ p(t). Note that for t > 0, q(t) = t
[

ln t+ (γ − 1)
]

.

(i) q is strictly convex on R+.

Proof. For any t > 0, q′(t) = γ + ln t and q′′(t) = 1/t > 0. Hence q is strictly convex on R++.

For any t > 0 and λ ∈ (0, 1),

p(λt) = λt ln(λt)− λt = λ(t ln t− t) + λt lnλ < λp(t)

as lnλ < 0. This shows that for any distinct t1, t2 ≥ 0 and λ ∈ (0, 1), q(λt1 + (1 − λ)t2) <

λq(t1) + (1 − λ)q(t2) (since q is the sum of p and a multiple of t), that is,q is strictly convex on

R+. �

(ii) q has bounded level sets.

Proof. Fix any α ∈ R. For t > max{1, exp(α− γ + 1)},

ln t ≥ α− (γ − 1) =⇒ (γ − 1)t+ t ln t ≥ αt > α,

so {t ∈ R : q(t) ≤ α} = {t > 0 : γt + (t ln t − t) ≤ α} ∪ {0} ⊆
[

0,max{1, exp(α − γ + 1)}
]

, that is,

{t ∈ R : q(t) ≤ α} is bounded. �

(iii) q is bounded below (and in fact attains global minimum on R+).

Proof. In the same spirit as in Lemma 1, Q6 from Assignment 3, q, as a continuous function on R+

with bounded level sets,1 attains a unique minimum on R+. Hence q is bounded below.

Alternatively, as computed in (ai), for t > 0, q′(t) = 0 iff t = e−γ . Sot = e−γ is the only stationary

point of the strictly convex function q; moreover,

q(e−γ) = e−γ [ln(e−γ)− 1 + γ] = −e−γ < 0 = q(0).

Therefore q attains global minimum at t = e−γ . �

1It is well-known that q is continuous on R++; q is also continuous at zero because limtց0 t ln t = limtց0 t−1/(−t−2) =
0 by L’hôpital’s rule.)
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(b) For a fixed c ∈ R
n, define g : R

n → R ∪ {+∞} by

g(x) :=
n
∑

i=1

qi(xi) , where qi(t) := cit+ p(t).

(i) g is strictly convex on R
n
+.

Proof. Since qi is strictly convex on R+ for i = 1, . . . , n as shown in (ai), for any distinct x, y ∈ R
n
+ and

λ ∈ (0, 1), g(λx+(1−λ)y) =
∑n

i=1 qi(λxi+(1−λ)yi) <
∑n

i=1 λqi(xi)+(1−λ)q(yi) = λg(x)+(1−λ)g(y).

�

(ii) g has compact level sets.

Proof. Fix any α ∈ R. If there exists a sequence {yi}i ⊂ {x ∈ R
n : g(x) ≤ α} ⊆ R

n
+ such

that {yi}i is unbounded, then there must exist some index j ∈ {1, . . . , n} such that {yij}i ∈ R+

is unbounded. By (aiii), {qj(y
i
j)}i ∈ R+ must be unbounded. But again by (aiii) this means

g(yi) ≥ qj(y
i
j) −

∑

k 6=j e
−ck → +∞, contradicting the fact that {yi}i ⊂ {x ∈ R

n : g(x) ≤ α}.Thus

{x ∈ R
n : g(x) ≤ α} must be a bounded set.

Since qi is continuous on R+ as mentioned in (aiii), g is continuous on R
n
+. This shows that {x ∈ R

n :

g(x) ≤ α} ⊆ R
n
+ is a compact set. �

Question 2. For any x̄ ∈ int(Rn
+) = R

n
++ and x ∈ bd(Rn

+) = {x ∈ R
n : xi = 0 for some i}, the

directional derivative f ′(x; x̄− x) = −∞.

Proof. Fix any j such that xj = 0, (noting that x̄i > 0,)

p(xj + t(x̄j − xj))− p(xj)

t
=

p(tx̄j)

t

=
(tx̄j)(ln tx̄j − 1)

t

= x̄j(ln t+ ln x̄j − 1).

finitely valued for all i for sufficiently small t > 0, we have (recalling Claim 1 from Assignment 1) By

convexity of p and the fact that p(x̄i + t(x̄i − xi))− p(xi) is finitely valued for all i, we have (recalling

Claim 1 from Assignment 1)

f(xi + t(x̄i − xi))− f(xi)

t
=

n
∑

i=1

p(xi + t(x̄i − xi))− p(xi)

t

≤
p(xj + t(x̄j − xj))− p(xj)

t
+
∑

i6=j

[p(x̄i)− p(xi)]

= x̄j(ln t+ ln x̄j − 1) +
∑

i6=j

[p(x̄i)− p(xi)]→ −∞

as tց 0. Therefore f ′(x; x̄− x) = limtց0 t
−1
[

f(xi + t(x̄i − xi))− f(xi)
]

= −∞. �
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Question 3. If there exists x̃ ∈ R
n
+(= dom(f)) such thatAx = b, then the level set {x ∈ R

n : g(x) ≤

g(x̃), Ax = b} ∈ R
n
+ is nonempty and, by Question 2, compact. Therefore there exists

x̄ ∈ arg min
x

{

g(x) : g(x) ≤ g(x̃), Ax = b
}

.

Obviously, x̄ is a global solution of (PE). In fact, x̄ is the only global solution: if x̄1 and x̄2 are distinct

global solutions of (PE), then (x̄1 + x̄2)/2 is also feasible for (PE) and attains a strictly lower objective

value than x1 and x2 by strict convexity of g. This contradiction indicates that there can be only one

global solution of (PE).
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Now we show that x̄ must lie in {x ∈ R
n
++ : Ax = b} whenever itis non-empty2. If x̄ /∈ {x ∈ R

n
++ :

Ax = b} which is non-empty, then there exists x ∈ {x ∈ R
n
++ : Ax = b} and j ∈ {1, . . . , n} such

that x̄j = 0 but xj > 0. Then by Q2, f ′(x̄;x − x̄) = −∞ and this means g′(x̄;x − x̄) = −∞, so

g(x̄) > g(x̄+ t(x− x̄)) for sufficiently small t ∈ (0, 1),3 contradicting the optimality of x̄.

Next we derive x̄ explicitly. Assume for now that A is of full row rank.By open-mapping theorem,

A(Rn
++) is open, so b ∈ A(R++) implies there exists δ > 0 such that B(b, δ) ⊂ A(Rn

++) ⊆ A(Rn
+).

Therefore b ∈ intA(Rn
+). By Corollary 3.3.11 of Borwein and Lewis, strong duality holds for the

Fenchel primal-dual pair:

inf
x∈Rn
{g(x) : Ax = b} = sup

φ∈Rm

{bTφ− g∗(ATφ)} = bT φ̄− g∗(AT φ̄)

for some φ̄ ∈ R
m. Since x̄ solves the primal problem, we have

g(x̄) + g∗(AT φ̄) = bT φ̄ = x̄T (AT φ̄) (by feasibility of x̄).

By Fenchel-young inequality, we have that AT φ̄ ∈ ∂g(x̄).But x̄ > 0, so g is indeed differentiable at x̄,

and ∂g(x̄) contains one single element, which is ∇g(x̄) = [ln x̄1 + c1, . . . , ln x̄n + cn]
T . Therefore, for

j = 1, . . . , n,

ln x̄j + cj = (Aφ̄)j =⇒ x̄j = exp(Aφ̄− c)j .

Furthermore, φ̄ is a Lagrange multiplier for x̄, that is, L(x̄, φ̄) ≤ L(x, φ̄) for all x ∈ R
n, where

L(x, φ) := g(x)+φT (b−Ax) is the Lagrangian. In fact, by Strong Fenchel duality and Fenchel-Young

inequality, for any x ∈ R
n,

L(x̄, φ̄) = g(x̄)

= φ̄T b− g∗(AT φ̄)

≤ φ̄T b−
[

xT (AT φ̄)− g(x)
]

= g(x) + φ̄T (b−Ax) = L(x, φ̄).

2More generally, x̄ must lie in ri{x ∈ R
n
+ : Ax = b}, which is non-empty because {x ∈ R

n
+ : Ax = b} is convex and

assumed to be non-empty.
3To be more rigorous, we note that from Q.2,

f(x̄ + t(x − x̄)) − f(x̄) ≤ t

8

<

:

xj(ln t + ln xj − 1) +
X

i6=j

[p(xi) − p(x̄i)]

9

=

;

=⇒ g(x̄ + t(x − x̄)) − g(x̄) = f(x̄ + t(x − x̄)) − f(x̄) + tcT (x − x̄)

≤ t

8

<

:

xj ln t + xj(lnxj − 1) +
X

i6=j

[p(xi) − p(x̄i)] + cT (x − x̄)

9

=

;

which is negative for sufficiently small t ∈ (0, 1) because ln t → −∞ as t ց 0. This contradicts the optimality of x̄.
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This shows that x̄ is a global minimizer of L(·, φ̄). Note that we essentially showed that if x̄ and φ̄

solve the Fenchel primal-dual problem, then φ̄ is a Lagrange multiplier for x̄.

It remains to deal with the case when A is not of full row rank.
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If A is of row rank m′ < m, there exist Ã ∈ R
m′×n, b̃ ∈ R

m′
such that Ãx = b̃ iff Ax = b, and the

row rank of Ã equals m′. The computation above indicates that x̄j = exp(Ãφ̃ − c)j for all j, where

φ̃ ∈ R
m′

solves the maximization problem

sup
φ∈Rm′

{b̃Tφ− g∗(ÃTφ)}.

Then we can show (see Claim 1 below) that φ̄ ∈ R
m, defined by φ̄J = φ̃ (where J is the index set

ofrows taken from A in forming Ã) and φ̄j = 0 for all j /∈ J , solves the maximization problem

sup
φ∈Rm

{bTφ− g∗(ATφ)}.

It follows that x̄j = exp(Aφ̄ − c)j for all j. Since (x̄, φ̄) is a Fenchel primal-dual solution pair, φ̄ is a

Lagrange multiplier for x̄ as explained earlier.

Claim 1 If φ̃ ∈ R
m solves the maximization problem

sup
φ∈Rm

{bTφ− g∗(ATφ)},

and α = ATµ and β = bTµ for some µ ∈ R
m (that is, (α, β) is a linear combination of the rows of

(A, b)), then for any η ∈ R, φ̄ := (φ̃− ηµ; η) ∈ Rm+1 solves the maximization problem

sup
φ∈Rm+1







(

b

β

)T

φ− g∗





[

A

αT

]T

φ











.

In particular, (φ̃, 0) is a solution.

Proof. It suffices to rewrite the clumsy objective function in the new optimization problem: for any

(ψ, η) ∈ R
m+1,

(

b

β

)T (

ψ

η

)

− g∗





[

A

αT

]T (

ψ

η

)



 = bTψ + βη − g∗
(

ATψ + ηα
)

= bTψ + bTµη − g∗
(

ATψ + ηATµ
)

= bT (ψ + ηµ)− g∗
(

AT (ψ + ηµ)
)

.

Therefore

sup
φ∈Rm+1







(

b

β

)T

φ− g∗





[

A

αT

]T

φ











= sup
(ψ,η)∈Rm+1

{

bT (ψ + ηµ)− g∗
(

AT (ψ + ηµ)
)}

≤ sup
φ∈Rm

{bTφ− g∗(ATφ)}
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and for any η ∈ R, taking ψ = φ̃− ηµ we have

bT (ψ + ηµ)− g∗
(

AT (ψ + ηµ)
)

= bT φ̃− g∗(AT φ̃) = sup
φ∈Rm

{bTφ− g∗(ATφ)}.

This shows that (ψ; η) solves sup(ψ,η)∈Rm+1

{

bT (ψ + ηµ)− g∗
(

AT (ψ + ηµ)
)}

. �

3 Bonus Questions

3.1 DAD problem

First, recall that vec: R
n×n → R

n2

defined by vec(M) = (M1;M2; . . . ;Mn) where M1, . . . ,Mn are

the columns of M (that is, vec(M) stacks up the columns of M), is an isomorphism between R
n×n

and R
n2

. In particular, if J ⊆ {1, . . . , n} × {1, . . . , n} is non-empty and L is the subspace of R
n×n

consisting of matrices whose (i, j)-th entry is zero whenever (i, j) /∈ J , this isomorphism indicates

that L is isomorphic to R
|J | (by eliminating all the zero entries).

Thanks to this trivial isomorphism, the results in Q.2 can be extended to the case of matrices: given

any such J and L, and given a linear map A : R
n×n → R

m, b ∈ R
m, C ∈ R

n×n, the entropy

minimization problem

(PE′) min
X∈L

F (X) + 〈C,X〉

s.t. A(X) = b,

where F (X) :=
∑

i,j

p(Xij)



=
∑

(i,j)∈J

p(Xij) for X ∈ L





has the following properties:

1. The objective function is strictly convex on L++ := {X ∈ L : Xij > 0 ∀ (i, j) ∈ J }.

The objective function has compact level sets.

2. For any X ∈ int(L+) and X̄ ∈bd(L+), F ′(X̄ ;X − X̄) = −∞.

(Here L+ := {X ∈ L : Xij ≥ 0 ∀ (i, j) ∈ J }.)

3. Whenever there exists an X ∈ L+ such that A(X) = b, (PE’) has a unique solution X̄ ∈ L.

Moreover, if there exists an X ∈ L++, X̄ can be determined explicitly:

X̄ij = exp(A∗φ̄− C) ∀ (i, j) ∈ J ,

where φ̄ is a solution to the dual problem

max
φ∈Rm

{

〈φ, b〉 −
(

F + 〈C, ·〉
)∗

(A∗φ)
}

.
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(a) Necessity: Given a matrixA ∈ R
n×n with doubly stochastic pattern, let J :=

{

(i1, j1), (i2, j2), . . . , (ir, jr)
}

consist of indices of positive entries of A. Consider the subspace L of R
n×n consisting of matrices

whose (i, j)-th entry is zero whenever (i, j) /∈ J . The interior of L consists of matrices whose (i, j)-th

entry are non-zero if and only if (i, j) ∈ J .

Define C ∈ R
n×n by

Cij :=







− logAij if Aij > 0

0 otherwise
.

Define Di := (0, . . . ,1, . . . , 0) ∈ R
n×n (that is, the i-column of D consists of all ones and all other

columns are zero columns) and Fi := DT
i for i = 1, . . . , n.

Consider the following minimization problem:

min
X∈L

F (X) + 〈C,X〉

s.t. 〈Di,X〉 = 1 for i = 1, . . . , n

〈Fi,X〉 = 1 for i = 1, . . . , n,

where 〈U, V 〉 := tr(UTV ) for matrices U and V of the same dimension.

Since A has doubly stochastic pattern, there exists X ∈ L++ such that X is doubly stochastic. Then

X is feasible, so there exists a unique solution X̄ for the given problem: there exists (φ̄, ψ̄) ∈ R
n+n

(which is a Lagrange multiplier of the minimization problem) such that for all (i, j) ∈ J ,4

X̄ij = exp
(

(D∗φ̄)ij + (F∗ψ̄)ij − Cij
)

= exp
(

(JDiag(φ))ij + (Diag(ψ)J)ij − Cij
)

= exp
(

(φj + ψi + logAij
)

= exp(φj) exp(ψi)Aij .

Therefore X̄ = ΨAΦ, where Ψ = Diag(exp(ψ1), . . . , exp(ψn)) and Φ = Diag(exp(φ1), . . . , exp(φn)).

By its feasibility for the minimization problem, X̄ is doubly stochastic. This proves that if A has

doubly stochastic pattern, then there exists diagonal matrices Ψ and Φ of strictly positive diagonal

entries such that ΨAΦ is doubly stochastic.

Sufficiency : Conversely, for any A ∈ R
n×n
+ such that X := Diag(ψ)ADiag(φ) is doubly stochastic for

some ψ, φ ∈ R
n
++, since Xij = ψiφjAij, Xij > 0 if and only if Aij > 0. This shows that A has doubly

stochastic pattern.

4If we write D(X) := [〈Di, X〉]i and F(X) := [〈Fi, X〉]i for i = 1, . . . , n, for any φ ∈ R
n, D∗(φ) = JDiag(φ) and

F∗(φ) = Diag(φ)J, where J is the n × n matrix of all ones.
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3.2 Fenchel duality vs. Lagrangian duality

For any (finite dimensional) inner product space E and vector space Y with a partial-order-inducing

closed convex cone K, proper convex functions f : E→ R∪{+∞} and K-convex function g : E→ Y ,

we ask whether it is true that in the abstract convex program

inf
x∈E

f(x) s.t. g(x) �K 0,

strong Fenchel duality implies strong Lagrangian duality, or vice verse. As it turns out, neither way

is true.

Strong Fenchel duality does not imply strong Lagrangian duality

Consider the convex program

min
x∈R

x s.t. x2 ≤ 0.

(Note that x̄ = 0 as the only feasible point is the optimal solution.) The Lagrangian is given by

L(x, µ) = x+ µx2 =







µ
(

x− 1
2µ

)2
− 1

4µ if µ > 0

x if µ = 0

=⇒ min
x
L(x, µ) =







− 1
4µ if µ > 0

−∞ if µ = 0
.

The Lagrangian dual

sup
µ≥0

min
x

L(x, µ) = sup
µ>0

{

−
1

4µ

}

has an optimal value 0 which is not attained by any feasible µ. Hence strong Lagrangian duality fails.

On the other hand, strong Fenchel duality holds: rewrite the convex program as

min
x
f(x) + h(x) := x+ δR−(x2).

Now we compute the conjugates of f and h: for any t ∈ R,

f∗(t) = sup
x

(tx− x) = sup(t− 1)x =







0 if t = 1

+∞ otherwise

h∗(t) = sup
x

[tx− h(x)] = sup
{

tx : x2 ≤ 0
}

= 0

Therefore the Fenchel dual problem is given by

sup
t

[−f∗(t)− h∗(−t)] = − inf
t
f∗(t) = −f∗(1) = 0,
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so strong Fenchel duality holds.
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Strong Lagrangian duality does not imply strong Fenchel duality

Consider the convex program

min
x∈R

f(x) s.t. δ0(x) := δ{0}(x) ≤ 0,

where f : R→ R ∪ {+∞} is the entropy function

f(x) :=



















x log x− x if x > 0

0 if x = 0

+∞ if x < 0

.

The optimal solution is x̄ = 0 (as this is the only feasible point). The Lagrangian is given by

L(x, µ) = f(x) + µδ0(x) =







µδ0(x) if µ > 0

f(x) if µ = 0

=⇒ min
x
L(x, µ) =







0 if µ > 0

−1 if µ = 0
.

It follows that the Lagrangian dual

max
µ≥0

min
x

L(x, µ)

attains its maximum at any µ > 0 (meaning that any µ > 0 is a Lagrange multiplier). Therefore,

strong Lagrangian duality holds.

Now we write down the Fenchel conjugates relevant for the Fenchel dual: as in the computation in

entropy maximization problem, for any t ∈ R,

f∗(t) = sup
x

[tx− f(x)] = − inf
x

[f(x)− tx] = −[f(et)− tet] = et.

Letting h(x) := δR−(δ0(x)), we have that for any t ∈ R,

h∗(t) = sup
x

[tx− h(x)] = sup
x
{tx : δ0(x) ≤ 0} = sup

x
{tx : x = 0} = 0.

Therefore the Fenchel dual problem is given by

sup
t

[−f∗(t)− h∗(−t)] = − inf
t
f∗(t) = 0,

so the duality gap is zero, but obviously the dual optimality is not attained. Thus strong Fenchel

duality does not hold.
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Remark In both examples, the duality gap is zero, and one of the strong dualities fail because the

dual does not attain the optimal value.

We notice that in both examples we have an obscure constraint that amounts to restrict x = 0. In both

cases, the conjugate h∗ that takes care of the constraint is identically zero, so whether strong Fenchel

duality holds reduces to the question of whether the conjugate of the objective function attains global

minimum. This marks the difference between the Fenchel duals of the first and the second problem.

This seems to indicate that whether strong Fenchel duality holds or not depends at least partially on

the global behavior of the Fenchel conjugates of relevant functions.

As for the well-studied Lagrangian duality, it appears that whether strong duality holds or not de-

pends more on the way the constraint is formulated. For instance, in the second example where strong

Lagrangian duality holds, if we replace the constraint by x2 ≤ 0, strong Lagrangian duality would fail

for the same reason as in the first example.

This indicates that the concept of strong Lagrangian duality is rather “algebraic representation sen-

sitive” (which is indeed subtlely hinted at if we think of the common constraint qualifications such as

LICQ and MFCQ which are more algebraic than geometric in nature). On the other hand, Fenchel

duality seems to be more immune from such sensitivity.

CO 663 Convex Opt. and Analysis Fall 200915



4 MATLAB

The difference map algorithm is destinated to solve the set intersection problem: given two sets

A,B ∈ R
n, find an x ∈ R

n such that x ∈ A ∩ B. The algorithm relies on the ability to compute PA

and PB , as can be seen in the following:

Algorithm 1 Difference map algorithm

1: Inputs: non-empty sets A,B ∈ R
n, and x ∈ R

n;
2: Set tolerance ε > 0; ∆← 2ε; z ← x;
3: while ∆ > ε do
4: Compute PA(x) and PB(x);
5: Choose β ∈ {−1, 1};
6: Compute

fA(x) = PA(x)− β[PA(x)− x],
fB(x) = PB(x) + β[PB(x)− x],

Ω = PA
(

fB(x)
)

− PB
(

fA(x)
)

;

7: x← x+ βΩ , z ← PB(fA(x)), ∆← ‖Ω‖ ;
8: end while

RETURN z .

β on Line 6 is “determined through experimentation”. When the while loop terminates, we get a

point x such that

x ≈ x+ PA
(

fB(x)
)

− PB
(

fA(x)
)

, i.e. PA
(

fB(x)
)

≈ PB
(

fA(x)
)

∈ A ∩B.

In this way we get a fixed point by computing PB(fA(x)), for instance.

As can be seen from the algorithm, the most expensive and difficult step is to compute the projections

on sets A and B. It is not always possible if one of A and B is non-convex (the problem could be

ill-posed in that case); but if A and B are both closed convex, the projection maps are well-defined

and could be easily computed for special classes of convex sets.

Recall that ȳ = PA(x) if and only if y ∈ A solves the minimization problem

min
y

{

1

2
‖x− y‖2 : y ∈ A

}

.

We see that if A is convex and if we have a nice representation of A, then the problem is actually

tractable.
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Implementing the algorithm...

Different ways of choosing β lead to slightly different versions of the difference map algorithm. One

way is to always choose β = 1, as in Algorithm 2; another way is to compute the result for both β = 1

and β = −1, and then take whichever one that makes a greater progress, as in Algorithm 3. Naturally,

Algorithm 3 takes significantly longer to terminate because more projections are done. As a heuristic,

Algorithm 2 is probably a better one to go for, unless further information is given about the convex

sets of interest.

Algorithm 2 Difference map algorithm, Version 1

1: Inputs: non-empty sets A,B ∈ R
n, and x ∈ R

n;
2: Set tolerance ε > 0, ∆← 2ε;
3: while ∆ > ε do
4: Compute PA(x) and PB(x);
5: x← x+

[

PA
(

2PB(x)− x
)

− PB(x)
]

;
6: ∆← ‖PA

(

2PB(x)− x
)

− PB(x)‖ ;
7: end while

RETURN PB(x) .

Algorithm 3 Difference map algorithm, Version 2

1: Inputs: non-empty sets A,B ∈ R
n, and x ∈ R

n ;
2: Set tolerance ε > 0 , ∆← 2ε , z ← x ;
3: while ∆ > ε do
4: Compute PA(x) and PB(x);
5: Compute:
6: ◦ f+

A (x), f+
B (x),Ω+ corresponding to β = 1, and

7: ◦ f−A (x), f−B (x),Ω− corresponding to β = −1:

f+
A (x) = x = PA(x)− [PA(x)− x]
f+
B (x) = 2PB(x)− x = PB(x) + [PB(x)− x]
f−A (x) = 2PA(x)− x = PA(x)− (−1)[PA(x)− x]
f−B (x) = x = PB(x) + (−1)[PB(x)− x]

Ω+ = PA
(

f+
B (x)

)

− PB
(

f+
A (x)

)

Ω− = PA
(

f−B (x)
)

− PB
(

f−A (x)
)

.

8: if ‖Ω+‖ ≥ ‖Ω−‖ then
9: x← x+ Ω+ , z ← PB

(

f+
A (x)

)

, ∆← ‖Ω+‖ ;
10: else
11: x← x− Ω− , z ← PB

(

f−A (x)
)

, ∆← ‖Ω−‖ ;
12: end if
13: end while

RETURN z
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Computational results : closest correlation matrix problem

We apply the difference map algorithm on the problem of projecting a random n× n matrix onto the

set of symmetric positive semidefinite matrices with diagonal of all ones, by taking A as the PSD cone

and B as the set of symmetric matrices with diagonal of all ones. The computed projection is then

compared to the best approximation of X by measuring the distances of X to its projection and the

distance from X to the set A ∩ B. We use the operator norm (that is, the largest singular value) of

matrix in the computation.

Nine sets of data were used in the numerical experiment. The largest matrix size that CVX can handle

is 32 by 32, so our input matrices ranges from size 5 to 32.

The numerical result does not indicate significant difference between the computed results of Algorithm

2 and 3. As expected, Algorithm 3 takes much longer time to terminate. Interestingly, the output is

far from being the best approximation of X as we can see from the distance of X to A ∩B.

Problem Size Time (s) Time (s) Overheads Overheads Dist(X,Z) Dist(X,Z) Dist(X,A ∩B)

(Ver. 1) (Ver. 2) (Ver.1) (Ver. 2) (Ver.1) (Ver.1)

1 5 2.2758 4.6190 8 8 1.5361 1.5361 1.0856

2 5 1.9589 4.0655 7 7 3.1145 3.1145 1.6935

3 5 1.9392 4.0448 7 7 1.2609 1.2609 0.9959

4 10 3.1817 6.4658 9 9 6.4111 6.9103 1.9858

5 10 3.1945 6.4168 10 10 7.7248 7.7248 2.1469

6 10 2.7114 5.6836 9 9 6.6505 6.9725 2.4085

7 20 8.5419 18.1181 11 11 15.9036 15.9036 2.9235

8 30 22.9039 48.8439 14 14 25.8676 25.8676 3.7527

9 32 24.1903 53.9457 14 14 29.4057 29.4057 4.1762

5-by-5 matrix inputs and their results:
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Problem X Output

1

0

B

B

B

B

B

B

@

1.7904 1.0917 0.69350 1.4154 0.60587

1.0917 0.27173 0.81778 1.3663 0.42120

0.69350 0.81778 1.7373 0.85626 0.50337

1.4154 1.3663 0.85626 1.3627 0.78234

0.60587 0.42120 0.50337 0.78234 0.13864

1

C

C

C

C

C

C

A

0

B

B

B

B

B

B

@

1.0000 0.74833 0.58381 0.75657 0.56528

0.74833 1.0000 0.64252 0.79714 0.58172

0.58381 0.64252 1.0000 0.63732 0.48269

0.75657 0.79714 0.63732 1.0000 0.62083

0.56528 0.58172 0.48269 0.62083 1.0000

1

C

C

C

C

C

C

A

2

0

B

B

B

B

B

B

@

1.7059 0.45636 0.28667 1.3925 0.68911

0.45636 0.73692 0.58237 1.7528 1.6990

0.28667 0.58237 0.31853 1.1620 0.52296

1.3925 1.7528 1.1620 1.9610 1.4308

0.68911 1.6990 0.52296 1.4308 1.3380

1

C

C

C

C

C

C

A

0

B

B

B

B

B

B

@

1.0000 0.31936 0.22027 0.40188 0.32422

0.31936 1.0000 0.35863 0.55281 0.54961

0.22027 0.35863 1.0000 0.41103 0.32826

0.40188 0.55281 0.41103 1.0000 0.50767

0.32422 0.54961 0.32826 0.50767 1.0000

1

C

C

C

C

C

C

A

3

0

B

B

B

B

B

B

@

1.5442 0.55581 0.54504 1.4249 1.5048

0.55581 0.0040511 0.94756 0.66358 0.53595

0.54504 0.94756 0.81503 0.79213 0.78669

1.4249 0.66358 0.79213 0.62212 0.57944

1.5048 0.53595 0.78669 0.57944 0.79959

1

C

C

C

C

C

C

A

0

B

B

B

B

B

B

@

1.0000 0.52555 0.54667 0.73060 0.73459

0.52555 1.0000 0.62698 0.56668 0.51651

0.54667 0.62698 1.0000 0.59218 0.57277

0.73060 0.56668 0.59218 1.0000 0.61805

0.73459 0.51651 0.57277 0.61805 1.0000

1

C

C

C

C

C

C

A
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Computational results : projection on two circles

We apply the difference map algorithm on the problem of projecting a point x ∈ R
2 onto the inter-

section of

A := {y : ‖y − (1, 0)‖ = 1} and B := {y : ‖y‖ = 2}.

Since A ∩B = {(−2, 0)}, the program should return something close to (−2, 0).

The choice of β is based on the position of the initial point x: β = 1 if x1 ≥ 0 and β = −1 otherwise.

Four different initial points were tried in the numerical experiment, where the projections are explicitly

computed without invoking CVX.

Problem Time (s) Overheads Initial point Result

1 9.4006e-5 3 (2.5, 0) (-2, 0)

2 4.7338e-4 39 (0, -2.5) (-2.0000, -1.2313e-5)

3 0.0048 16 (-1, 1) (-2.0000, 3.6409e-5)

4 0.0020 37 (2.5, 3) (-2.0000, 1.2025e-5)
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