CO350 Linear Programming Chapter 4: Introduction to Duality

13th May 2005

The Dual Problem

Instead of solving an LP problem, we consider a seemingly easier task.

To decide how close a given feasible solution is to being optimal.

Example: LP in SEF (pg 35)

maximize
$$5x_1-6x_2+8x_3+4x_4+x_5$$
 subject to $2x_1-x_2+x_3+x_4=1$ (P) $x_1+3x_2-x_3+x_4+x_5=9$ $2x_1+3x_3+x_4+x_5=6$ $x_1, x_2, x_3, x_4, x_5\geq 0$

Given feasible solution $x^* = [0, 1, 0, 2, 4]^T$. (Check feasible!) It has objective value 6. (Implication: Optimal value ≥ 6 .)

Is x^* optimal? Is x^* close to being optimal?

If we know optimal value ≤ 6 , then x^* is optimal. If we know optimal value ≤ 7 , then x^* is near optimal.

Goal: Get a good upper bound on the objective function $5x_1-6x_2+8x_3+4x_4+x_5$ subject to all LP constraints.