November 12, 2009

CONVEX OPT. AND ANALYSIS — Assignment 3

1 Convex Functions, Convex Sets, Fenchel Conjugates

Question 1. We prove that (a) \implies (c) \implies (b) \implies (a).

(a) \implies (c) : Let $\{x_n, \alpha_n\}_n \subset \operatorname{epi}(f)$ be a sequence that converges to (x, α) . Since $f(x_n) \leq \alpha_n \forall n$, we have

$$f(x) \le \liminf f(x_n) \le \liminf \alpha_n = \lim \alpha_n = \alpha$$

Thus $(x, \alpha) \in epi(f)$, showing that epi(f) is closed.

(c) \implies (b) : Let $\{x_n\}_n \subset L_\alpha$ be a sequence that converges to x. Then $(x_n, \alpha) \subset \operatorname{epi}(f)$ converges to (x, α) . By the closedness of $\operatorname{epi}(f)$, $(x, \alpha) \in \operatorname{epi}(f)$, so $f(x) \leq \alpha$, that is, $x \in L_\alpha$. This shows that L_α is closed.

(b) \implies (a) : We shall prove the contrapositive argument. Suppose f is not lower semi-continuous at some $x \in \mathbb{E}$. Then there exists a sequence $\{x_n\}_n$ that converges to x but $\liminf f(x_n) < f(x)$. This means we can pick a subsequence $\{x_{n_k}\}_k$ of $\{x_n\}_n$ such that $\lim_k f(x_{n_k}) = \liminf f(x_n)$, and an $\alpha \in \mathbb{R}$ such that $\liminf f(x_n) < \alpha < f(x)$. Then $\lim_k f(x_{n_k}) < \alpha < f(x)$, so there exists k_0 such that for all $k \ge k_0$, $f(x_{n_k}) < \alpha < f(x)$. Consequently, $x_{n_k} \in L_\alpha$ converges to x but $x \notin L_\alpha$. Hence, L_α is not closed.

Question 2. Let $\phi : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ be defined by $\phi(x, x^*) = x \cdot x^* - |x| = |x| (x^* \operatorname{sgn}(x) - 1)$. Note that $f^*(x^*) = \sup_x \phi(x, x^*)$. Fix any x^* ; two things could happen:

Case 1: $|x^*| - 1 > 0$. Let $x = \operatorname{sgn}(x^*)$. Then for all $\lambda > 0$, $\operatorname{sgn}(\lambda x) = \operatorname{sgn}(x^*)$, and

$$\phi(\lambda x, x^*) = |\lambda x| (x^* \operatorname{sgn}(\lambda x) - 1) = \lambda (|x^*| - 1) \to +\infty \quad \text{as } \lambda \to +\infty$$

Thus $f^*(x^*) = \sup_x \phi(x, x^*) = +\infty$ if $|x^*| - 1 > 0$.

Case 2: $|x^*| - 1 \le 0$. In this case,

$$\phi(x, x^*) = x \cdot x^* - |x| = |x| (x^* \operatorname{sgn}(x) - 1) \le |x| (|x^*| - 1) \le 0 \quad ,$$

and $\phi(0, x^*) = 0$. Thus $f^*(x^*) = \sup_x \phi(x, x^*) = 0$ if $|x^*| - 1 \le 0$.

Therefore $f^* = \delta_{[-1,1]}$.

Question 3. Given Euclidean spaces \mathbb{E} , Y and a linear map $A : \mathbb{E} \to Y$, we first prove the following key lemma:

Lemma 1 If $f : \mathbb{E} \to (-\infty, +\infty]$ and $g : Y \to (-\infty, +\infty]$ satisfy

$$0 \in int(dom(g) - Adom(f)) \quad , \tag{1.1}$$

then $0 \in \partial (f + g \circ A)(\bar{x})$ implies $0 \in \partial f(\bar{x}) + A^* \partial g(A\bar{x})$.

Proof It immediately follows from the definition of subdifferentials that $0 \in \partial (f + g \circ A)(\bar{x})$ implies \bar{x} is a global minimizer of $f + g \circ A$ on \mathbb{E} . If (1.1) holds, by Theorem 3.3.5 of Borwein and Lewis, we have that

$$f(\bar{x}) + g(A\bar{x}) = \inf_{\mathbb{E}} \left\{ f + g \circ A \right\} = \sup_{\phi \in Y} \left\{ -f^*(A^*\phi) - g^*(-\phi) \right\} = -f^*(A^*\bar{\phi}) - g^*(-\bar{\phi})$$

for some $\bar{\phi} \in Y$. Hence $[f(\bar{x}) + f^*(A^*\bar{\phi})] + [g(A\bar{x}) + g^*(-\bar{\phi})] = 0$.

On the other hand, by the Fenchel-Young inequality, we have

$$f(\bar{x}) + f^*(A^*\bar{\phi}) \ge \langle \bar{x}, A^*\bar{\phi} \rangle = \langle A\bar{x}, \bar{\phi} \rangle \quad \text{(equality holds iff } A^*\bar{\phi} \in \partial f(\bar{x}); \text{)}$$
$$g(A\bar{x}) + g^*(-\bar{\phi}) \ge \langle A\bar{x}, -\bar{\phi} \rangle \quad \text{(equality holds iff } -\bar{\phi} \in \partial g(A\bar{x}). \text{)}$$

Summing the two inequalities gives $[f(\bar{x}) + f^*(A^*\bar{\phi})] + [g(A\bar{x}) + g^*(-\bar{\phi})] \ge 0$. But the strong duality theorem mentioned above says that we have equality. This implies that

$$\begin{aligned} f(\bar{x}) + f^*(A^*\bar{\phi}) &= \left\langle A\bar{x}, \bar{\phi} \right\rangle &\implies A^*\bar{\phi} \in \partial f(\bar{x}); \text{ and} \\ g(A\bar{x}) + g^*(-\bar{\phi}) &= \left\langle A\bar{x}, -\bar{\phi} \right\rangle &\implies -\bar{\phi} \in \partial g(A\bar{x}) \\ &\implies -A^*\bar{\phi} \in A^*\partial g(A\bar{x}). \end{aligned}$$

This shows that $0 = A^* \overline{\phi} - A^* \overline{\phi} \in \partial f(\overline{x}) + A^* \partial g(A\overline{x})$. \Box

Given any $f : \mathbb{E} \to (-\infty, +\infty]$, $g : Y \to (-\infty, +\infty]$ and any linear map $A : \mathbb{E} \to Y$, we have $\partial f(x) + A^* \partial g(Ax) \subseteq \partial (f + g \circ A)(x)$ for any fixed x: suppose $x^* \in \partial f(x)$ and $y^* \in \partial g(Ax)$. Then we have that for any $u \in \mathbb{E}$,

$$\begin{aligned} \langle x^*, u - x \rangle &\leq f(u) - f(x) \quad \text{, and} \\ \langle A^*y^*, u - x \rangle &= \langle y^*, Au - Ax \rangle \leq g(Au) - g(Ax) \\ \implies \langle x^* + A^*y^*, u - x \rangle \leq (f + g \circ A)(u) - (f + g \circ A)(x) \end{aligned}$$

CO 663 Convex Opt. and Analysis

so $x^* + A^*y^* \in \partial (f + g \circ A)(x)$.

Now suppose that the constraint qualification

$$0 \in \operatorname{int} \left(\operatorname{dom}(g) - A \operatorname{dom}(f) \right)$$

holds. We show that $\partial f(x) + A^* \partial g(Ax) = \partial (f + g \circ A)(x)$. In fact, if $x^* \in \partial (f + g \circ A)(x)$, then for all $u \in \mathbb{E}$,

$$\begin{split} \langle x^*, u - x \rangle &\leq (f + g \circ A)(u) - (f + g \circ A)(x) \\ \Longrightarrow 0 &\leq (\tilde{f} + g \circ A)(u) - (\tilde{f} + g \circ A)(x) \quad , \end{split}$$

where $\tilde{f} := f + \langle -x^*, \cdot \rangle$. Therefore $0 \in \partial(\tilde{f} + g \circ A)(x)$.

Since $\langle -x^*, \cdot \rangle$ is a real-valued function, the domain of $\tilde{f} : \mathbb{E} \to \mathbb{R} \cup \{+\infty\}$ is the same as that of f. In particular, the constraint qualification $0 \in \operatorname{int}(\operatorname{dom}(g) - A\operatorname{dom}(\tilde{f}))$ holds. Therefore, by Lemma 1, we have that there exists some $\tilde{x}^* \in A^* \partial g(Ax)$ such that $-\tilde{x}^* \in \partial \tilde{f}(x)$. Then for any $u \in \mathbb{E}$,

$$\begin{split} \langle -\tilde{x}^*, u - x \rangle &\leq f(u) - f(x) - \langle x^*, u - x \rangle \\ \Longrightarrow \langle -\tilde{x}^* + x^*, u - x \rangle &\leq f(u) - f(x) \quad , \end{split}$$

so $\tilde{x}^* + x^* \in \partial f(x)$. Consequently,

$$x^* = (-\tilde{x}^* + x^*) + \tilde{x}^* \in \partial f(x) + A^* \partial g(Ax) \quad . \qquad \Box$$

Question 4(a). Given S is non-empty, open and convex, and $f : \mathbb{E} \to \mathbb{R} \cup \{+\infty\}$ is such that $\operatorname{dom}(f) = S$.

Suppose f is a convex function. Then epi(f) is a convex set. Fix any $x \in S$. Then (x, f(x)) is on the boundary of the closure cl(epi(f)), and since S is open, $int(cl(epi(f))) \neq \emptyset$. The supporting hyperplane theorem implies that $\exists (\alpha, \eta) \in (\mathbb{E} \times \mathbb{R}) \setminus \{(0, 0)\}$ such that

$$\alpha^T x + \eta f(x) \ge \alpha^T y + \eta r, \quad \forall \ (y, r) \in \operatorname{epi}(f).$$

First observe that since $(x, r) \in \operatorname{epi}(f)$ for all $r \geq f(x)$, r can be arbitrarily large and the above inequality implies that $\eta \leq 0$. In fact, $\eta < 0$: if on the contrary $\eta = 0$, we have that $\alpha^T x \geq \alpha^T y$ for all $y \in S$. Since S is open, we can pick sufficiently small $\varepsilon > 0$ such that $x \pm \varepsilon \alpha \in S$. Then the above inequality implies that $\varepsilon ||\alpha||^2 = 0$, so $\alpha = 0$, which contradicts the earlier result that $(\alpha, \eta) \neq (0, 0)$.

Now that $\eta < 0$, we may assume without loss of generality that $\eta = -1$, so we have

$$\alpha^T x - f(x) \ge \alpha^T y - r \quad (y, r) \in \operatorname{epi}(f) \implies f(y) - f(x) \ge \alpha^T (y - x) \quad \forall y \in \operatorname{dom}(f)$$

In other words, $\alpha \in \partial f(x)$. This shows that $\partial f(x) \neq \emptyset$.

Conversely, if $f : \mathbb{E} \to \mathbb{R} \cup \{+\infty\}$ is not a convex function, there exists some $x, y \in S$, $\lambda \in (0, 1)$ such that $f(z) > \lambda f(x) + (1 - \lambda)f(y)$, where $z := \lambda x + (1 - \lambda)y$. We show that $\partial f(z)$ is an empty set. Suppose on the contrary that there exists some $d \in \partial f(z)$. Then

$$d^{T}(x-z) \leq f(x) - f(z) \implies d^{T}(\lambda x - \lambda z) \leq \lambda f(x) - \lambda f(z)$$

$$d^{T}(y-z) \leq f(y) - f(z) \implies d^{T}[(1-\lambda)y - (1-\lambda)z] \leq (1-\lambda)f(y) - (1-\lambda)f(z)$$

Summing the two inequalities on the right, we have $\lambda f(x) + (1 - \lambda)f(y) - f(z) \ge 0$, which contradicts the choice of z that $f(z) > \lambda f(x) + (1 - \lambda)f(y)$. Hence we must have $\partial f(z) = \emptyset$.

Question 4(b). If $h : clS \to \mathbb{R}$ is convex, then h is certainly convex on S.

Conversely, suppose $h : clS \to \mathbb{R}$ is continuous and $h|_S$ is a convex function on S. Pick any $x, y \in clS$ and $\lambda \in [0, 1]$; then there exist sequences $\{x_n\}_n \subset S$ and $\{y_n\}_n \subset S$ such that $x_n \to x$ and $y_n \to y$. For each n, we have

$$h(\lambda x_n + (1 - \lambda)y_n) \le \lambda h(x_n) + (1 - \lambda)h(y_n)$$

Taking $n \to \infty$, by continuity of h we have $h(\lambda x + (1 - \lambda)y) \le \lambda h(x) + (1 - \lambda)h(y)$. Thus h is convex on clS.

But the statement " $h: clS \to \mathbb{R}$ being continuous and $h|_S$ being a *strictly* convex function on S

imply that h is strictly convex on clS" is not true. Consider the function $h : \mathbb{R}^2_+ \to \mathbb{R}$ defined by $h(x,y) = -x^{\alpha}y^{\beta}$, where $\alpha, \beta \in (0, 1/2)$. The function is smooth on \mathbb{R}^2_{++} : for any x, y > 0,

$$\nabla h(x,y) = \begin{pmatrix} -\alpha x^{\alpha-1} y^{\beta} \\ -\beta x^{\alpha} y^{\beta-1} \end{pmatrix} \quad \text{and} \quad \nabla^2 h(x,y) = \begin{pmatrix} \alpha (1-\alpha) x^{\alpha-2} y^{\beta} & -\alpha \beta x^{\alpha-1} y^{\beta-1} \\ -\alpha \beta x^{\alpha-1} y^{\beta-1} & \beta (1-\beta) x^{\alpha} y^{\beta-2} \end{pmatrix}$$

which has a positive trace $\alpha(1-\alpha)x^{\alpha-2}y^{\beta} + \beta(1-\beta)x^{\alpha}y^{\beta-2}$ and determinant $\alpha\beta[(1-\alpha)(1-\beta) - \alpha\beta]x^{2(\alpha-1)}y^{2(\beta-1)}$ which is positive because $1-\alpha > 1/2 > \alpha$ and $1-\beta > 1/2 > \beta$. Thus *h* is strictly convex on \mathbb{R}^2_{++} . But *h* is not strictly convex on \mathbb{R}^2_+ because *h* is identically zero on its boundary.

Question 5(a). $\psi : \mathbb{R}_+ \to \mathbb{R}$ defined by $\psi(x) = 1 - \sqrt{x}$ is convex on \mathbb{R}_{++} , because

$$\psi'(x) = -\frac{1}{2\sqrt{x}}$$
 and $\psi''(x) = \frac{3}{4x^{3/2}} > 0$

for x > 0. Following from Q.4(b), (right-)continuity of ψ at 0 implies that ψ is indeed convex on \mathbb{R}_+ . Thus the set $\{(x_1, x_2; r) \in \mathbb{R}^2 \times \mathbb{R} : 1 - \sqrt{x_1} \le r\}$ is convex. Similarly, convexity of the absolute value function ensures that $\{(x_1, x_2; r) \in \mathbb{R}^2 \times \mathbb{R} : |x_2| \le r\}$ is a convex set. Next,

meaning that epi(f) as an intersection of two convex sets is convex. Hence f is convex.

Question 5(b). We show that $(0,1), (0,-1) \in \text{dom}(\partial f)$, but (0,0) = 1/2[(0,1) + (0,-1)] does not lie in dom (∂f) .

 $(0,\pm 1) \in \mathbf{dom}(\partial f)$: For any $(x_1,x_2) \in \mathbb{R}_+ \times \mathbb{R}$,

$$f(x_1, x_2) - f(0, \pm 1) = \max\{1 - \sqrt{x_1}, |x_2|\} - \max\{1 - \sqrt{0}, |\pm 1|\} = \max\{-\sqrt{x_1}, |x_2| - 1\} \ge |x_2| - 1$$

Note that $|x_2| - 1 \ge \pm x_2 - 1$. Consequently,

 $\begin{aligned} f(x_1, x_2) - f(0, 1) &\geq x_2 - 1 = 0 \cdot (x_1 - 0) + 1 \cdot (x_2 - 1) \quad \forall \ (x_1, x_2) \in \mathbb{R}^2 \implies (0, 1) \in \partial f(0, 1) \\ f(x_1, x_2) - f(0, -1) &\geq -x_2 - 1 = 0 \cdot (x_1 - 0) + 1 \cdot [x_2 - (-1)] \quad \forall \ (x_1, x_2) \in \mathbb{R}^2 \implies (0, -1) \in \partial f(0, -1) \quad , \end{aligned}$

so both $\partial f(0,1)$ and $\partial f(0,-1)$ are non-empty.

 $(0,0) \notin \mathbf{dom}(\partial f)$: If $(d_1, d_2) \in \partial f(0,0)$, then for all $x_1 \ge 0$ (taking x_2 to be constantly 0),

$$d_1 x_1 \le f(x_1, 0) - f(0, 0) = \max\{-\sqrt{x_1}, -1\} = -\sqrt{x_1}$$

for $x_1 \in (0,1)$. Dividing both sides by x_1 (which can be done for $x_1 > 0$), we obtain $d_1 \leq -1/\sqrt{x_1}$, which goes to $-\infty$ as $x \searrow 0^+$. This absurd result indicates that such (d_1, d_2) does not exist. Hence $\partial f(0,0) = \emptyset$. **Question 6.** (c.f. Prop 2.1.7 of Borwein and Lewis) We will prove some slightly more general results (at the expense of having a slightly longer proof). First we need the following lemma:

Lemma 2 If $h : \mathbb{E} \to \mathbb{R}$ is a continuous function with bounded level sets, then $\arg\min_{\mathbb{E}} h$ is nonempty.

Proof First note that h must be bounded below on \mathbb{E} : if there exists a sequence $\{x_n\}_n$ such that $h(x_n) \to \infty$ as $n \to +\infty$, we may assume without loss of generality that the sequence $\{h(x_n)\}_n$ is strictly decreasing. Then $\{x_n\}_n \subseteq \{x \in \mathbb{E} : h(x) \le h(x_1)\}$ which is a bounded set, so $\{x_n\}_n$ is a bounded sequence in \mathbb{E} . By Weierstrass Theorem, this sequence has a convergent subsequence; by passing to that subsequence, we may assume without loss of generality that $\{x_n\}_n$ converges to some $\bar{x} \in \mathbb{E}$. By continuity of h, $h(x_n) \to h(\bar{x}) \in \mathbb{R}$ as $n \to +\infty$, contradicting the given condition that $h(x_n) \to -\infty$ as $n \to +\infty$. Therefore h must be bounded below on \mathbb{E} .

h being bounded below on \mathbb{E} implies that $\inf_{\mathbb{E}} h \in \mathbb{R}$. Consider any minimizing sequence $\{x_n\}_n$ satisfying $h(x_n) < \inf h + n^{-1}$. Then $\{x_n\}_n \subseteq \{x \in \mathbb{E} : h(x) \le \inf h + 1\}$ which is bounded by assumption. Again, by passing to subsequence we may assume that the sequence $\{x_n\}_n$ converges to some $\bar{x} \in \mathbb{E}$. By continuity of h,

$$\inf h \le h(\bar{x}) = \lim_{n} h(x_n) \le \lim_{n} \left(\inf h + \frac{1}{n} \right) = \inf h$$

which shows that $\bar{x} \in \arg\min_{\mathbb{E}} h$. \Box

Remark This proof shows that any limit point of a minimizing sequence of such function h is indeed a global minimizer.

Now we prove that if $f : \mathbb{E} \to \mathbb{R}$ is differentiable and is bounded below on \mathbb{E} by some $m \in \mathbb{R}$, then for any $\varepsilon > 0$, there exists some $\bar{x}_{\varepsilon} \in \mathbb{E}$ such that $\|\nabla f(\bar{x}_{\varepsilon})\| \le \varepsilon$. (In this question the vector norm is always assumed to be ℓ_2 norm.)

For any fixed $\varepsilon > 0$, define the function $f_{\varepsilon} : \mathbb{E} \to \mathbb{R}$ by $f_{\varepsilon} = f + \varepsilon \|\cdot\|$. This function is continuous, and any level set $S_{\alpha}(f_{\varepsilon}) = \{x \in \mathbb{E} : f_{\varepsilon}(x) \le \alpha\} = \{x : \|x\| \le \varepsilon^{-1}(\alpha - f(x)) \le \varepsilon^{-1}(\alpha - m)\}$ is bounded. By the lemma, f_{ε} must have a global minimizer \bar{x}_{ε} . It follows that for any t > 0,

$$\begin{aligned} f_{\varepsilon}(\bar{x}_{\varepsilon}) &\leq f_{\varepsilon}(\bar{x}_{\varepsilon} - t\nabla f(\bar{x}_{\varepsilon})) \\ \implies & -\varepsilon \|t\nabla f(\bar{x}_{\varepsilon})\| \leq -\varepsilon (\|\bar{x}_{\varepsilon}\| - \|\bar{x}_{\varepsilon} - t\nabla f(\bar{x}_{\varepsilon}))\|) \leq f(\bar{x}_{\varepsilon} - t\nabla f(\bar{x}_{\varepsilon})) - f(\bar{x}_{\varepsilon}) \\ \implies & -\varepsilon \|\nabla f(\bar{x}_{\varepsilon})\| \leq \frac{f(\bar{x}_{\varepsilon} - t\nabla f(\bar{x}_{\varepsilon})) - f(\bar{x}_{\varepsilon})}{t} \to \nabla f(\bar{x}_{\varepsilon})^{T} [-\nabla f(\bar{x}_{\varepsilon})] \quad \text{as } t \searrow 0 \\ \implies & \|\nabla f(\bar{x}_{\varepsilon})\| \leq \varepsilon \end{aligned}$$

As for convex function $f : \mathbb{E} \to \mathbb{R}$ that is bounded below on \mathbb{E} , we have the following result: **Claim 1** For any $\varepsilon > 0$, there exists \bar{x}_{ε} , $\bar{\phi}_{\varepsilon} \in \mathbb{E}$ such that $\bar{\phi}_{\varepsilon} \in \partial f(\bar{x}_{\varepsilon})$ and $\|\bar{\phi}_{\varepsilon}\| \leq \varepsilon$. Before proving Claim 1, we need the following lemma:

Lemma 3

$$\partial(\varepsilon \|\cdot\|)(\bar{x}_{\varepsilon}) = \begin{cases} \left\{\varepsilon \frac{\bar{x}_{\varepsilon}}{\|\bar{x}_{\varepsilon}\|}\right\} & \text{if } \bar{x}_{\varepsilon} \neq 0\\ B(0,\varepsilon) & \text{if } \bar{x}_{\varepsilon} = 0 \end{cases}$$

,

Proof First observe that for any $\lambda > 0$, any function $h : \mathbb{E} \to \mathbb{R} \cup \{+\infty\}$ and $x \in \text{dom}(h)$, $\partial(\lambda h)(x) = \lambda \partial h(x)$:

$$\partial(\lambda h)(x) = \{ d \in \mathbb{E} : \langle d, y - x \rangle \le \lambda [h(y) - h(x)] \; \forall y \in \mathbb{E} \}$$
$$= \{ \lambda d \in \mathbb{E} : \langle d, y - x \rangle \le h(y) - h(x) \; \forall y \in \mathbb{E} \} = \lambda \partial h(x)$$

Therefore to prove the claim, it suffices to show that

$$\partial \| \cdot \| (\bar{x}_{\varepsilon}) = \begin{cases} \left\{ \frac{\bar{x}_{\varepsilon}}{\|\bar{x}_{\varepsilon}\|} \right\} & \text{if } \bar{x}_{\varepsilon} \neq 0 \\ B(0,1) & \text{if } \bar{x}_{\varepsilon} = 0 \end{cases}$$

When $x \neq 0$, since $\|\cdot\| = \sqrt{\|\cdot\|^2}$, $x \mapsto \|x\|$ is indeed differentiable:

$$\nabla \| \cdot \|(x) = \nabla \sqrt{\| \cdot \|^2}(x) = \frac{2x}{2\sqrt{\|x\|^2}} = \frac{x}{\|x\|} \quad ,$$

so $\partial \| \cdot \|(x) = \{\frac{x}{\|x\|}\}$ when $x \neq 0$.

When x = 0, using the variational form $||d||_2 = \sup\{\langle d, x \rangle / ||x||_2 : x \neq 0\}$,¹ we have that

$$\partial \| \cdot \| (0) = \{ d \in \mathbb{R}^n : \langle d, x \rangle \le \| x \| \ \forall x \in \mathbb{R}^n \}$$
$$= \left\{ d \in \mathbb{R}^n : \| d \|_2 = \sup_{x \neq 0} \frac{\langle d, x \rangle}{\| x \|} \le 1 \right\}$$
$$= B(0, 1) \quad . \quad \Box$$

Proof of Claim 1. We define the same f_{ε} for any $\varepsilon > 0$ and, by continuity and boundedness of f^2 , f_{ε} enjoys the same properties as described above, that is, there exists some global minimizer \bar{x}_{ε} of f_{ε} .

$$\|d\|_p = \sup\left\{\frac{\langle d, x \rangle}{\|x\|_q} : x \in \mathbb{R}^n \setminus \{0\}\right\}$$

²Recall that f as a real-valued convex function is locally Lipschitz on \mathbb{E} , so it is continuous on \mathbb{E} .

¹In general, for $p, q \in [1, +\infty]$ satisfying $p^{-1} + q^{-1} = 1$ (with the convention $(+\infty)^{-1} = 0$), we have that for any $d \in \mathbb{R}^n$,

Since f_{ε} is also convex, we have that $0 \in \partial f_{\varepsilon}(\bar{x}_{\varepsilon}) = \partial (f + \varepsilon \| \cdot \|)(\bar{x}_{\varepsilon}) = \partial f(\bar{x}_{\varepsilon}) + \partial (\varepsilon \| \cdot \|)(\bar{x}_{\varepsilon})$.³ Since

$$\partial(\varepsilon \| \cdot \|)(\bar{x}_{\varepsilon}) = \begin{cases} \left\{ \varepsilon \frac{\bar{x}_{\varepsilon}}{\|\bar{x}_{\varepsilon}\|} \right\} & \text{if } \bar{x}_{\varepsilon} \neq 0 \\ B(0,\varepsilon) & \text{if } \bar{x}_{\varepsilon} = 0 \end{cases}$$

,

there exists some $\bar{\phi}_{\varepsilon}$ of norm ε lying in $\partial f(\bar{x}_{\varepsilon})$. \Box

Remark The function f_{ε} defined in the question is indeed a "regularized" version of f. While f may not have a global minimizer, such regularization of f could give us a new function that has a minimizer. This question shows that under some assumptions on the function f, the global minimizer from the regularized function can serve as a good proxy, in a sense that it approximately satisfies the first order necessary condition of optimality.

³The sum rule applies at the last equality because both f and $\varepsilon \| \cdot \|$ have the whole space \mathbb{E} as their domains.

Question 7(a). Consider the closed convex cone $K = \{x \in \mathbb{R}^n : x_1 \ge \sqrt{x_2^2 + \cdots + x_n^2}\}$. First we note that for any $\hat{x} \in \mathbb{R}^{n-1}$, the vector $(\|\hat{x}\|_2, \hat{x}^T)^T$ lies in K.

Let $d = (d_1, \ldots, d_n) \in N_K(0)$. Define $\hat{d} := (d_2, \ldots, d_n)^T \in \mathbb{R}^{n-1}$. Then for any $\hat{x} \in \mathbb{R}^{n-1} \setminus \{0\}$,

$$0 \ge d^{T} (\|\hat{x}\|_{2}, x^{T})^{T} = d_{1} \|\hat{x}\|_{2} + \hat{d}^{T} \hat{x}$$

$$\implies -d_{1} \ge \frac{\hat{d}^{T} \hat{x}}{\|\hat{x}\|_{2}} \quad .$$

Taking supremum over all nonzero $\hat{x} \in \mathbb{R}^{n-1}$ and using the variational form of vector norm, we have

$$-d_1 \ge \sup_{\hat{x} \in \mathbb{R}^{n-1} \setminus \{0\}} \frac{d^T \hat{x}}{\|\hat{x}\|_2} = \|\hat{d}\|_2 = \sqrt{(-d_2)^2 + \dots + (-d_n)^2} \quad ,$$

that is, $-d \in K$.

Conversely, let $d = (d_1, \ldots, d_n) \in K$. For any $x = (x_1, \ldots, x_n) \in K$, by Cauchy-Schwartz inequality,

$$-d^{T}(x-0) = -d_{1}x_{1} - \sum_{i=2}^{n} d_{i}x_{i}$$

$$\leq -d_{1}x_{1} + \sqrt{\sum_{i=2}^{n} d_{i}^{2}} \sqrt{\sum_{i=2}^{n} x_{i}^{2}}$$

$$\leq -d_{1}x_{1} + d_{1}x_{1} = 0 \quad .$$

Therefore $-d \in N_K(0)$. Consequently, $N_K(0) = -K$.

Question 7(b). Consider the closed convex cone $K = S^n_+$ in the Euclidean space $(S^n, \langle \cdot, \cdot \rangle_F)$. (Recall that the Frobenius norm is defined by $\langle X, Y \rangle_F = \text{trace}(X^T Y)$.) Before proving $N_K(0) = -K$, we recall the following lemma which follows easily from linear algebra:

Lemma 4

 $X \in \mathcal{S}_{+}^{n}$ if and only if $trace(XY) \geq 0$ for all $Y \in \mathcal{S}_{+}^{n}$.

Proof If $X \in S^n_+$, then for any $Y = \sum_{i=1}^n \lambda_i q_i q_i^T \in S^n_+$ (here λ_i is the *i*-th largest eigenvalue of Y and q_i is the corresponding normalized eigenvector), since trace $(Xq_iq_i^T) = q_i^T Xq_i \ge 0$ and $\lambda_i \ge 0$ for all *i*, it follows that

trace(XY) = trace
$$\left[X\left(\sum_{i=1}^n \lambda_i q_i q_i^T\right) \right] = \sum_{i=1}^n \lambda_i \operatorname{trace}\left(Xq_i q_i^T\right) \ge 0$$
.

Conversely, if $X \notin \mathcal{S}^n_+$, then there exists some $q \in \mathbb{R}^n$ such that $\operatorname{trace}(Xqq^T) = q^T Xq < 0$. \Box

CO 663 Convex Opt. and Analysis

From Lemma 4,

$$\begin{aligned} X \in K & \iff \langle -X, Y - 0 \rangle_F = \operatorname{trace}(-XY) \leq 0 \ \text{ for all } Y \in K \\ & \iff -X \subseteq N_K(0). \end{aligned}$$

Therefore $N_K(0) = -K$.

2 Convex Optimization Problems

Question 1. We restate a special case of Theorem 3.3.5 of Borwein and Lewis:

For any $f, g : \mathbb{E} \to \mathbb{R} \cup \{+\infty\}$, let

$$p = \inf_{x \in \mathbb{E}} \{ f(x) + g(x) \} , \text{ and} \\ d = \sup_{y \in \mathbb{E}} \{ -f^*(y) - g^*(-y) \} .$$

Then weak duality holds: $p \ge d$.

If, in addition, f and g are convex and $\operatorname{dom}(f) \cap \operatorname{int} \operatorname{dom}(g) \neq \emptyset$, then strong duality holds: p = d and there exists some $\bar{y} \in \arg \max_{y \in \mathbb{E}} -f^*(y) - g^*(-y)$.

Let A and B be any nonempty compact convex sets in \mathbb{E} . The map δ_A is proper (because $A \neq \emptyset$) and convex (because its domain, which equals A, is convex). By compactness of A, the "sup" in the definition of δ_A is actually attained and can be replaced by "max". The map δ_B^* is proper—and is indeed real-valued: for any $x \in \mathbb{E}$,

$$\delta_B^*(x) = \sup_{y \in \mathbb{E}} \left\{ \langle x, y \rangle - \delta_B(y) \right\} = \sup_{y \in B} \langle x, y \rangle \quad ,$$

which is attained by some $\bar{y} \in B$ because B is compact and $y \mapsto \langle x, y \rangle$ is a continuous map. As mentioned in class (and as will be proved at the end of the question), δ_B^* is a sublinear (and hence convex) map. In particular, δ_B^* being real-valued and convex must be continuous on \mathbb{E} . Moreover, $\delta_B^{**} = \delta_B$ (which holds essentially because B is closed and convex and can be shown by using separation theorem).

Also, observe that $\operatorname{dom}(\delta_A) \cap \operatorname{int} \operatorname{dom}(\delta_B^*) = A \cap \mathbb{E} = A \neq \emptyset$. Hence strong duality holds for the following primal-dual pair:

$$p = \inf_{x \in \mathbb{E}} \{ \delta_A(x) + \delta_B^*(x) \} \text{, and } d = \sup_{y \in \mathbb{E}} \{ -\delta_A^*(y) - \delta_B^{**}(-y) \}$$

Now we simplify p and d:

$$p = \inf_{x \in \mathbb{E}} \{\delta_A(x) + \delta_B^*(x)\}$$

= $\inf_{x \in A} \delta_B^*(x) = \min_{x \in A} \delta_B^*(x)$ (by continuity of δ_B^* and compactness of A)
= $\min_{x \in A} \max_{y \in B} \langle x, y \rangle$; and
$$d = \sup_{y \in \mathbb{E}} \{-\delta_A^*(y) - \delta_B^{**}(-y)\}$$

= $\sup_{y \in \mathbb{E}} \{-\delta_A^*(y) - \delta_B(-y)\}$

$$= \sup_{-y \in B} \{-\delta_A^*(y)\} = \max_{y \in B} \{-\delta_A^*(-y)\}$$
$$= \max_{y \in B} \left\{-\sup_{x \in A} \langle x, -y \rangle\right\}$$
$$= \max_{y \in B} \min_{x \in A} \langle x, y \rangle \qquad .$$

Therefore the strong duality implies that

$$\min_{x \in A} \max_{y \in B} \langle x, y \rangle = \max_{y \in B} \min_{x \in A} \langle x, y \rangle$$

Finally we prove the earlier claims about some basic properties of δ_B^* :

Claim 2 If $B \subseteq \mathbb{E}$ is closed and convex, then δ_B^* is a sublinear (and hence convex) map, and $\delta_B^{**} = \delta_B$. Proof For any $\alpha, \beta \ge 0$ and $x, u \in \mathbb{E}$,

$$\delta_B^*(\alpha x + \beta u, y) = \sup_{y \in B} \left\{ \langle \alpha x + \beta u, y \rangle \right\} \le \sup_{y \in B} \alpha \left\langle x, y \right\rangle + \sup_{y \in B} \beta \left\langle u, y \right\rangle = \alpha \delta_B^*(x) + \beta \delta_B^*(u)$$

which shows that δ_B^* is a sublinear (and hence convex) map.

Now we prove that $\delta_B^{**} = \delta_B$. Fix any $x \in \mathbb{E}$.

If $x \notin B$, then by separation theorem, there exists some non-zero $\alpha \in \mathbb{E}$ such that $\langle \alpha, x \rangle > \sup_{u \in B} \langle \alpha, u \rangle = \delta_B^*(\alpha)$. Since we saw that δ_B^* is positively homogeneous, $\langle \lambda \alpha, x \rangle - \delta_B^*(\lambda \alpha) \to +\infty$ as $\lambda \to +\infty$. Therefore $\delta_B^{**}(x) = +\infty = \delta_B(x)$.

If $x \in B$, by Fenchel-Young inequality, $\langle y, x \rangle - \delta_B^*(y) \leq \delta_B(x) = 0$ for all $y \in \mathbb{E}$, so $\delta_B^{**}(x) = \sup_{y \in \mathbb{E}} \{\langle x, y \rangle - \delta_B^*(y)\} \leq 0$. But since $\langle x, 0 \rangle - \delta_B^*(0) = 0$, we have $\sup_{y \in \mathbb{E}} \{\langle x, y \rangle - \delta_B^*(y)\} = 0$, so $\delta_B^{**}(x) = \delta_B(x)$.

Therefore $\delta_B = \delta_B^{**}$. \Box

Submitted on November 12, 2009.

CO 663 Convex Opt. and Analysis

Fall 2009