thanks: Vris CHEUNG
Department of Combinatorics and Optimization
University of Waterloo
November 12, 2009

CONVEX OPT. AND ANALYSIS - Assignment 3

1 Convex Functions, Convex Sets, Fenchel Conjugates

Question 1. We prove that $(\mathrm{a}) \Longrightarrow(\mathrm{c}) \Longrightarrow(\mathrm{b}) \Longrightarrow(\mathrm{a})$.
(a) $\Longrightarrow(\mathbf{c}):$ Let $\left\{x_{n}, \alpha_{n}\right\}_{n} \subset \operatorname{epi}(f)$ be a sequence that converges to (x, α). Since $f\left(x_{n}\right) \leq \alpha_{n} \forall n$, we have

$$
f(x) \leq \liminf f\left(x_{n}\right) \leq \liminf \alpha_{n}=\lim \alpha_{n}=\alpha .
$$

Thus $(x, \alpha) \in \operatorname{epi}(f)$, showing that epi (f) is closed.
$(\mathbf{c}) \Longrightarrow(\mathbf{b}):$ Let $\left\{x_{n}\right\}_{n} \subset L_{\alpha}$ be a sequence that converges to x. Then $\left(x_{n}, \alpha\right) \subset \operatorname{epi}(f)$ converges to (x, α). By the closedness of epi $(f),(x, \alpha) \in \operatorname{epi}(f)$, so $f(x) \leq \alpha$, that is, $x \in L_{\alpha}$. This shows that L_{α} is closed.
$\mathbf{(b)} \Longrightarrow(\mathbf{a}):$ We shall prove the contrapositive argument. Suppose f is not lower semi-continuous at some $x \in \mathbb{E}$. Then there exists a sequence $\left\{x_{n}\right\}_{n}$ that converges to x but $\liminf f\left(x_{n}\right)<f(x)$. This means we can pick a subsequence $\left\{x_{n_{k}}\right\}_{k}$ of $\left\{x_{n}\right\}_{n}$ such that $\lim _{k} f\left(x_{n_{k}}\right)=\liminf f\left(x_{n}\right)$, and an $\alpha \in \mathbb{R}$ such that $\lim \inf f\left(x_{n}\right)<\alpha<f(x)$. Then $\lim _{k} f\left(x_{n_{k}}\right)<\alpha<f(x)$, so there exists k_{0} such that for all $k \geq k_{0}, f\left(x_{n_{k}}\right)<\alpha<f(x)$. Consequently, $x_{n_{k}} \in L_{\alpha}$ converges to x but $x \notin L_{\alpha}$. Hence, L_{α} is not closed.

Question 2. Let $\phi: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ be defined by $\phi\left(x, x^{*}\right)=x \cdot x^{*}-|x|=|x|\left(x^{*} \operatorname{sgn}(x)-1\right)$. Note that $f^{*}\left(x^{*}\right)=\sup _{x} \phi\left(x, x^{*}\right)$. Fix any $x^{*} ;$ two things could happen:

Case 1: $\left|x^{*}\right|-1>0$. Let $x=\operatorname{sgn}\left(x^{*}\right)$. Then for all $\lambda>0, \operatorname{sgn}(\lambda x)=\operatorname{sgn}\left(x^{*}\right)$, and

$$
\phi\left(\lambda x, x^{*}\right)=|\lambda x|\left(x^{*} \operatorname{sgn}(\lambda x)-1\right)=\lambda\left(\left|x^{*}\right|-1\right) \rightarrow+\infty \quad \text { as } \lambda \rightarrow+\infty .
$$

Thus $f^{*}\left(x^{*}\right)=\sup _{x} \phi\left(x, x^{*}\right)=+\infty$ if $\left|x^{*}\right|-1>0$.

Case 2: $\left|x^{*}\right|-1 \leq 0$. In this case,

$$
\phi\left(x, x^{*}\right)=x \cdot x^{*}-|x|=|x|\left(x^{*} \operatorname{sgn}(x)-1\right) \leq|x|\left(\left|x^{*}\right|-1\right) \leq 0,
$$

and $\phi\left(0, x^{*}\right)=0$. Thus $f^{*}\left(x^{*}\right)=\sup _{x} \phi\left(x, x^{*}\right)=0$ if $\left|x^{*}\right|-1 \leq 0$.

Therefore $f^{*}=\delta_{[-1,1]}$.

Question 3. Given Euclidean spaces \mathbb{E}, Y and a linear map $A: \mathbb{E} \rightarrow Y$, we first prove the following key lemma:

Lemma 1 If $f: \mathbb{E} \rightarrow(-\infty,+\infty]$ and $g: Y \rightarrow(-\infty,+\infty]$ satisfy

$$
\begin{equation*}
0 \in \operatorname{int}(\operatorname{dom}(g)-A \operatorname{dom}(f)) \tag{1.1}
\end{equation*}
$$

then $0 \in \partial(f+g \circ A)(\bar{x})$ implies $0 \in \partial f(\bar{x})+A^{*} \partial g(A \bar{x})$.
Proof It immediately follows from the definition of subdifferentials that $0 \in \partial(f+g \circ A)(\bar{x})$ implies \bar{x} is a global minimizer of $f+g \circ A$ on \mathbb{E}. If (1.1) holds, by Theorem 3.3.5 of Borwein and Lewis, we have that

$$
f(\bar{x})+g(A \bar{x})=\inf _{\mathbb{E}}\{f+g \circ A\}=\sup _{\phi \in Y}\left\{-f^{*}\left(A^{*} \phi\right)-g^{*}(-\phi)\right\}=-f^{*}\left(A^{*} \bar{\phi}\right)-g^{*}(-\bar{\phi})
$$

for some $\bar{\phi} \in Y$. Hence $\left[f(\bar{x})+f^{*}\left(A^{*} \bar{\phi}\right)\right]+\left[g(A \bar{x})+g^{*}(-\bar{\phi})\right]=0$.

On the other hand, by the Fenchel-Young inequality, we have

$$
\begin{aligned}
& f(\bar{x})+f^{*}\left(A^{*} \bar{\phi}\right) \geq\left\langle\bar{x}, A^{*} \bar{\phi}\right\rangle=\langle A \bar{x}, \bar{\phi}\rangle \quad \text { (equality holds iff } A^{*} \bar{\phi} \in \partial f(\bar{x}) ; \text {) } \\
&\left.g(A \bar{x})+g^{*}(-\bar{\phi}) \geq\langle A \bar{x},-\bar{\phi}\rangle \quad \text { (equality holds iff }-\bar{\phi} \in \partial g(A \bar{x}) .\right)
\end{aligned}
$$

Summing the two inequalities gives $\left[f(\bar{x})+f^{*}\left(A^{*} \bar{\phi}\right)\right]+\left[g(A \bar{x})+g^{*}(-\bar{\phi})\right] \geq 0$. But the strong duality theorem mentioned above says that we have equality. This implies that

$$
\begin{aligned}
f(\bar{x})+f^{*}\left(A^{*} \bar{\phi}\right)=\langle A \bar{x}, \bar{\phi}\rangle & \Longrightarrow A^{*} \bar{\phi} \in \partial f(\bar{x}) ; \text { and } \\
g(A \bar{x})+g^{*}(-\bar{\phi})=\langle A \bar{x},-\bar{\phi}\rangle & \Longrightarrow-\bar{\phi} \in \partial g(A \bar{x}) \\
& \Longrightarrow-A^{*} \bar{\phi} \in A^{*} \partial g(A \bar{x}) .
\end{aligned}
$$

This shows that $0=A^{*} \bar{\phi}-A^{*} \bar{\phi} \in \partial f(\bar{x})+A^{*} \partial g(A \bar{x})$.

Given any $f: \mathbb{E} \rightarrow(-\infty,+\infty], g: Y \rightarrow(-\infty,+\infty]$ and any linear map $A: \mathbb{E} \rightarrow Y$, we have $\partial f(x)+A^{*} \partial g(A x) \subseteq \partial(f+g \circ A)(x)$ for any fixed x : suppose $x^{*} \in \partial f(x)$ and $y^{*} \in \partial g(A x)$. Then we have that for any $u \in \mathbb{E}$,

$$
\begin{aligned}
& \left\langle x^{*}, u-x\right\rangle \leq f(u)-f(x) \quad, \text { and } \\
& \left\langle A^{*} y^{*}, u-x\right\rangle=\left\langle y^{*}, A u-A x\right\rangle \leq g(A u)-g(A x) \\
\Longrightarrow & \left\langle x^{*}+A^{*} y^{*}, u-x\right\rangle \leq(f+g \circ A)(u)-(f+g \circ A)(x)
\end{aligned}
$$

so $x^{*}+A^{*} y^{*} \in \partial(f+g \circ A)(x)$.

Now suppose that the constraint qualification

$$
0 \in \operatorname{int}(\operatorname{dom}(g)-A \operatorname{dom}(f))
$$

holds. We show that $\partial f(x)+A^{*} \partial g(A x)=\partial(f+g \circ A)(x)$. In fact, if $x^{*} \in \partial(f+g \circ A)(x)$, then for all $u \in \mathbb{E}$,

$$
\begin{aligned}
& \left\langle x^{*}, u-x\right\rangle \leq(f+g \circ A)(u)-(f+g \circ A)(x) \\
\Longrightarrow & 0 \leq(\tilde{f}+g \circ A)(u)-(\tilde{f}+g \circ A)(x),
\end{aligned}
$$

where $\tilde{f}:=f+\left\langle-x^{*}, \cdot\right\rangle$. Therefore $0 \in \partial(\tilde{f}+g \circ A)(x)$.

Since $\left\langle-x^{*}, \cdot\right\rangle$ is a real-valued function, the domain of $\tilde{f}: \mathbb{E} \rightarrow \mathbb{R} \cup\{+\infty\}$ is the same as that of f. In particular, the constraint qualification $0 \in \operatorname{int}(\operatorname{dom}(g)-A \operatorname{dom}(\tilde{f}))$ holds. Therefore, by Lemma 1 , we have that there exists some $\tilde{x}^{*} \in A^{*} \partial g(A x)$ such that $-\tilde{x}^{*} \in \partial \tilde{f}(x)$. Then for any $u \in \mathbb{E}$,

$$
\begin{aligned}
& \left\langle-\tilde{x}^{*}, u-x\right\rangle \leq f(u)-f(x)-\left\langle x^{*}, u-x\right\rangle \\
\Longrightarrow & \left\langle-\tilde{x}^{*}+x^{*}, u-x\right\rangle \leq f(u)-f(x),
\end{aligned}
$$

so $\tilde{x}^{*}+x^{*} \in \partial f(x)$. Consequently,

$$
x^{*}=\left(-\tilde{x}^{*}+x^{*}\right)+\tilde{x}^{*} \in \partial f(x)+A^{*} \partial g(A x) .
$$

Question 4(a). Given S is non-empty, open and convex, and $f: \mathbb{E} \rightarrow \mathbb{R} \cup\{+\infty\}$ is such that $\operatorname{dom}(f)=S$.

Suppose f is a convex function. Then epi (f) is a convex set. Fix any $x \in S$. Then $(x, f(x))$ is on the boundary of the closure $\operatorname{cl}(\operatorname{epi}(f))$, and since S is open, $\operatorname{int}(\operatorname{cl}(\operatorname{epi}(f))) \neq \emptyset$. The supporting hyperplane theorem implies that $\exists(\alpha, \eta) \in(\mathbb{E} \times \mathbb{R}) \backslash\{(0,0)\}$ such that

$$
\alpha^{T} x+\eta f(x) \geq \alpha^{T} y+\eta r, \quad \forall(y, r) \in \operatorname{epi}(f) .
$$

First observe that since $(x, r) \in \operatorname{epi}(f)$ for all $r \geq f(x), r$ can be arbitrarily large and the above inequality implies that $\eta \leq 0$. In fact, $\eta<0$: if on the contrary $\eta=0$, we have that $\alpha^{T} x \geq \alpha^{T} y$ for all $y \in S$. Since S is open, we can pick sufficiently small $\varepsilon>0$ such that $x \pm \varepsilon \alpha \in S$. Then the above inequality implies that $\varepsilon\|\alpha\|^{2}=0$, so $\alpha=0$, which contradicts the earlier result that $(\alpha, \eta) \neq(0,0)$.

Now that $\eta<0$, we may assume without loss of generality that $\eta=-1$, so we have

$$
\alpha^{T} x-f(x) \geq \alpha^{T} y-r \quad(y, r) \in \operatorname{epi}(f) \quad \Longrightarrow \quad f(y)-f(x) \geq \alpha^{T}(y-x) \quad \forall y \in \operatorname{dom}(f) .
$$

In other words, $\alpha \in \partial f(x)$. This shows that $\partial f(x) \neq \emptyset$.

Conversely, if $f: \mathbb{E} \rightarrow \mathbb{R} \cup\{+\infty\}$ is not a convex function, there exists some $x, y \in S, \lambda \in(0,1)$ such that $f(z)>\lambda f(x)+(1-\lambda) f(y)$, where $z:=\lambda x+(1-\lambda) y$. We show that $\partial f(z)$ is an empty set. Suppose on the contrary that there exists some $d \in \partial f(z)$. Then

$$
\begin{aligned}
d^{T}(x-z) \leq f(x)-f(z) & \Longrightarrow \quad d^{T}(\lambda x-\lambda z) \leq \lambda f(x)-\lambda f(z) \\
d^{T}(y-z) \leq f(y)-f(z) & \Longrightarrow \quad d^{T}[(1-\lambda) y-(1-\lambda) z] \leq(1-\lambda) f(y)-(1-\lambda) f(z) .
\end{aligned}
$$

Summing the two inequalities on the right, we have $\lambda f(x)+(1-\lambda) f(y)-f(z) \geq 0$, which contradicts the choice of z that $f(z)>\lambda f(x)+(1-\lambda) f(y)$. Hence we must have $\partial f(z)=\emptyset$.

Question 4(b). If $h: \operatorname{cl} S \rightarrow \mathbb{R}$ is convex, then h is certainly convex on S.
Conversely, suppose $h: \operatorname{cl} S \rightarrow \mathbb{R}$ is continuous and $\left.h\right|_{S}$ is a convex function on S. Pick any $x, y \in \operatorname{cl} S$ and $\lambda \in[0,1]$; then there exist sequences $\left\{x_{n}\right\}_{n} \subset S$ and $\left\{y_{n}\right\}_{n} \subset S$ such that $x_{n} \rightarrow x$ and $y_{n} \rightarrow y$. For each n, we have

$$
h\left(\lambda x_{n}+(1-\lambda) y_{n}\right) \leq \lambda h\left(x_{n}\right)+(1-\lambda) h\left(y_{n}\right) .
$$

Taking $n \rightarrow \infty$, by continuity of h we have $h(\lambda x+(1-\lambda) y) \leq \lambda h(x)+(1-\lambda) h(y)$. Thus h is convex on clS.

But the statement " $h: \operatorname{cl} S \rightarrow \mathbb{R}$ being continuous and $\left.h\right|_{S}$ being a strictly convex function on S
imply that h is strictly convex on $\mathrm{cl} S^{\prime \prime}$ is not true. Consider the function $h: \mathbb{R}_{+}^{2} \rightarrow \mathbb{R}$ defined by $h(x, y)=-x^{\alpha} y^{\beta}$, where $\alpha, \beta \in(0,1 / 2)$. The function is smooth on \mathbb{R}_{++}^{2} : for any $x, y>0$,

$$
\nabla h(x, y)=\binom{-\alpha x^{\alpha-1} y^{\beta}}{-\beta x^{\alpha} y^{\beta-1}} \quad \text { and } \quad \nabla^{2} h(x, y)=\left(\begin{array}{cc}
\alpha(1-\alpha) x^{\alpha-2} y^{\beta} & -\alpha \beta x^{\alpha-1} y^{\beta-1} \\
-\alpha \beta x^{\alpha-1} y^{\beta-1} & \beta(1-\beta) x^{\alpha} y^{\beta-2}
\end{array}\right)
$$

which has a positive trace $\alpha(1-\alpha) x^{\alpha-2} y^{\beta}+\beta(1-\beta) x^{\alpha} y^{\beta-2}$ and determinant $\alpha \beta[(1-\alpha)(1-\beta)-$ $\alpha \beta] x^{2(\alpha-1)} y^{2(\beta-1)}$ which is positive because $1-\alpha>1 / 2>\alpha$ and $1-\beta>1 / 2>\beta$. Thus h is strictly convex on \mathbb{R}_{++}^{2}. But h is not strictly convex on \mathbb{R}_{+}^{2} because h is identically zero on its boundary.

Question 5(a). $\psi: \mathbb{R}_{+} \rightarrow \mathbb{R}$ defined by $\psi(x)=1-\sqrt{x}$ is convex on \mathbb{R}_{++}, because

$$
\psi^{\prime}(x)=-\frac{1}{2 \sqrt{x}} \quad \text { and } \quad \psi^{\prime \prime}(x)=\frac{3}{4 x^{3 / 2}}>0
$$

for $x>0$. Following from Q.4(b), (right-)continuity of ψ at 0 implies that ψ is indeed convex on \mathbb{R}_{+}. Thus the set $\left\{\left(x_{1}, x_{2} ; r\right) \in \mathbb{R}^{2} \times \mathbb{R}: 1-\sqrt{x_{1}} \leq r\right\}$ is convex. Similarly, convexity of the absolute value function ensures that $\left\{\left(x_{1}, x_{2} ; r\right) \in \mathbb{R}^{2} \times \mathbb{R}:\left|x_{2}\right| \leq r\right\}$ is a convex set. Next,

$$
\begin{aligned}
\operatorname{epi}(f) & =\left\{\left(x_{1}, x_{2} ; r\right) \in \mathbb{R}^{2} \times \mathbb{R}: 1-\sqrt{x_{1}} \leq r \text { and }\left|x_{2}\right| \leq r\right\} \\
& =\left\{\left(x_{1}, x_{2} ; r\right) \in \mathbb{R}^{2} \times \mathbb{R}: 1-\sqrt{x_{1}} \leq r\right\} \cup\left\{\left(x_{1}, x_{2} ; r\right) \in \mathbb{R}^{2} \times \mathbb{R}:\left|x_{2}\right| \leq r\right\},
\end{aligned}
$$

meaning that epi (f) as an intersection of two convex sets is convex. Hence f is convex.

Question 5(b). We show that $(0,1),(0,-1) \in \operatorname{dom}(\partial f)$, but $(0,0)=1 / 2[(0,1)+(0,-1)]$ does not lie in $\operatorname{dom}(\partial f)$.
$(0, \pm 1) \in \operatorname{dom}(\partial f)$: For any $\left(x_{1}, x_{2}\right) \in \mathbb{R}_{+} \times \mathbb{R}$,
$f\left(x_{1}, x_{2}\right)-f(0, \pm 1)=\max \left\{1-\sqrt{x_{1}},\left|x_{2}\right|\right\}-\max \{1-\sqrt{0},| \pm 1|\}=\max \left\{-\sqrt{x_{1}},\left|x_{2}\right|-1\right\} \geq\left|x_{2}\right|-1$.
Note that $\left|x_{2}\right|-1 \geq \pm x_{2}-1$. Consequently,

$$
\begin{aligned}
f\left(x_{1}, x_{2}\right)-f(0,1) \geq x_{2}-1=0 \cdot\left(x_{1}-0\right)+1 \cdot\left(x_{2}-1\right) & \forall\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2} \Longrightarrow(0,1) \in \partial f(0,1) \\
f\left(x_{1}, x_{2}\right)-f(0,-1) \geq-x_{2}-1=0 \cdot\left(x_{1}-0\right)+1 \cdot\left[x_{2}-(-1)\right] & \forall\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2} \Longrightarrow(0,-1) \in \partial f(0,-1)
\end{aligned}
$$

so both $\partial f(0,1)$ and $\partial f(0,-1)$ are non-empty.
$(0,0) \notin \operatorname{dom}(\partial f):$ If $\left(d_{1}, d_{2}\right) \in \partial f(0,0)$, then for all $x_{1} \geq 0$ (taking x_{2} to be constantly 0$)$,

$$
d_{1} x_{1} \leq f\left(x_{1}, 0\right)-f(0,0)=\max \left\{-\sqrt{x_{1}},-1\right\}=-\sqrt{x_{1}}
$$

for $x_{1} \in(0,1)$. Dividing both sides by x_{1} (which can be done for $x_{1}>0$), we obtain $d_{1} \leq-1 / \sqrt{x_{1}}$, which goes to $-\infty$ as $x \searrow 0^{+}$. This absurd result indicates that such $\left(d_{1}, d_{2}\right)$ does not exist. Hence $\partial f(0,0)=\emptyset$.

Question 6. (c.f. Prop 2.1.7 of Borwein and Lewis) We will prove some slightly more general results (at the expense of having a slightly longer proof). First we need the following lemma:

Lemma 2 If $h: \mathbb{E} \rightarrow \mathbb{R}$ is a continuous function with bounded level sets, then $\arg \min _{\mathbb{E}} h$ is nonempty.

Proof First note that h must be bounded below on \mathbb{E} : if there exists a sequence $\left\{x_{n}\right\}_{n}$ such that $h\left(x_{n}\right) \rightarrow \infty$ as $n \rightarrow+\infty$, we may assume without loss of generality that the sequence $\left\{h\left(x_{n}\right)\right\}_{n}$ is strictly decreasing. Then $\left\{x_{n}\right\}_{n} \subseteq\left\{x \in \mathbb{E}: h(x) \leq h\left(x_{1}\right)\right\}$ which is a bounded set, so $\left\{x_{n}\right\}_{n}$ is a bounded sequence in \mathbb{E}. By Weierstrass Theorem, this sequence has a convergent subsequence; by passing to that subsequence, we may assume without loss of generality that $\left\{x_{n}\right\}_{n}$ converges to some $\bar{x} \in \mathbb{E}$. By continuity of $h, h\left(x_{n}\right) \rightarrow h(\bar{x}) \in \mathbb{R}$ as $n \rightarrow+\infty$, contradicting the given condition that $h\left(x_{n}\right) \rightarrow-\infty$ as $n \rightarrow+\infty$. Therefore h must be bounded below on \mathbb{E}.
h being bounded below on \mathbb{E} implies that $\inf _{\mathbb{E}} h \in \mathbb{R}$. Consider any minimizing sequence $\left\{x_{n}\right\}_{n}$ satisfying $h\left(x_{n}\right)<\inf h+n^{-1}$. Then $\left\{x_{n}\right\}_{n} \subseteq\{x \in \mathbb{E}: h(x) \leq \inf h+1\}$ which is bounded by assumption. Again, by passing to subsequence we may assume that the sequence $\left\{x_{n}\right\}_{n}$ converges to some $\bar{x} \in \mathbb{E}$. By continuity of h,

$$
\inf h \leq h(\bar{x})=\lim _{n} h\left(x_{n}\right) \leq \lim _{n}\left(\inf h+\frac{1}{n}\right)=\inf h
$$

which shows that $\bar{x} \in \arg \min _{\mathbb{E}} h$.

Remark This proof shows that any limit point of a minimizing sequence of such function h is indeed a global minimizer.

Now we prove that if $f: \mathbb{E} \rightarrow \mathbb{R}$ is differentiable and is bounded below on \mathbb{E} by some $m \in \mathbb{R}$, then for any $\varepsilon>0$, there exists some $\bar{x}_{\varepsilon} \in \mathbb{E}$ such that $\left\|\nabla f\left(\bar{x}_{\varepsilon}\right)\right\| \leq \varepsilon$. (In this question the vector norm is always assumed to be ℓ_{2} norm.)

For any fixed $\varepsilon>0$, define the function $f_{\varepsilon}: \mathbb{E} \rightarrow \mathbb{R}$ by $f_{\varepsilon}=f+\varepsilon\|\cdot\|$. This function is continuous, and any level set $S_{\alpha}\left(f_{\varepsilon}\right)=\left\{x \in \mathbb{E}: f_{\varepsilon}(x) \leq \alpha\right\}=\left\{x:\|x\| \leq \varepsilon^{-1}(\alpha-f(x)) \leq \varepsilon^{-1}(\alpha-m)\right\}$ is bounded. By the lemma, f_{ε} must have a global minimizer \bar{x}_{ε}. It follows that for any $t>0$,

$$
\begin{aligned}
& f_{\varepsilon}\left(\bar{x}_{\varepsilon}\right) \leq f_{\varepsilon}\left(\bar{x}_{\varepsilon}-t \nabla f\left(\bar{x}_{\varepsilon}\right)\right) \\
\Longrightarrow & \left.-\varepsilon\left\|t \nabla f\left(\bar{x}_{\varepsilon}\right)\right\| \leq-\varepsilon\left(\left\|\bar{x}_{\varepsilon}\right\|-\| \bar{x}_{\varepsilon}-t \nabla f\left(\bar{x}_{\varepsilon}\right)\right) \|\right) \leq f\left(\bar{x}_{\varepsilon}-t \nabla f\left(\bar{x}_{\varepsilon}\right)\right)-f\left(\bar{x}_{\varepsilon}\right) \\
\Longrightarrow & -\varepsilon\left\|\nabla f\left(\bar{x}_{\varepsilon}\right)\right\| \leq \frac{f\left(\bar{x}_{\varepsilon}-t \nabla f\left(\bar{x}_{\varepsilon}\right)\right)-f\left(\bar{x}_{\varepsilon}\right)}{t} \rightarrow \nabla f\left(\bar{x}_{\varepsilon}\right)^{T}\left[-\nabla f\left(\bar{x}_{\varepsilon}\right)\right] \text { as } t \searrow 0 \\
\Longrightarrow & \left\|\nabla f\left(\bar{x}_{\varepsilon}\right)\right\| \leq \varepsilon
\end{aligned}
$$

As for convex function $f: \mathbb{E} \rightarrow \mathbb{R}$ that is bounded below on \mathbb{E}, we have the following result:
Claim 1 For any $\varepsilon>0$, there exists $\bar{x}_{\varepsilon}, \bar{\phi}_{\varepsilon} \in \mathbb{E}$ such that $\bar{\phi}_{\varepsilon} \in \partial f\left(\bar{x}_{\varepsilon}\right)$ and $\left\|\bar{\phi}_{\varepsilon}\right\| \leq \varepsilon$.

Before proving Claim 1, we need the following lemma:

Lemma 3

$$
\partial(\varepsilon\|\cdot\|)\left(\bar{x}_{\varepsilon}\right)=\left\{\begin{array}{ll}
\left\{\varepsilon \frac{\bar{x}_{\varepsilon}}{\left\|\bar{x}_{\varepsilon}\right\|}\right\} & \text { if } \bar{x}_{\varepsilon} \neq 0 \\
B(0, \varepsilon) & \text { if } \bar{x}_{\varepsilon}=0
\end{array},\right.
$$

Proof First observe that for any $\lambda>0$, any function $h: \mathbb{E} \rightarrow \mathbb{R} \cup\{+\infty\}$ and $x \in \operatorname{dom}(h), \partial(\lambda h)(x)=$ $\lambda \partial h(x)$:

$$
\begin{aligned}
\partial(\lambda h)(x) & =\{d \in \mathbb{E}:\langle d, y-x\rangle \leq \lambda[h(y)-h(x)] \forall y \in \mathbb{E}\} \\
& =\{\lambda d \in \mathbb{E}:\langle d, y-x\rangle \leq h(y)-h(x) \forall y \in \mathbb{E}\}=\lambda \partial h(x)
\end{aligned}
$$

Therefore to prove the claim, it suffices to show that

$$
\partial\|\cdot\|\left(\bar{x}_{\varepsilon}\right)=\left\{\begin{array}{ll}
\left\{\frac{\bar{x}_{\varepsilon}}{\left\|\bar{x}_{\varepsilon}\right\|}\right\} & \text { if } \bar{x}_{\varepsilon} \neq 0 \\
B(0,1) & \text { if } \bar{x}_{\varepsilon}=0
\end{array} .\right.
$$

When $x \neq 0$, since $\|\cdot\|=\sqrt{\|\cdot\|^{2}}, x \mapsto\|x\|$ is indeed differentiable:

$$
\nabla\|\cdot\|(x)=\nabla \sqrt{\|\cdot\|^{2}}(x)=\frac{2 x}{2 \sqrt{\|x\|^{2}}}=\frac{x}{\|x\|}
$$

so $\partial\|\cdot\|(x)=\left\{\frac{x}{\|x\|}\right\}$ when $x \neq 0$.
When $x=0$, using the variational form $\|d\|_{2}=\sup \left\{\langle d, x\rangle /\|x\|_{2}: x \neq 0\right\},{ }^{1}$ we have that

$$
\begin{aligned}
\partial\|\cdot\|(0) & =\left\{d \in \mathbb{R}^{n}:\langle d, x\rangle \leq\|x\| \forall x \in \mathbb{R}^{n}\right\} \\
& =\left\{d \in \mathbb{R}^{n}:\|d\|_{2}=\sup _{x \neq 0} \frac{\langle d, x\rangle}{\|x\|} \leq 1\right\} \\
& =B(0,1) .
\end{aligned}
$$

Proof of Claim 1. We define the same f_{ε} for any $\varepsilon>0$ and, by continuity and boundedness of $f,{ }^{2}$ f_{ε} enjoys the same properties as described above, that is, there exists some global minimizer \bar{x}_{ε} of f_{ε}.

[^0]Since f_{ε} is also convex, we have that $0 \in \partial f_{\varepsilon}\left(\bar{x}_{\varepsilon}\right)=\partial(f+\varepsilon\|\cdot\|)\left(\bar{x}_{\varepsilon}\right)=\partial f\left(\bar{x}_{\varepsilon}\right)+\partial(\varepsilon\|\cdot\|)\left(\bar{x}_{\varepsilon}\right) .^{3}$ Since

$$
\partial(\varepsilon\|\cdot\|)\left(\bar{x}_{\varepsilon}\right)=\left\{\begin{array}{ll}
\left\{\varepsilon \frac{\bar{x}_{\varepsilon}}{\left\|\bar{x}_{\varepsilon}\right\|}\right\} & \text { if } \bar{x}_{\varepsilon} \neq 0 \\
B(0, \varepsilon) & \text { if } \bar{x}_{\varepsilon}=0
\end{array},\right.
$$

there exists some $\bar{\phi}_{\varepsilon}$ of norm ε lying in $\partial f\left(\bar{x}_{\varepsilon}\right)$.

Remark The function f_{ε} defined in the question is indeed a "regularized" version of f. While f may not have a global minimizer, such regularization of f could give us a new function that has a minimizer. This question shows that under some assumptions on the function f, the global minimizer from the regularized function can serve as a good proxy, in a sense that it approximately satisfies the first order necessary condition of optimality.

[^1]Question 7(a). Consider the closed convex cone $K=\left\{x \in \mathbb{R}^{n}: x_{1} \geq \sqrt{x_{2}^{2}+\cdots+x_{n}^{2}}\right\}$. First we note that for any $\hat{x} \in \mathbb{R}^{n-1}$, the vector $\left(\|\hat{x}\|_{2}, \hat{x}^{T}\right)^{T}$ lies in K.

Let $d=\left(d_{1}, \ldots, d_{n}\right) \in N_{K}(0)$. Define $\hat{d}:=\left(d_{2}, \ldots, d_{n}\right)^{T} \in \mathbb{R}^{n-1}$. Then for any $\hat{x} \in \mathbb{R}^{n-1} \backslash\{0\}$,

$$
\begin{aligned}
& 0 \geq d^{T}\left(\|\hat{x}\|_{2}, x^{T}\right)^{T}=d_{1}\|\hat{x}\|_{2}+\hat{d}^{T} \hat{x} \\
\Longrightarrow & -d_{1} \geq \frac{\hat{d}^{T} \hat{x}}{\|\hat{x}\|_{2}}
\end{aligned}
$$

Taking supremum over all nonzero $\hat{x} \in \mathbb{R}^{n-1}$ and using the variational form of vector norm, we have

$$
-d_{1} \geq \sup _{\hat{x} \in \mathbb{R}^{n-1} \backslash\{0\}} \frac{\hat{d}^{T} \hat{x}}{\|\hat{x}\|_{2}}=\|\hat{d}\|_{2}=\sqrt{\left(-d_{2}\right)^{2}+\cdots+\left(-d_{n}\right)^{2}}
$$

that is, $-d \in K$.

Conversely, let $d=\left(d_{1}, \ldots, d_{n}\right) \in K$. For any $x=\left(x_{1}, \ldots, x_{n}\right) \in K$, by Cauchy-Schwartz inequality,

$$
\begin{aligned}
-d^{T}(x-0) & =-d_{1} x_{1}-\sum_{i=2}^{n} d_{i} x_{i} \\
& \leq-d_{1} x_{1}+\sqrt{\sum_{i=2}^{n} d_{i}^{2}} \sqrt{\sum_{i=2}^{n} x_{i}^{2}} \\
& \leq-d_{1} x_{1}+d_{1} x_{1}=0 .
\end{aligned}
$$

Therefore $-d \in N_{K}(0)$. Consequently, $N_{K}(0)=-K$.

Question 7(b). Consider the closed convex cone $K=\mathcal{S}_{+}^{n}$ in the Euclidean space $\left(\mathcal{S}^{n},\langle\cdot, \cdot\rangle_{F}\right)$. (Recall that the Frobenius norm is defined by $\langle X, Y\rangle_{F}=\operatorname{trace}\left(X^{T} Y\right)$.) Before proving $N_{K}(0)=-K$, we recall the following lemma which follows easily from linear algebra:

Lemma 4

$X \in \mathcal{S}_{+}^{n}$ if and only if trace $(X Y) \geq 0$ for all $Y \in \mathcal{S}_{+}^{n}$.
Proof If $X \in \mathcal{S}_{+}^{n}$, then for any $Y=\sum_{i=1}^{n} \lambda_{i} q_{i} q_{i}^{T} \in \mathcal{S}_{+}^{n}$ (here λ_{i} is the i-th largest eigenvalue of Y and q_{i} is the corresponding normalized eigenvector), since trace $\left(X q_{i} q_{i}^{T}\right)=q_{i}^{T} X q_{i} \geq 0$ and $\lambda_{i} \geq 0$ for all i, it follows that

$$
\operatorname{trace}(X Y)=\operatorname{trace}\left[X\left(\sum_{i=1}^{n} \lambda_{i} q_{i} q_{i}^{T}\right)\right]=\sum_{i=1}^{n} \lambda_{i} \operatorname{trace}\left(X q_{i} q_{i}^{T}\right) \geq 0 .
$$

Conversely, if $X \notin \mathcal{S}_{+}^{n}$, then there exists some $q \in \mathbb{R}^{n}$ such that $\operatorname{trace}\left(X q q^{T}\right)=q^{T} X q<0$.

From Lemma 4,

$$
\begin{aligned}
X \in K & \Longleftrightarrow\langle-X, Y-0\rangle_{F}=\operatorname{trace}(-X Y) \leq 0 \text { for all } Y \in K \\
& \Longleftrightarrow-X \subseteq N_{K}(0)
\end{aligned}
$$

Therefore $N_{K}(0)=-K$.

2 Convex Optimization Problems

Question 1. We restate a special case of Theorem 3.3.5 of Borwein and Lewis:

For any $f, g: \mathbb{E} \rightarrow \mathbb{R} \cup\{+\infty\}$, let

$$
\begin{aligned}
& p=\inf _{x \in \mathbb{E}}\{f(x)+g(x)\}, \text { and } \\
& d=\sup _{y \in \mathbb{E}}\left\{-f^{*}(y)-g^{*}(-y)\right\},
\end{aligned}
$$

Then weak duality holds: $p \geq d$.

If, in addition, f and g are convex and $\operatorname{dom}(f) \cap \operatorname{int} \operatorname{dom}(g) \neq \emptyset$, then strong duality holds: $p=d$ and there exists some $\bar{y} \in \arg \max _{y \in \mathbb{E}}-f^{*}(y)-g^{*}(-y)$.

Let A and B be any nonempty compact convex sets in \mathbb{E}. The map δ_{A} is proper (because $A \neq \emptyset$) and convex (because its domain, which equals A, is convex). By compactness of A, the "sup" in the definition of δ_{A} is actually attained and can be replaced by "max". The map δ_{B}^{*} is proper-and is indeed real-valued: for any $x \in \mathbb{E}$,

$$
\delta_{B}^{*}(x)=\sup _{y \in \mathbb{E}}\left\{\langle x, y\rangle-\delta_{B}(y)\right\}=\sup _{y \in B}\langle x, y\rangle,
$$

which is attained by some $\bar{y} \in B$ because B is compact and $y \mapsto\langle x, y\rangle$ is a continuous map. As mentioned in class (and as will be proved at the end of the question), δ_{B}^{*} is a sublinear (and hence convex) map. In particular, δ_{B}^{*} being real-valued and convex must be continuous on \mathbb{E}. Moreover, $\delta_{B}^{* *}=\delta_{B}$ (which holds essentially because B is closed and convex and can be shown by using separation theorem).

Also, observe that $\operatorname{dom}\left(\delta_{A}\right) \cap \operatorname{int} \operatorname{dom}\left(\delta_{B}^{*}\right)=A \cap \mathbb{E}=A \neq \emptyset$. Hence strong duality holds for the following primal-dual pair:

$$
p=\inf _{x \in \mathbb{E}}\left\{\delta_{A}(x)+\delta_{B}^{*}(x)\right\}, \text { and } d=\sup _{y \in \mathbb{E}}\left\{-\delta_{A}^{*}(y)-\delta_{B}^{* *}(-y)\right\}
$$

Now we simplify p and d :

$$
\begin{aligned}
p & =\inf _{x \in \mathbb{E}}\left\{\delta_{A}(x)+\delta_{B}^{*}(x)\right\} \\
& \left.=\inf _{x \in A} \delta_{B}^{*}(x)=\min _{x \in A} \delta_{B}^{*}(x) \quad \text { (by continuity of } \delta_{B}^{*} \text { and compactness of } A\right) \\
& =\min _{x \in A} \max _{y \in B}\langle x, y\rangle \quad ; \text { and } \\
d & =\sup _{y \in \mathbb{E}}\left\{-\delta_{A}^{*}(y)-\delta_{B}^{* *}(-y)\right\} \\
& =\sup _{y \in \mathbb{E}}\left\{-\delta_{A}^{*}(y)-\delta_{B}(-y)\right\} \\
& =\sup _{-y \in B}\left\{-\delta_{A}^{*}(y)\right\}=\max _{y \in B}\left\{-\delta_{A}^{*}(-y)\right\} \\
& =\max _{y \in B}\left\{-\sup _{x \in A}\langle x,-y\rangle\right\} \\
& =\max _{y \in B} \min _{x \in A}\langle x, y\rangle \quad .
\end{aligned}
$$

Therefore the strong duality implies that

$$
\min _{x \in A} \max _{y \in B}\langle x, y\rangle=\max _{y \in B} \min _{x \in A}\langle x, y\rangle .
$$

Finally we prove the earlier claims about some basic properties of δ_{B}^{*} :
Claim 2 If $B \subseteq \mathbb{E}$ is closed and convex, then δ_{B}^{*} is a sublinear (and hence convex) map, and $\delta_{B}^{* *}=\delta_{B}$.
Proof For any $\alpha, \beta \geq 0$ and $x, u \in \mathbb{E}$,

$$
\delta_{B}^{*}(\alpha x+\beta u, y)=\sup _{y \in B}\{\langle\alpha x+\beta u, y\rangle\} \leq \sup _{y \in B} \alpha\langle x, y\rangle+\sup _{y \in B} \beta\langle u, y\rangle=\alpha \delta_{B}^{*}(x)+\beta \delta_{B}^{*}(u),
$$

which shows that δ_{B}^{*} is a sublinear (and hence convex) map.

Now we prove that $\delta_{B}^{* *}=\delta_{B}$. Fix any $x \in \mathbb{E}$.
If $x \notin B$, then by separation theorem, there exists some non-zero $\alpha \in \mathbb{E}$ such that $\langle\alpha, x\rangle>\sup _{u \in B}\langle\alpha, u\rangle=$ $\delta_{B}^{*}(\alpha)$. Since we saw that δ_{B}^{*} is positively homogeneous, $\langle\lambda \alpha, x\rangle-\delta_{B}^{*}(\lambda \alpha) \rightarrow+\infty$ as $\lambda \rightarrow+\infty$. Therefore $\delta_{B}^{* *}(x)=+\infty=\delta_{B}(x)$.

If $x \in B$, by Fenchel-Young inequality, $\langle y, x\rangle-\delta_{B}^{*}(y) \leq \delta_{B}(x)=0$ for all $y \in \mathbb{E}$, so $\delta_{B}^{* *}(x)=\sup _{y \in \mathbb{E}}\{\langle x, y\rangle-$ $\left.\delta_{B}^{*}(y)\right\} \leq 0$. But since $\langle x, 0\rangle-\delta_{B}^{*}(0)=0$, we have $\sup _{y \in \mathbb{E}}\left\{\langle x, y\rangle-\delta_{B}^{*}(y)\right\}=0$, so $\delta_{B}^{* *}(x)=\delta_{B}(x)$.

Therefore $\delta_{B}=\delta_{B}^{* *}$.
Submitted on November 12, 2009.

[^0]: ${ }^{1}$ In general, for $p, q \in[1,+\infty]$ satisfying $p^{-1}+q^{-1}=1$ (with the convention $(+\infty)^{-1}=0$), we have that for any $d \in \mathbb{R}^{n}$,

 $$
 \|d\|_{p}=\sup \left\{\frac{\langle d, x\rangle}{\|x\|_{q}}: x \in \mathbb{R}^{n} \backslash\{0\}\right\}
 $$

 ${ }^{2}$ Recall that f as a real-valued convex function is locally Lipschitz on \mathbb{E}, so it is continuous on \mathbb{E}.

[^1]: ${ }^{3}$ The sum rule applies at the last equality because both f and $\varepsilon\|\cdot\|$ have the whole space \mathbb{E} as their domains.

