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CONVEX OPT. AND ANALYSIS — Assignment 3

1 Convex Functions, Convex Sets, Fenchel Conjugates

Question 1. We prove that (a) =⇒ (c) =⇒ (b) =⇒ (a).

(a) =⇒ (c) : Let {xn, αn}n ⊂ epi(f) be a sequence that converges to (x, α). Since f(xn) ≤ αn ∀ n,

we have

f(x) ≤ lim inf f(xn) ≤ lim inf αn = limαn = α .

Thus (x, α) ∈ epi(f), showing that epi(f) is closed.

(c) =⇒ (b) : Let {xn}n ⊂ Lα be a sequence that converges to x. Then (xn, α) ⊂ epi(f) converges

to (x, α). By the closedness of epi(f), (x, α) ∈ epi(f), so f(x) ≤ α, that is, x ∈ Lα. This shows that

Lα is closed.

(b) =⇒ (a) : We shall prove the contrapositive argument. Suppose f is not lower semi-continuous

at some x ∈ E. Then there exists a sequence {xn}n that converges to x but lim inf f(xn) < f(x).

This means we can pick a subsequence {xnk
}k of {xn}n such that limk f(xnk

) = lim inf f(xn), and an

α ∈ R such that lim inf f(xn) < α < f(x). Then limk f(xnk
) < α < f(x), so there exists k0 such that

for all k ≥ k0, f(xnk
) < α < f(x). Consequently, xnk

∈ Lα converges to x but x /∈ Lα. Hence, Lα is

not closed.

Question 2. Let φ : R × R → R be defined by φ(x, x∗) = x · x∗ − |x| = |x|
(

x∗sgn(x) − 1
)

. Note that

f∗(x∗) = supx φ(x, x∗). Fix any x∗; two things could happen:

Case 1: |x∗| − 1 > 0. Let x = sgn(x∗). Then for all λ > 0, sgn(λx) = sgn(x∗), and

φ(λx, x∗) = |λx|
(

x∗sgn(λx) − 1
)

= λ(|x∗| − 1) → +∞ as λ→ +∞.

Thus f∗(x∗) = supx φ(x, x∗) = +∞ if |x∗| − 1 > 0.
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Case 2: |x∗| − 1 ≤ 0. In this case,

φ(x, x∗) = x · x∗ − |x| = |x|
(

x∗sgn(x) − 1
)

≤ |x|
(

|x∗| − 1
)

≤ 0 ,

and φ(0, x∗) = 0. Thus f∗(x∗) = supx φ(x, x∗) = 0 if |x∗| − 1 ≤ 0.

Therefore f∗ = δ[−1,1].
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Question 3. Given Euclidean spaces E, Y and a linear map A : E → Y , we first prove the following

key lemma:

Lemma 1 If f : E → (−∞,+∞] and g : Y → (−∞,+∞] satisfy

0 ∈ int(dom(g) −Adom(f)) , (1.1)

then 0 ∈ ∂(f + g ◦ A)(x̄) implies 0 ∈ ∂f(x̄) +A∗∂g(Ax̄).

Proof It immediately follows from the definition of subdifferentials that 0 ∈ ∂(f + g ◦ A)(x̄) implies

x̄ is a global minimizer of f + g ◦ A on E. If (1.1) holds, by Theorem 3.3.5 of Borwein and Lewis, we

have that

f(x̄) + g(Ax̄) = inf
E

{f + g ◦ A} = sup
φ∈Y

{−f∗(A∗φ) − g∗(−φ)} = −f∗(A∗φ̄) − g∗(−φ̄)

for some φ̄ ∈ Y . Hence [f(x̄) + f∗(A∗φ̄)] + [g(Ax̄) + g∗(−φ̄)] = 0.

On the other hand, by the Fenchel-Young inequality, we have

f(x̄) + f∗(A∗φ̄) ≥
〈

x̄, A∗φ̄
〉

=
〈

Ax̄, φ̄
〉

(equality holds iff A∗φ̄ ∈ ∂f(x̄); )

g(Ax̄) + g∗(−φ̄) ≥
〈

Ax̄,−φ̄
〉

(equality holds iff − φ̄ ∈ ∂g(Ax̄).)

Summing the two inequalities gives [f(x̄) + f∗(A∗φ̄)] + [g(Ax̄) + g∗(−φ̄)] ≥ 0. But the strong duality

theorem mentioned above says that we have equality. This implies that

f(x̄) + f∗(A∗φ̄) =
〈

Ax̄, φ̄
〉

=⇒ A∗φ̄ ∈ ∂f(x̄); and

g(Ax̄) + g∗(−φ̄) =
〈

Ax̄,−φ̄
〉

=⇒ −φ̄ ∈ ∂g(Ax̄)

=⇒ −A∗φ̄ ∈ A∗∂g(Ax̄).

This shows that 0 = A∗φ̄−A∗φ̄ ∈ ∂f(x̄) +A∗∂g(Ax̄). �

Given any f : E → (−∞,+∞], g : Y → (−∞,+∞] and any linear map A : E → Y , we have

∂f(x) +A∗∂g(Ax) ⊆ ∂(f + g ◦A)(x) for any fixed x: suppose x∗ ∈ ∂f(x) and y∗ ∈ ∂g(Ax). Then we

have that for any u ∈ E,

〈x∗, u− x〉 ≤ f(u) − f(x) , and

〈A∗y∗, u− x〉 = 〈y∗, Au−Ax〉 ≤ g(Au) − g(Ax)

=⇒ 〈x∗ +A∗y∗, u− x〉 ≤ (f + g ◦A)(u) − (f + g ◦ A)(x)
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so x∗ +A∗y∗ ∈ ∂(f + g ◦A)(x).
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Now suppose that the constraint qualification

0 ∈ int (dom(g) −Adom(f))

holds. We show that ∂f(x) + A∗∂g(Ax) = ∂(f + g ◦ A)(x). In fact, if x∗ ∈ ∂(f + g ◦ A)(x), then for

all u ∈ E,

〈x∗, u− x〉 ≤ (f + g ◦A)(u) − (f + g ◦ A)(x)

=⇒ 0 ≤ (f̃ + g ◦ A)(u) − (f̃ + g ◦ A)(x) ,

where f̃ := f + 〈−x∗, ·〉. Therefore 0 ∈ ∂(f̃ + g ◦ A)(x).

Since 〈−x∗, ·〉 is a real-valued function, the domain of f̃ : E → R ∪ {+∞} is the same as that of f . In

particular, the constraint qualification 0 ∈ int(dom(g)−Adom(f̃)) holds. Therefore, by Lemma 1, we

have that there exists some x̃∗ ∈ A∗∂g(Ax) such that −x̃∗ ∈ ∂f̃(x). Then for any u ∈ E,

〈−x̃∗, u− x〉 ≤ f(u) − f(x) − 〈x∗, u− x〉
=⇒ 〈−x̃∗ + x∗, u− x〉 ≤ f(u) − f(x) ,

so x̃∗ + x∗ ∈ ∂f(x). Consequently,

x∗ = (−x̃∗ + x∗) + x̃∗ ∈ ∂f(x) +A∗∂g(Ax) . �
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Question 4(a). Given S is non-empty, open and convex, and f : E → R ∪ {+∞} is such that

dom(f) = S.

Suppose f is a convex function. Then epi(f) is a convex set. Fix any x ∈ S. Then (x, f(x)) is

on the boundary of the closure cl(epi(f)), and since S is open, int(cl(epi(f))) 6= ∅. The supporting

hyperplane theorem implies that ∃ (α, η) ∈ (E× R)\{(0, 0)} such that

αTx+ ηf(x) ≥ αT y + ηr, ∀ (y, r) ∈ epi(f).

First observe that since (x, r) ∈ epi(f) for all r ≥ f(x), r can be arbitrarily large and the above

inequality implies that η ≤ 0. In fact, η < 0: if on the contrary η = 0, we have that αTx ≥ αT y for

all y ∈ S. Since S is open, we can pick sufficiently small ε > 0 such that x± εα ∈ S. Then the above

inequality implies that ε‖α‖2 = 0, so α = 0, which contradicts the earlier result that (α, η) 6= (0, 0).

Now that η < 0, we may assume without loss of generality that η = −1, so we have

αTx− f(x) ≥ αT y − r (y, r) ∈ epi(f) =⇒ f(y) − f(x) ≥ αT (y − x) ∀ y ∈ dom(f) .

In other words, α ∈ ∂f(x). This shows that ∂f(x) 6= ∅.

Conversely, if f : E → R ∪ {+∞} is not a convex function, there exists some x, y ∈ S, λ ∈ (0, 1) such

that f(z) > λf(x) + (1 − λ)f(y), where z := λx + (1 − λ)y. We show that ∂f(z) is an empty set.

Suppose on the contrary that there exists some d ∈ ∂f(z). Then

dT (x− z) ≤ f(x) − f(z) =⇒ dT (λx− λz) ≤ λf(x) − λf(z)

dT (y − z) ≤ f(y) − f(z) =⇒ dT [(1 − λ)y − (1 − λ)z] ≤ (1 − λ)f(y) − (1 − λ)f(z) .

Summing the two inequalities on the right, we have λf(x)+ (1−λ)f(y)− f(z) ≥ 0, which contradicts

the choice of z that f(z) > λf(x) + (1 − λ)f(y). Hence we must have ∂f(z) = ∅.

Question 4(b). If h : clS → R is convex, then h is certainly convex on S.

Conversely, suppose h : clS → R is continuous and h|S is a convex function on S. Pick any x, y ∈ clS

and λ ∈ [0, 1]; then there exist sequences {xn}n ⊂ S and {yn}n ⊂ S such that xn → x and yn → y.

For each n, we have

h(λxn + (1 − λ)yn) ≤ λh(xn) + (1 − λ)h(yn) .

Taking n→ ∞, by continuity of h we have h(λx+ (1− λ)y) ≤ λh(x) + (1− λ)h(y). Thus h is convex

on clS.

But the statement “ h : clS → R being continuous and h|S being a strictly convex function on S
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imply that h is strictly convex on clS” is not true. Consider the function h : R
2
+ → R defined by

h(x, y) = −xαyβ, where α, β ∈ (0, 1/2). The function is smooth on R
2
++: for any x, y > 0,

∇h(x, y) =

(

−αxα−1yβ

−βxαyβ−1

)

and ∇2h(x, y) =

(

α(1 − α)xα−2yβ −αβxα−1yβ−1

−αβxα−1yβ−1 β(1 − β)xαyβ−2

)

which has a positive trace α(1 − α)xα−2yβ + β(1 − β)xαyβ−2 and determinant αβ[(1 − α)(1 − β) −
αβ]x2(α−1)y2(β−1) which is positive because 1 − α > 1/2 > α and 1 − β > 1/2 > β. Thus h is strictly

convex on R
2
++. But h is not strictly convex on R

2
+ because h is identically zero on its boundary.
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Question 5(a). ψ : R+ → R defined by ψ(x) = 1 −√
x is convex on R++, because

ψ′(x) = − 1

2
√
x

and ψ′′(x) =
3

4x3/2
> 0

for x > 0. Following from Q.4(b), (right-)continuity of ψ at 0 implies that ψ is indeed convex on R+.

Thus the set {(x1, x2; r) ∈ R
2 ×R : 1−√

x1 ≤ r} is convex. Similarly, convexity of the absolute value

function ensures that {(x1, x2; r) ∈ R
2 × R : |x2| ≤ r} is a convex set. Next,

epi(f) = {(x1, x2; r) ∈ R
2 × R : 1 −√

x1 ≤ r and |x2| ≤ r}
= {(x1, x2; r) ∈ R

2 × R : 1 −√
x1 ≤ r} ∪ {(x1, x2; r) ∈ R

2 × R : |x2| ≤ r} ,

meaning that epi(f) as an intersection of two convex sets is convex. Hence f is convex.

Question 5(b). We show that (0, 1), (0,−1) ∈ dom(∂f), but (0, 0) = 1/2[(0, 1) + (0,−1)] does not

lie in dom(∂f).

(0,±1) ∈ dom(∂f): For any (x1, x2) ∈ R+ × R,

f(x1, x2)− f(0,±1) = max{1−√
x1, |x2|} −max{1−

√
0, | ± 1|} = max{−√

x1, |x2| − 1} ≥ |x2| − 1 .

Note that |x2| − 1 ≥ ±x2 − 1. Consequently,

f(x1, x2) − f(0, 1) ≥ x2 − 1 = 0 · (x1 − 0) + 1 · (x2 − 1) ∀ (x1, x2) ∈ R
2 =⇒ (0, 1) ∈ ∂f(0, 1)

f(x1, x2) − f(0,−1) ≥ −x2 − 1 = 0 · (x1 − 0) + 1 · [x2 − (−1)] ∀ (x1, x2) ∈ R
2 =⇒ (0,−1) ∈ ∂f(0,−1) ,

so both ∂f(0, 1) and ∂f(0,−1) are non-empty.

(0, 0) /∈ dom(∂f): If (d1, d2) ∈ ∂f(0, 0), then for all x1 ≥ 0 (taking x2 to be constantly 0),

d1x1 ≤ f(x1, 0) − f(0, 0) = max{−√
x1,−1} = −√

x1

for x1 ∈ (0, 1). Dividing both sides by x1 (which can be done for x1 > 0), we obtain d1 ≤ −1/
√
x1,

which goes to −∞ as x ց 0+. This absurd result indicates that such (d1, d2) does not exist. Hence

∂f(0, 0) = ∅.
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Question 6. (c.f. Prop 2.1.7 of Borwein and Lewis) We will prove some slightly more general results

(at the expense of having a slightly longer proof). First we need the following lemma:

Lemma 2 If h : E → R is a continuous function with bounded level sets, then arg minE h is non-

empty.

Proof First note that h must be bounded below on E: if there exists a sequence {xn}n such that h(xn) → ∞
as n→ +∞, we may assume without loss of generality that the sequence {h(xn)}n is strictly decreasing. Then

{xn}n ⊆ {x ∈ E : h(x) ≤ h(x1)} which is a bounded set, so {xn}n is a bounded sequence in E. By Weierstrass

Theorem, this sequence has a convergent subsequence; by passing to that subsequence, we may assume without

loss of generality that {xn}n converges to some x̄ ∈ E. By continuity of h, h(xn) → h(x̄) ∈ R as n → +∞,

contradicting the given condition that h(xn) → −∞ as n→ +∞. Therefore h must be bounded below on E.

h being bounded below on E implies that infE h ∈ R. Consider any minimizing sequence {xn}n satisfying

h(xn) < inf h + n−1. Then {xn}n ⊆ {x ∈ E : h(x) ≤ inf h + 1} which is bounded by assumption. Again, by

passing to subsequence we may assume that the sequence {xn}n converges to some x̄ ∈ E. By continuity of h,

inf h ≤ h(x̄) = lim
n
h(xn) ≤ lim

n

(

inf h+
1

n

)

= inf h ,

which shows that x̄ ∈ argminE h. �

Remark This proof shows that any limit point of a minimizing sequence of such function h is indeed a global

minimizer.

Now we prove that if f : E → R is differentiable and is bounded below on E by some m ∈ R, then

for any ε > 0, there exists some x̄ε ∈ E such that ‖∇f(x̄ε)‖ ≤ ε. (In this question the vector norm is

always assumed to be ℓ2 norm.)

For any fixed ε > 0, define the function fε : E → R by fε = f + ε‖ · ‖. This function is continuous, and

any level set Sα(fε) = {x ∈ E : fε(x) ≤ α} = {x : ‖x‖ ≤ ε−1(α − f(x)) ≤ ε−1(α −m)} is bounded.

By the lemma, fε must have a global minimizer x̄ε. It follows that for any t > 0,

fε(x̄ε) ≤ fε(x̄ε − t∇f(x̄ε))

=⇒ − ε‖t∇f(x̄ε)‖ ≤ −ε(‖x̄ε‖ − ‖x̄ε − t∇f(x̄ε))‖) ≤ f(x̄ε − t∇f(x̄ε)) − f(x̄ε)

=⇒ − ε‖∇f(x̄ε)‖ ≤ f(x̄ε − t∇f(x̄ε)) − f(x̄ε)

t
→ ∇f(x̄ε)

T [−∇f(x̄ε)] as t ց 0

=⇒ ‖∇f(x̄ε)‖ ≤ ε

As for convex function f : E → R that is bounded below on E, we have the following result:

Claim 1 For any ε > 0, there exists x̄ε, φ̄ε ∈ E such that φ̄ε ∈ ∂f(x̄ε) and ‖φ̄ε‖ ≤ ε.
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Before proving Claim 1, we need the following lemma:

Lemma 3

∂(ε‖ · ‖)(x̄ε) =







{

ε x̄ε

‖x̄ε‖

}

if x̄ε 6= 0

B(0, ε) if x̄ε = 0
,

Proof First observe that for any λ > 0, any function h : E → R∪{+∞} and x ∈ dom(h), ∂(λh)(x) =

λ∂h(x):

∂(λh)(x) = {d ∈ E : 〈d, y − x〉 ≤ λ[h(y) − h(x)] ∀y ∈ E}
= {λd ∈ E : 〈d, y − x〉 ≤ h(y) − h(x) ∀y ∈ E} = λ∂h(x)

Therefore to prove the claim, it suffices to show that

∂‖ · ‖(x̄ε) =







{

x̄ε

‖x̄ε‖

}

if x̄ε 6= 0

B(0, 1) if x̄ε = 0
.

When x 6= 0, since ‖ · ‖ =
√

‖ · ‖2, x 7→ ‖x‖ is indeed differentiable:

∇‖ · ‖(x) = ∇
√

‖ · ‖2(x) =
2x

2
√

‖x‖2
=

x

‖x‖ ,

so ∂‖ · ‖(x) = { x
‖x‖} when x 6= 0.

When x = 0, using the variational form ‖d‖2 = sup{〈d, x〉 /‖x‖2 : x 6= 0},1 we have that

∂‖ · ‖(0) = {d ∈ R
n : 〈d, x〉 ≤ ‖x‖ ∀x ∈ R

n}

=

{

d ∈ R
n : ‖d‖2 = sup

x 6=0

〈d, x〉
‖x‖ ≤ 1

}

= B(0, 1) . �

Proof of Claim 1. We define the same fε for any ε > 0 and, by continuity and boundedness of f ,2

fε enjoys the same properties as described above, that is, there exists some global minimizer x̄ε of fε.

1In general, for p, q ∈ [1, +∞] satisfying p−1 + q−1 = 1 (with the convention (+∞)−1 = 0), we have that for any
d ∈ R

n,

‖d‖p = sup



〈d, x〉

‖x‖q

: x ∈ R
n\{0}

ff

.

2Recall that f as a real-valued convex function is locally Lipschitz on E, so it is continuous on E.

CO 663 Convex Opt. and Analysis Fall 200910



Since fε is also convex, we have that 0 ∈ ∂fε(x̄ε) = ∂(f + ε‖ · ‖)(x̄ε) = ∂f(x̄ε) + ∂(ε‖ · ‖)(x̄ε).
3 Since

∂(ε‖ · ‖)(x̄ε) =







{

ε x̄ε

‖x̄ε‖

}

if x̄ε 6= 0

B(0, ε) if x̄ε = 0
,

there exists some φ̄ε of norm ε lying in ∂f(x̄ε). �

Remark The function fε defined in the question is indeed a “regularized” version of f . While f

may not have a global minimizer, such regularization of f could give us a new function that has a

minimizer. This question shows that under some assumptions on the function f , the global minimizer

from the regularized function can serve as a good proxy, in a sense that it approximately satisfies the

first order necessary condition of optimality.

3The sum rule applies at the last equality because both f and ε‖ · ‖ have the whole space E as their domains.

CO 663 Convex Opt. and Analysis Fall 200911



Question 7(a). Consider the closed convex cone K = {x ∈ R
n : x1 ≥

√

x2
2 + · · · + x2

n }. First we

note that for any x̂ ∈ R
n−1, the vector (‖x̂‖2, x̂

T )T lies in K.

Let d = (d1, . . . , dn) ∈ NK(0). Define d̂ := (d2, . . . , dn)T ∈ R
n−1. Then for any x̂ ∈ R

n−1\{0},

0 ≥ dT (‖x̂‖2, x
T )T = d1‖x̂‖2 + d̂T x̂

=⇒ − d1 ≥ d̂T x̂

‖x̂‖2
.

Taking supremum over all nonzero x̂ ∈ R
n−1 and using the variational form of vector norm, we have

−d1 ≥ sup
x̂∈Rn−1\{0}

d̂T x̂

‖x̂‖2
= ‖d̂‖2 =

√

(−d2)2 + · · · + (−dn)2 ,

that is, −d ∈ K.

Conversely, let d = (d1, . . . , dn) ∈ K. For any x = (x1, . . . , xn) ∈ K, by Cauchy-Schwartz inequality,

−dT (x− 0) = −d1x1 −
n
∑

i=2

dixi

≤ −d1x1 +

√

√

√

√

n
∑

i=2

d2
i

√

√

√

√

n
∑

i=2

x2
i

≤ −d1x1 + d1x1 = 0 .

Therefore −d ∈ NK(0). Consequently, NK(0) = −K.

Question 7(b). Consider the closed convex cone K = Sn
+ in the Euclidean space (Sn, 〈·, ·〉F ).

(Recall that the Frobenius norm is defined by 〈X,Y 〉F = trace(XTY ).) Before proving NK(0) = −K,

we recall the following lemma which follows easily from linear algebra:

Lemma 4

X ∈ Sn
+ if and only if trace(XY ) ≥ 0 for all Y ∈ Sn

+.

Proof If X ∈ Sn
+, then for any Y =

∑n
i=1 λiqiq

T
i ∈ Sn

+ (here λi is the i-th largest eigenvalue of Y and

qi is the corresponding normalized eigenvector), since trace(Xqiq
T
i ) = qT

i Xqi ≥ 0 and λi ≥ 0 for all i,

it follows that

trace(XY ) = trace

[

X

(

n
∑

i=1

λiqiq
T
i

)]

=

n
∑

i=1

λitrace
(

Xqiq
T
i

)

≥ 0 .

Conversely, if X /∈ Sn
+, then there exists some q ∈ R

n such that trace(XqqT ) = qTXq < 0. �
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From Lemma 4,
X ∈ K ⇐⇒ 〈−X,Y − 0〉F = trace(−XY ) ≤ 0 for all Y ∈ K

⇐⇒ −X ⊆ NK(0).

Therefore NK(0) = −K.
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2 Convex Optimization Problems

Question 1. We restate a special case of Theorem 3.3.5 of Borwein and Lewis:

For any f, g : E → R ∪ {+∞}, let

p = inf
x∈E

{f(x) + g(x)} , and

d = sup
y∈E

{−f∗(y) − g∗(−y)} .

Then weak duality holds: p ≥ d.

If, in addition, f and g are convex and dom(f) ∩ int dom(g) 6= ∅, then strong duality

holds: p = d and there exists some ȳ ∈ arg maxy∈E −f∗(y) − g∗(−y).

Let A and B be any nonempty compact convex sets in E. The map δA is proper (because A 6= ∅)
and convex (because its domain, which equals A, is convex). By compactness of A, the “sup” in the

definition of δA is actually attained and can be replaced by “max”. The map δ∗B is proper—and is

indeed real-valued: for any x ∈ E,

δ∗B(x) = sup
y∈E

{〈x, y〉 − δB(y)} = sup
y∈B

〈x, y〉 ,

which is attained by some ȳ ∈ B because B is compact and y 7→ 〈x, y〉 is a continuous map. As

mentioned in class (and as will be proved at the end of the question), δ∗B is a sublinear (and hence

convex) map. In particular, δ∗B being real-valued and convex must be continuous on E. Moreover,

δ∗∗B = δB (which holds essentially because B is closed and convex and can be shown by using separation

theorem).

Also, observe that dom(δA) ∩ int dom(δ∗B) = A ∩ E = A 6= ∅. Hence strong duality holds for the

following primal-dual pair:

p = inf
x∈E

{δA(x) + δ∗B(x)} , and d = sup
y∈E

{−δ∗A(y) − δ∗∗B (−y)} .
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Now we simplify p and d:

p = inf
x∈E

{δA(x) + δ∗B(x)}

= inf
x∈A

δ∗B(x) = min
x∈A

δ∗B(x) (by continuity of δ∗B and compactness of A)

= min
x∈A

max
y∈B

〈x, y〉 ; and

d = sup
y∈E

{−δ∗A(y) − δ∗∗B (−y)}

= sup
y∈E

{−δ∗A(y) − δB(−y)}

= sup
−y∈B

{−δ∗A(y)} = max
y∈B

{−δ∗A(−y)}

= max
y∈B

{

− sup
x∈A

〈x,−y〉
}

= max
y∈B

min
x∈A

〈x, y〉 .

Therefore the strong duality implies that

min
x∈A

max
y∈B

〈x, y〉 = max
y∈B

min
x∈A

〈x, y〉 .

Finally we prove the earlier claims about some basic properties of δ∗B :

Claim 2 If B ⊆ E is closed and convex, then δ∗B is a sublinear (and hence convex) map, and δ∗∗B = δB.

Proof For any α, β ≥ 0 and x, u ∈ E,

δ∗B(αx+ βu, y) = sup
y∈B

{〈αx+ βu, y〉} ≤ sup
y∈B

α 〈x, y〉 + sup
y∈B

β 〈u, y〉 = αδ∗B(x) + βδ∗B(u) ,

which shows that δ∗B is a sublinear (and hence convex) map.

Now we prove that δ∗∗B = δB. Fix any x ∈ E.

If x /∈ B, then by separation theorem, there exists some non-zero α ∈ E such that 〈α, x〉 > supu∈B 〈α, u〉 =

δ∗B(α). Since we saw that δ∗B is positively homogeneous, 〈λα, x〉 − δ∗B(λα) → +∞ as λ → +∞. Therefore

δ∗∗B (x) = +∞ = δB(x).

If x ∈ B, by Fenchel-Young inequality, 〈y, x〉 − δ∗B(y) ≤ δB(x) = 0 for all y ∈ E, so δ∗∗B (x) = supy∈E

{

〈x, y〉 −
δ∗B(y)

}

≤ 0. But since 〈x, 0〉 − δ∗B(0) = 0, we have supy∈E

{

〈x, y〉 − δ∗B(y)
}

= 0, so δ∗∗B (x) = δB(x).

Therefore δB = δ∗∗B . �

Submitted on November 12, 2009.
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