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Abstract

Arguably the most successful family of techniques used to solve general nonlinear programs is
known as Sequential Quadratic Programming. This iterative approach rests on a quadratic model
of the Lagrangean subjected to linear approximations of the constraints. For all its success, the
practical implementations must somehow overcome the weaker model of the feasible region.

A model demonstrably closer to the original problem uses second-order Taylor expansions of
both objective function and constraints. Such a model preserves all curvature information and can
therefore provide better Lagrange multipliers estimates. While considered before, this approach
has generally been discarded as intractable. But the expanding field of semidefinite programming
offers tools, both theoretical and practical, to overcome for a large class of problems this presumed
intractability.

To introduce such tools in a setting other than the combinatorial optimization environment,
where they have made notable breakthroughs in recent years, we review recent results concerning
the Trust-Region Subproblem, a basic building block in the continuous optimization arena. The
relation between Lagrangean and semidefinite duality is explored and leads to simple theoretical
foundations of an easily implemented algorithm.

The trust-region subproblem is then generalized to a problem with multiple trust regions. In
this case the feasible set is lifted from its the original Euclidean space to a symmetric matrix
space, partially ordered by the semidefinite cone. This generalization leads ultimately to an
algorithm engineered around the fully quadratic subproblem, envisioned as the better model

within a sequential programming framework.
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Chapter 1

The trust-region subproblem

As introduction to our work towards a general nonlinear program solver, we consider the Trust-

Region Subproblem, hereafter TRS , described by
TRS  min {,u(:n) = z'Qz + 2b'z | el <z e R"},

where R™ is the n-dimensional Euclidean space and ) is in S,, the space of symmetric n x n
matrices. This problem, as well as occurring in its own right under the names ridge analysis
or ridge regression (see Hoerl [31], Draper [17]), arises in an important class of minimization
algorithms known as trust-region or restricted-step methods described in most textbooks. (See,
for example, Fletcher [20], Luenberger [37], Dennis and Schnabel [14] or Bertsekas [6].)
Originally considered by Levenberg [34] in 1944 and Marquadt [41] in the context of nonlinear
least squares and expanded upon by Forsythe and Golub [22] in 1965 who characterized all sta-
tionary solutions, TRS has now been extensively studied and a number of algorithms can solve
very efficiently most instances of the problem. (See, for example, Moré and Sorensen [44], Rendl
and Wolkowicz [57], Santos and Sorensen [59], and Tao and An [67].) Our intention here is not to
surpass these special-purpose algorithms but rather to show how semidefinite programming can

be used as a framework both to study nonlinear programs and to produce very simple algorithms
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solving TRS. We then generalize this work; first to multiple trust-regions and then to general
nonlinear programs.
The program TRS, as defined above, is a simplified form of a problem that appears in the

modeling literature as
min{,u(:c) =z'Qz + 20’z | 'Cr 4+ 2d'c < 6%,z € }R”},

where C is positive definite. The notation used throughout this work, C = 0 (C' > 0) refers to the
Lowner partial order and is used to indicate that C is a positive definite (positive semidefinite)
matrix. The problem appears in this form when two competing objectives must be managed
concurrently. If, for example, a manufacturing process has a mean and a variance approximated
by second-order polynomial regressions, and the goal is to minimize the mean while maintaining
the variance to a particular target value, the above model ensues. (See, for example, Vinning and
Myers [71].)

This is indeed equivalent to TRS since, for C' > 0, we can obtain the Cholesky factorization
C = LL' and the substitution z = L=*z + C~1d will yield

min {,u(z) =2'Qz+ 262+ a | 2z < 8%+ dtC_ld},

where Q = L71QL, b= L71QC~'d + L='b and where the last term, a = —2b'C~1d, is a
constant that can be safely neglected.
In this chapter, we review the theoretical aspects of TRS within a semidefinite framework and

solve the program in a simple, straight-forward way that generalizes to multiple trust regions.

1.1 Characterization of optimality

The first surprising aspect of the trust-region subproblem is that the standard necessary condi-
tions, that require the Hessian of the Lagrangean to be positive semidefinite only on a subspace,

do not tell the complete story. The actual necessary conditions of TRS are stronger than expected.



CHAPTER 1. THE TRUST-REGION SUBPROBLEM 3

As we will see, the standard sufficient conditions for global minima are also necessary. This is
unusual since, in nonlinear programming, we are generally satisfied with local optimality results
and concerned with global optimality only when we consider convex programs.

To introduce this aspect of TRS, we closely follow Moré and Sorensen [44] and explicitly state

the global sufficient conditions as they apply to TRS.

Lemma 1.1.1 Suppose that a scalar A > 0 and a feasible vector zx € R"™, satisfy

(Q+ A)zy = —b (stationarity),
Azhzy—30%) =0 (complementarity),
(@+ M) =0 (strengthened second-order).

The vector zy is then optimal for TRS. Moreover, if (Q+AI) = 0, then zy is the unique minimizer.

Proof: Since we have Q + A\I > 0, we may consider the convex program min{z*(Q +\I)z +2b'z}.
Because ) satisfies (Q + AI)zy = —b, the sufficient conditions for an unconstrained minimization

are met. Therefore, for any z € R™, we have

2(Q+ M)z + 2z > 8 (Q + A)zx + 2b'zy

p(z) + gtz > p(za) + Azhaa

—
—

v

wz) > ples) + Mzhe - o).

First, if A = 0, then we have p(z) > p(za) and we conclude that zy is optimal for TRS. On
the other hand, if A > 0, by complementarity, which is assumed to hold, zizy = 62 and again
p(z) > p(zy) for all 2tz < §2. Therefore z, is optimal for TRS. The first claim is established.
Now, if (@ + AI) = 0, the previous derivation can be reproduced with strict inequality and
uniqueness of z follows. a

We should note that the optimality of z) for TRS implies that z) is a global minimum,
a feature usually reserved for convex programs. Since we have imposed no conditions on the

objective function, TRS is not, in general, a convex program. We therefore should not expect
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the sufficient conditions to be necessary. Yet, this rather surprising result was established first by
Gay [24], concurrently by Sorensen [62], and then by numerous other researchers.

The surprise concerns, of course, the number of negative eigenvalues of the Hessian, @ +
AI). Throughout this work, to denote the eigenvalues of an n x n matrix H, we use A\(H) :=
{A1, A2, ..., A}, where we assume the ordering Ay < Ay < --- < A,

To simplify the development, the following corollary to the Courant-Fisher min-max Theorem

helps and is used repeatedly.

Corollary 1.1.2 If an n x n symmetric matriz H satisfies y' Hy > 0 for all y in a subspace V

of dimension n — k, then H has at most k negative eigenvalues.

Proof: We assume the above convention for the ordering of the eigenvalues of H and we invoke
the Courant-Fisher Theorem, one formulation of which (see Horn and Johnson [32],page 179)
reads

y'A

. Y
Ak41 :max{mln{ 7 |y7é0,yJ_w1,w2,...,wk} |w1,w2,...,wk ER”}.

Since V is (n — k)-dimensional, its orthogonal complement, V', is k-dimensional and has a basis
Wy, Wa, ..., Ws. This choice of vectors in the Courant-Fisher min-max program forces the inner
minimization to be nonnegative since, for all vectors y such that y L w;, by hypothesis, y* Hy > 0.
Therefore, Ag41, Ak42,..., An > 0 and H can have at most k negative eigenvalues. O

Extending Gay [24] and Sorensen [62], we now characterize the necessary conditions for both

local and global minima. A proof for the global minima can be found in Fletcher [21].

Lemma 1.1.3 If z is a local minimum of TRS, then there exists a multiplier A > 0 satisfying
stationarity, complementarity and for which Q + AI has at most one negative eigenvalue. If x is

a global minimum, then QQ + A is positive semidefinite.

Proof: Consider the Lagrangean L(z,\) = z'Qz + 2b'z + A\(z'z — §?). We assume here, and
in the following, that the interior of the trust-region is non-empty (Slater’s condition). This is a

very weak assumption, equivalent to § > 0. The standard first-order necessary conditions yield
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a vector z and a nonnegative multiplier A satisfying complementarity and where 0 = VL(z, A) =
2Qz+2b+2X or (Q + M)z = —b. Therefore, the first three conditions of the lemma are satisfied.

Now, the standard second-order condition (see, for example, Fletcher [21]) yields y* (Q+AI)y >
0 on the (n — 1)-dimensional plane {y : y L z} tangent to the active constraint at the optimal
point. We can assume that the constraint is active since, if it is not, then @ > 0, A = 0 and we
have a global minimum by the unconstrained optimality conditions. In the active constraint case,
therefore, the Hessian, by Corollary 1.1.2, has at most one negative eigenvalue corresponding to
eigenvector z, the local minimum.

There remains only to show that the strengthened second-order condition applies to the global
minimizer. To establish the claim, consider first the case z'z < 2. The tangent plane is then R"

and we are done. If z'z = §2, then we consider the equality-constrained trust-region program
EQ-TRS  min{u(y) = y'Qy+2'y | o'y = 62},

Clearly, z, optimal for TRS, is also optimal for the equality-constrained variation since the feasible
set of the latter is a strict subset of the former. For all y, feasible for EQ-TRS, we therefore have

w(y) > p(z). This relation expands to
t t t t
Yy Qy+2b'y > z'Qr + 2b°z.
By stationarity, which holds, (@ + AI)z = —b and we can simplify to

Y'Qy -2z (Q+ M)y > z'Qr—2z'(Q+ M)z

S0 (y—o) (Q+ A (y—z) > Ay'y-—=z'z).

Now, since the constraint was y'y = 6%, and 62 = z'z, we can further reduce to

(y—2) (Q + AI)(y — z) > 0.
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This is enough to conclude that @ 4+ AI is positive semidefinite. To verify the claim, consider an
arbitrary vector z € R”. If z is orthogonal to z, then by the standard second-order condition,
since z is optimal, we have z*(Q + AI)z > 0. If z is not orthogonal to z, it can be written from
two feasible vectors y and z as z = a(y — ), for some scalar . This follows from the unique
constraint of EQ-TRS: The vector y was restricted in size to the radius of the ball, but not in

direction. We now derive the required inequality,

Q4+ M)z = aly—z)(Q+ M)a(y — =)
= o’(y—2)(Q+M)(y -z
> 0,
and we conclude that @) + A is positive semidefinite. a

We therefore have, for TRS, a complete characterization of both local and global solutions. The
question arises now of the existence of such local, non-global solutions of TRS and of their effect
on any algorithm. The existence question was answered by Martinez [42] directly from the primal
problem. We will review this result in the next chapter. At this point, we are more concerned
with completing our investigation of TRS, for which we need the dual program. Incidentally,

developing this dual will also explains why TRS behaves as a convex program.

1.2 Lagrangean relaxation

The complete characterization of optimality with identical necessary and sufficient conditions is
somewhat surprising as TRS is not, in general, a convex program. The reason for this fortunate
coincidence was uncovered by Stern and Wolkowicz [64]: The TRS is a hidden convex program
to which, therefore, strong duality applies.

To simplify the following development and provide a form of TRS better suited to analysis,
we consider an orthogonal rotation of the space of the problem. This, of course, is not done
numerically while solving TRS. It is used only to explicate the behavior.

Since @ is symmetric, we can find a spectral decomposition Q = V?* DV, where V is orthogonal
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and D is a diagonal matrix of eigenvalues i.e., D = Diag(A(Q)). We now define z = V'z and

¢ = Vb to get TRS in the following form:
TRS min{u(m) =2'Dz +2c'2 | 2Pz < 6%z € }R”}.
The Lagrangean of this formulation of TRS is
L(z,A) = 2'Dz + 2c'z + A(z'z — 6%).
Now, by maximizing the dual functional
v(A) = min{ﬁ(z, A) | z € ]R"},
we can derive the Lagrangean dual program ,

vto= max{z/()\) | A > 0}
= max {min{ztDz +2c'z 4+ A(z'z — 6%) | z e R"} | A> 0}

= max{min{zt(D + M)z +2c'z— X% |z € R"} | A > 0}.

The inner minimization must be bounded, as TRS has an optimal solution. There is therefore a

hidden semidefinite constraint, which we can make explicit, to get
v = max{min{zt(D+ M)z +2c'z — A6? | z € R"} | D+ A >0,A> 0}.

Since the inner unconstrained minimization must satisfy stationarity, (D + AI)z = —¢, we can
write an optimal solution z in terms of A as zx = —(D + M) ¢, where ()~ is any generalized
{2}-inverse.

We say that A~ is a {2}-inverse of A4, in the manner of Ben-Israel and Greville [4], if it satisfies
the second Penrose equation,

ATAAT =A™,
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It is interesting, and useful, that any {2}-inverse produces the same optimal value. To verify

this claim, consider the objective function, evaluated at an optimal solution,

v(A) 2A(D 4+ M)zx + 2c' 2y — 262

D+ AN (D+AN(D+ ) c—2H(D+ M) c— pYE:

—ct(D +A)7c— 262,

Now, as ¢ € R(D + M) (the stationarity equation is consistent), an orthogonal projection of ¢

onto this range will not affect it, (i.e., Pr(p4arc = ¢) and
v(A) = =" Pr(p+any (D + AI)” Pr(panc — A7,
which, by the {2}-inverse property, yields,
v(\) = —c(D+ A e— A2,

where (-)! indicates the Moore-Penrose inverse. (See Ben-Israel and Greville [4], page 70.) Since
the optimal objective value is therefore independent of the choice of inverse, we can write an

explicit dual program,

Dual TRS vto= max{l/(/\) = —c'(D+ M)tc— N2 | D+ X >0,A> 0}

= max{u(A):zn:;fA—Aaz|D+AI§0,A20}.

From this explicit dual, Stern and Wolkowicz [64] derive the following surprising result.

Lemma 1.2.1 (Strong duality) The dual optimal value is attained and is equal to the primal

optimal value.
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Proof: By weak Lagrangean duality,

pro= min{,u(z) =2'Dz 4 2c'z | 2tz < 62}

v

n 2
* —G c2
v :max{y()\):;)\i_i_/\—)\d |D+)\It0,)\20}.
From the above formulation of the dual, the behavior of the dual functional v () on the domain of
interest, namely A > max{0, —A1(D)}, is apparent. We first show that the optimum is attained.
Let I be the index set of eigenvalues equal to the smallest, i.e., I = {i: A\; = A1(D)}. Consider

v(A) from —A;1(D) to oo, a larger set than the feasible region,

lim v(A) = -o0
A= 00
—o0, if ¢; # 0 for some 1 € I;
lim v(A) =
At—=-2:(D) finite, if¢; =0 forallz e I.

The dual objective then, if it has a discontinuity at — A1, is coercive and attains its maximum. If
it has no discontinuity, the maximum is also attained, either at a stationary point A* > —A; in
the so-called easy hard-case, or at A* = —\; in the hard sub-case of the hard-case.

We now differentiate v to investigate the optimal objective value. The difficulty lies in differ-
entiating the inverse. The following transformation is helpful. Recall that (D + AI)zy = —c. We
can differentiate with respect to A to get zx + (D + AI)z} = 0 and then rewrite the dual objective
as

v(A) = zi(D + AI)(D + )\I)‘Lc A= zic — X2

We can now obtain the first derivative,

V(A = 2 - 5% = —c'(D + )\I))‘zA -2

28 (D + M)(D + M)t zy — §°

= ziz)\ -2,

Consider the case where optimality is attained at a stationary point of v, as in Example 1.3.2. We
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must have z{ zy —§? = 0, which implies that z, is on the boundary of the trust-region and therefore
feasible. The second case, where the maximum occurs at the left of —A;(D), as in Example 1.3.1,
yields A* = 0, and v/(\) = z{zx — 8% < 0. This again implies feasibility for the corresponding
primal vector. In the last, hard hard-case, as in Example 1.3.3, z) is strictly feasible and since
the Hessian of Lagrangean is singular, we can add to zy a vector z € N(D + A*I) and move to
the boundary of the trust-region.

In each case, zy (or the resulting zy = z) + z) is feasible for the primal and A\* (2} z) — %) = 0,

which yields

v* =v(X\*) = L(zx, \*) = 2k Dzy + 2’2y > min{z" Dz + 2¢'2} = p*.

This reverses the weak duality inequality. We therefore have equality and, at optimality for the

dual, the corresponding primal variable, being feasible, must be optimal. a

1.3 Classification of instances

Before we embark on solution methods for TRS, it is instructive to look at some examples. Given
the strong duality of the problem, both the primal and dual are enlightening. In the usual
taxonomy of TRS, we distinguish three cases, most easily understood from the dual objective,

expressed as

n 2
e
v(A) =) o — A2
i=1

As we have seen, this function is well-behaved except, possibly, when —X tends to one of the
eigenvalues.

The first, explicitly conver case occurs when D > 0. If the unconstrained minimum happens
to fall within the feasible region, then the dual program is optimal at A = 0 and the primal has
solution z7 = —¢;/A; for 1 < ¢ < n. This is illustrated by Example 1.3.1.

In the graphs of Example 1.3.1, and of the following examples of this section, the contour lines

of the primal objective function, u(z), are superimposed on the trust-region in the left-hand side.
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The circled cross marks the optimal solution. The right-hand side graph is of the dual objective,

v(A) and again, the darker point marks the optimal solution.

Example 1.3.1 Explicitly convex case. Consider min{:cth + 2biz | zir < 62},

Q= , b= , d=1, A=0, z*=

Figure 1.1: The contour lines of the primal ob- Figure 1.2: The corresponding dual objective
jective function of Example 1.3.1. The trust- function, v(\). The dark point marks the op-
region is superimposed, and the dark point timal solution, A = 0 on the domain of interest,

marks the unconstrained minimum. A > max{0,—5}.

This first case, if simple because the primal objective is convex, must nevertheless be handled
correctly by any general-purpose TRS algorithm if for no other reason than that the last few
iterations of most restricted-step algorithms, for which TRS is a subproblem, expect the trust-
region not to be binding.

If the objective Hessian is singular, then the component of the primal optimal solution corre-
sponding to the zero eigenvalues can be chosen arbitrarily to satisfy feasibility.

The convex case cannot be solved with A = 0 if the unconstrained minimum falls outside the

trust-region for then the corresponding primal value is infeasible. Nevertheless, the dual problem,
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a univariate maximization of a continuously differentiable function, is easy and identical to the
next case.

To consider the other cases, let I be the index set of eigenvalues equal to the smallest one,
A1(@) < 0, which we may assume to be negative since we are no longer considering convex cases.
The so-called easy case occurs whenever at least one ¢; # 0, for ¢+ € I or, equivalently, b is not
orthogonal to all eigenvectors corresponding to A1(Q). Then, for the dual functional to be finite,

we need A > —A;1(Q). This is exemplified by the following where the optimal primal solution is

—c;

PYE

obtained from the optimal dual A by 27 =

Example 1.3.2 Easy case. Consider min{:nth +2b'z | iz < 52},

40

301
201

1o\j
10k (\

—30F

-40 L L L L L L L L
-10 -8 -6 -4 -2 0 2 4 6 8 10

Figure 1.3: The contour lines of the primal ob- Figure 1.4: The corresponding dual objective
jective function of Example 1.3.2. The trust- function, v(\). The dark point marks the op-
region 1is superimposed, and the dark point timal solution, A = 6 on the domain of interest,

marks the constrained minimum. A > max{0,5}.

Note that the discontinuity of the dual functional at A = —X1(Q) requires any dual-type algorithm

to stay clear of this boundary, a difficult task as the optimal solution can be arbitrarily close.
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Finally, there is the so-called hard case where b is orthogonal to the eigenvectors corresponding
to Aj,2 € I. Then, simply enough, A = A;. Therefore, finding the smallest eigenvalue of @ by a
Lanczos algorithm, or even an approximation to it, as in the Rendl and Wolkowicz [57]) approach,
goes a long way towards solving TRS. The hard case is exemplified by the following, where one

possible optimal solution is given by

VY for i € I:= {i|\i # A};
“i= i W] otherwise
n—|I| .

Example 1.3.3 Hard case. Consider min{a@tQ:c + 2biz | zir < (52},

o

=

(==

S
Wl =

Figure 1.5: The contour lines of the primal ob- Figure 1.6: The corresponding dual objective
jective function of Example 1.3.8. The trust- function, v(\). The dark point marks the op-
region 1s superimposed, and the dark points timal solution, A = 1 on the domain of interest,

marks the constrained minima. A > max{0,—1}.

In this last case, given the optimal A, we can solve for some of the components of the optimal

—c;

Ait+A

primal solution by 2z} = but this solution is not optimal yet since complementarity fails. We
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can nevertheless start from this point and move to the boundary in the nullspace of @ + AI. This

approach, suggested by Moré and Sorensen [44], will be discussed in the next section.

1.4 Semidefinite relaxation

Having a complete characterization of the optimality conditions of TRS, we can now develop
an algorithm for its solution, keeping in mind that the approach must generalize, somehow, to
multiple trust-regions.

The equivalence of the semidefinite and Lagrangean relaxations is our starting point. This can
be seen, following the recipe developed by Poljak, Rendl and Wolkowicz [52], by first revealing
the hidden semidefinite constraint, as we did in the derivation of strong duality. Taking the dual
of this dual, we get a relaxation of TRS. But a direct approach yields the same pair of programs

and highlights how the rank of the solution is tied to optimality. Recall the primal problem,
TRS  min {,u(:n) = z'Qz + 2b'z | el <’ xe }R"}.

To get a pure quadratic form, we need to increase the dimension of the problem by the transfor-

mation

S
I
8

=]
I
—

Yi =ziro, 1<i<n, y

The last equation serves as a normalizing condition and ensures the same optimal values in both
the original and the homogenized program. The original optimal solution can be retrieved by

z; = yi/zo. We now have
min{u(ﬂﬁ) =y Py|yy<&+1lLyg=1yec R"“},
where the (n 4+ 1) x (n+ 1) matrix P is constructed from the original data by

0 b
b Q

P =
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We now simplify the notation by considering
y' Py = trace(y' Py) = trace(Pyy') = (P,Y), for Y = /',

and where (P,Y) is the usual inner product of symmetric matrices. The matrix Y, as defined,
is clearly positive semidefinite. We can therefore obtain a relaxation by discarding the rank one

condition. The primal semidefinite program will now read
PSDP  min {;](Y) = (P,Y) | (Eoo, Y) = 1,(P,Y) < 8% Y » 0},

where

0 b 0 0 10 1zt
P = , Pr= y, Boo = Y = )
b Q 0 I 0 0 r X

and all matrices are in R(*+1)*(#+1) The corresponding dual program is
DSDP max{ﬂ(,u,/\) = —p— X% | P+ AP+ piBigo > 0,\ > o},

which we recognize as the Lagrangean dual, after homogenization, with an explicit semidefinite
constraint. Note again that PSDP, with an additional rank one constraint on Y is exactly TRS
since rank one implies X = zz®, from which we can retrieve the solution to the original problem.

The notation fi(Y), if it seems abusive, since we have used p(z) to denote TRS, is nevertheless

justified since both optimal values are equal as we now show.

Lemma 1.4.1 The optimal values of TRS and PSDP, denoted here respectively by p(z*) and

A(Y™*), are equal.

Proof: Since PSDP is a relaxation of TRS, ji(Y™*) < u(z*) = p*. Since DSDP is identical to the
explicit dual of TRS, 7* = v*, and weak duality of the semidefinite pair yields v* < a(Y*). We

therefore have the sequence of inequalities
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Strong duality of TRS, expressed in the current notation as v* = p*, yields the desired result. O

If we solve the semidefinite relaxation, we therefore obtain the optimal value of TRS. But that
is only one of the useful results of this approach as the following few lemmata will show. In the
remaining development, the values of P, Pr,Y and Ey are defined as they were above for PSDP.

The first result relates the feasible set of the the semidefinite relaxation to the feasible set of
TRS. This is a result of fundamental importance to our work. We have lifted a problem from
R™ to Sp41. For this procedure to yield anything useful we must find a way back to the original
space. In some applications of semidefinite programming, the diagonal of the optimal matrix is
the key to the original problem. In our case, the first column plays this role.

The dependence we derive between feasible sets is related to a recent result of Fujie and Kojima
[23] for linear objective functions over quadratically constrained sets. Our result is similar but the

approach is completely different. We need the following definitions for the feasible sets involved.

F = {zeR"zlz <%}

F = {Y €Suy1;(E00,Y) = 1,(P,Y) < §?},

and a pair of maps from one space to the other,

PR:§n+1:>Rn ) PR( )Zl‘,

Plgl R = Sp41 Plgl(:n) =

The map Pg is a projector from Y to its first column, from which the first component is then
discarded to come back to R™. It is invertible only when the matrix Y is rank one and its top left
component is a 1.

We can now succinctly express the relation between the feasible sets.

Lemma 1.4.2 The feasible set of TRS, denoted F, and the mapping, under Pgr, of the feasible

set of PSDP, denoted F are equal. In short, F = PR(ﬁ').
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Proof: We first show that FF C Pr(F). Say z € F and let Y = Plgl(:n). By construction,
(Eo0,Y) = 1 and, since z'z < §2,

(Pr,Y) = (I,zz!) = z'z < &2

Therefore, Y € F.
In the other direction, we now show that PR(IE') C F. Say Y ¢ F and let z = Pr(Y),
y = (1,z)*. From the definition of Pr, we have the equalities (Pr,Y) = (I, X) and ' Pry = z'z =

(I, zz'). Subtracting these two equations, we get

yv'Pry = (Pr,Y)+(I,z2") — (I, X)

= (P,Y)— (I, X —zz').
Now, since Y > 0, then X is also positive semidefinite and X — zz? > 0. Therefore we obtain,

zle =y Pry < (Pr,Y) < &2

The last inequality implies that z € F. Combining the two inclusions we obtain F = Pr(F). O

This is a fairly surprising result. It provides us with a way to get feasible points to TRS
from feasible points of the relaxation, even when these are not rank one. But a feasible pair Y, A
to the semidefinite relaxation, if ¥ is not rank one, will in general map to a vector z for which
complementarity fails since zfz < §2. Interestingly, there always is a rank one solution. This
follows from a result of Pataki [49] relating the number of constraints to a bound on the rank of
the solution. In the semidefinite relaxation of TRS, the number of constraints implies a rank one
solution.

Finally, note that this analysis never involves the objective function which, therefore, need
not be linear or even convex. This is in contrast to the result of Fujie and Kojima [23] for linear
objective over quadratic constraints.

Solving the semidefinite relaxation always yields a feasible solution to the original problem by
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the projection on the first column. This is interesting in itself but begs the question of optimality.

The following clarifies some cases where the relaxation yields the optimal vector.

Lemma 1.4.3 If Q > 0, the convex case, then from Y, an optimal solution of PSDP, we can
obtain © = Pr(Y), optimal for TRS. Moreover, if the objective function is strictly convez, then

Y is rank one.

Proof: Say Y is optimal for PSDP. By the previous definition of P and of y = (1 z)?,

y'Py = 2b'z4(Q,zz"),

(PY) = 2bz+(Q,X).

Subtraction of the above equations yields

yth: <P7Y>_<Q7X_:B$t> < <P7Y>v

where the inequality follows from (Q, X — zz!) > 0 for @ > 0. But PSDP is a relaxation of TRS,

a minimization program, therefore

(P,Y)<y'Py=(P,Y) - (Q.X —za') < (P.Y),

and we can conclude that the inequalities are actually equalities.

If we consider now the structure of Y, we get

(P,Y) —{(Q, X —zz') = 2b'z+(Q,X)—(Q,X —zz")

= 2bz + 2'Qz.

So that the objective values are equal, i.e.,

y' Py =z'Qz + 2b'z = (P,Y).
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Since z = Pr(Y) is feasible for TRS by Lemma 1.4.2 and since primal and dual objective values

are equal we conclude that z is optimal for TRS.

Moreover, since (P,Y) — (Q, X — zz!) = (P,Y), we have

(Q,X — zz') = 0.

If the objective is strictly convex, i.e., Q is non-singular, then X — zz! = 0 and, therefore, X is
rank one. a
This implies that the hard case is not a concern for convex programs.
The convex case, necessary in any general-purpose algorithm, is not the only case that the
semidefinite relaxation solves naturally. We stated above and now give a formal proof that the

semidefinite primal program relaxes only the rank condition.
Lemma 1.4.4 IfY, the optimal solution of PSDP is rank one, then ¢ = Pr(Y) solves TRS.

Proof: The argument used in Lemma 1.4.3 applies, and ' Py = (P,Y) — (Q, X — zz®). If Y is
rank one, then the second term vanishes and since (P,Y) is a lower bound, we get y' Py = (P,Y)
or z = Pp(Y) is optimal for TRS. O

Unfortunately, we do not expect the relaxation to yield an optimal solution for every program.

The following hints at what can go wrong and what must be done to fix it.

Lemma 1.4.5 Assume thatY is the semidefinite optimal primal solution and that the multipliers
W, A are optimal for the semidefinite dual program. The projection © = Pr(Y), together with A

then satisfy stationarity of TRS, namely (Q + M)z +b=0.

Proof: Complementarity for the semidefinite pair yields

0= <P—|— )\PI +ILLE00,Y>.

But, as P+ APr 4+ puEgo = 0 and Y > 0, by feasibility of DSDP, we must have that the matrix
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product is itself zero, i.e.,

7 bt 1zt
b Q+ Al z X

Therefore, considering only part of the above multiplication, 0 = b+ (Q + AI)z. a

We now recognize that solving the semidefinite relaxation yields primal and dual solutions
that satisfy all the necessary conditions of TRS with the possible exception of complementarity.
Primal feasibility is shown by Lemma 1.4.2. Dual feasibility is explicit since DSDP is identical to
the Lagrangean dual of TRS. Stationarity is shown in Lemma 1.4.5. We now add the last step in

the semidefinite recipe to solve TRS.

Lemma 1.4.6 Assume that the multipliers (u, \) and the matrizY are optimal for, respectively,
the primal and the dual semidefinite programs, PSDP and DSDP. Assume, moreover, that Y 1is
not rank one. The optimal solution z* to TRS can then be obtained by z* = = + z, where T is
chosen in N (P + APr + pEoo), the nullspace of the Hessian of the Lagrangean, and constructed

to satisfy complementarity. Since X # 0, complementarity implies (z + z)t(z + ) = 62.

Proof: By Lemma 1.4.2, z is primal feasible for TRS. By Lemma 1.4.5, X is dual feasible
and stationarity holds. Moreover the optimal value of TRS is attained by Lemma 1.4.1. Only
complementarity fails. If we choose z in the nullspace of P + APr + uEqgo to satisfy this last
requirement and therefore all conditions of Lemma 1.1.1, we conclude that z* = = + Z is optimal
for TRS. a

The nullspace-restricted step, z, can be found by a QR decomposition of the Hessian. Say
Q + M\ = WR, where W!W = I, then the nullspace is the solution of

0=(Q+ Az,
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which we simplify by multiplying on the left by W?, to obtain
0=W'"Q+ M)z = W' (WR)z = Rz.

This equation can easily be solved by back substitution since the matrix R is upper trapezoidal.

This last ingredient in the semidefinite framework is interesting in more ways than one. As
we will shortly see, it translates into a very simple algorithm for solving TRS. But, incidentally,
it also provides us with another, arguably simpler proof, that TRS has no duality gap. We have

shown this result before but repeat it for the simplicity of the proof.

Lemma 1.2.1 (revisited) Strong duality holds for TRS.

Proof: The semidefinite dual pair PSDP, DSDP has strictly interior points and therefore no du-
ality gap, i.e., v* = g*. By construction, the dual program DSDP is equivalent to the Lagrangean
relaxation of TRS. Therefore v* = v*, both dual optimal values are equal. By the previous lem-
mata about solving PSDP, in cases where the solution is rank one (Lemma 1.4.4) and in cases
where it is not (Lemma 1.4.6), we can find primal solutions X and z such that i* = p*. Therefore

p* = v*; the primal and dual optimal values of TRS are attained and are equal. a

We now combine these results into a very simple TRS-solving algorithm.

1.5 Simple solution to TRS

We have shown how a semidefinite framework allows us, in theory, to solve TRS. In the explicitly
convex and easy non-convex cases, the semidefinite pair of programs yields the optimal solution
with no additional work. In the hard case, a decomposition of the Hessian of the singular La-
grangean is required to move to the boundary. The following pseudo-code description makes this
somewhat more explicit.

The full statement of the algorithm makes painfully clear its simplicity. But we view this
simplicity as a strength of the theoretical background and of the semidefinite framework, not as

a weakness. We have yet to see how we can, in practice, solve the semidefinite relaxation of
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TRS. But as our intentions, in this work, do not involve studying the intricacies of interior-point
algorithms, we prefer to consider the interior-point code simply as a tool. Moreover, as this
relaxation of TRS is only a special case of a more general semidefinite pair, we will postpone the

interior-point algorithm discussion to a later chapter, where the general program is known.

ALGORITHM FOR TRUST-REGION SUBPROBLEM

TRS(Q,b,5?)
Y € argmin{(P,Y) : (P1,Y) < 8%, (Eqo,Y) = 1}
(11, ) € argmax{—p — A6 : P+ APy + pEog = 0, > 0}
if \(zlz —62) =0
Tt ==z
else
Find z € N(Q + XI) with 2z = §% — 2’z
r=z+7Z
fi

return(z*)

1.6 A first step

The main purpose of this chapter was to introduce the semidefinite framework used to solve a fully
quadratic program, where both the objective and the constraints are second-order polynomials.
We have seen how a very simple semidefinite formulation solves the trust-region subproblem and
how we might implement this formulation.

The trust-region subproblem can and has been generalized in a number of ways. Moré [43]
has considered relaxing the positive definite requirement of the constraint and has developed

algorithms to solve such problems. Stern and Wolkowicz [64] also considered indefinite trust
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regions, with both upper and lower bounds, of the form
min{,u(:v) =z'Qz + 2b'z | §<z'Dr<a,zc ]R”}.

Recently, Di and Sun [15] reconsidered the origins of the TRS in the optimization world where
the objective is usually a model for a more complex nonlinear function and decided to explore a
conic model of the objective function. The resulting subproblem is expressed as

t
v Qv |:BtD:B<52,$ER" .
z)? =

'{f+ Ve +1
S l—atz 2(1-—at

The direction we intend to explore next considers the same simple quadratic objective we have

considered in this chapter but constrained by two, partially overlapping, trust regions.



Chapter 2

Two trust-regions

Moving up in complexity, we consider now the two trust-region problem, hereafter 2-TRS. It
occurs naturally, for example in process modeling, under the guise of the dual-response problem.
(See Myers and Carter [45].) But perhaps more important for our development is its appearance
as a subproblem of general nonlinear solvers for min{f(:n) | h(z) = 0} that use a sequence of

approximations of the type
CDT  min {,u(:n) =2'Qr+2b'z | ||A'z + || < e ||z|| < 6,z € R"}.

The problem was introduced by Celis, Dennis and Tapia [10], hence the acronym CDT, under
which it is now known, and is the stepping stone of a family of iterative methods. (See Byrd,
Schnabel and Schultz [9], Powell and Yuan [55], Yuan [75], Williamson [73], El-Alem [18], Zhang
7))

Because we wish a formulation more conducive to a semidefinite program and wish to handle
inequalities, we transform CDT into a form more appropriate to our purpose. We first square the

constraints to get

min{,u(ac) =2'Qu + 20z | 2'AA'z + 2 ATz + e < E,xfe < 8%z € ]R"},

24
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and now rewrite to introduce the notation we will use throughout,
2-TRS min{,u(w) =z'Qz + 2b'z | Qx4+ 26z —ay < 0,2z < 8%z € R”}.

For Q1 positive definite, as we will assume in this chapter, 2-TRS is equivalent to CDT and is
clearly a generalization of TRS. Lifting the restriction on @1, in the manner of Moré [43], possibly
with the additional complexity of a two-sided trust-region, in the manner of Stern and Wolkowicz
[63], yields a more general program we might also wish to consider.

We impose no restriction on the objective function. Heinkenschlos [28] studied programs
resulting from a convexity restriction; so have Yuan [76], developing a dual algorithm for their
solution, and Zhang [77], with a parametric approach .

Throughout this chapter, unless otherwise stated, we assume that the feasible region has a
non-empty interior. For the problem under consideration, such a constraint qualification is not

overly restrictive.

2.1 Characterization of optimality

The optimality conditions were originally studied by Yuan [75], albeit in a very different man-
ner. We wish to parallel the development of the previous chapter and therefore first investigate
necessary conditions.

Throughout this chapter, references are made to the tangency of some constraints. By tangent
constraints at z, we mean that the gradients of the constraints, evaluated at z, are linearly

dependent.

Lemma 2.1.1 If z € R" is a local solution of 2-TRS, then there exists a vector of nonnegative

multipliers A € R? satisfying

(@4 MQ1+ A2I)z = —b— Q1 (stationarity),

A (z'Quz + 2z —aq) =0
Aa(ztz —6%) =0

(complementarity),
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and where the number of negative eigenvalues of Q + X\1Q1 + A1 is

0 no constraint are active at z,
at most 1 if one constraint is active at x, and
at most 2 both constraints are active but not tangent at x.

Proof: Since we assumed the existence of strictly interior points, the standard first-order con-
ditions yield nonnegative multipliers satisfying stationarity and complementarity. We are left to

consider the Hessian of the Lagrangean,

Lz, X)) = :DtQ:E+2btac+)\1(:EtQ1:E+2bt1:D—al)+)\2(act:v—(52)

= ZBt(Q+/\1Q1+/\21)$+2(b+/\1b1)$—/\1@1 —)\262.

In the event that z satisfies constraint ¢ with equality, we can define the tangent plane T; to

constraint ¢ as

T {y:y'v1=0,v1 = Q12+ b1}

Ty {y:9y'v2=0,0 =2},

The standard necessary second-order conditions require the inequality

Y (Q + A\1Q1 + A2I)y > 0, for all y in the tangent space.

If no constraints are active, then @ + A1Q1 + A2] must be positive semidefinite on the whole
n-dimensional space. The Hessian has no negative eigenvalue.

If one constraint, say 2, is active, the corresponding tangent plane T; is of dimension n — 1
and the Hessian, by Corollary 1.1.2 to the Courant-Fisher Theorem, has at most one negative
eigenvalue.

If both constraints are active and the tangent planes do not coincide, then the tangent space

Ty NT; is a (n — 2)-dimensional subspace and the Hessian, again by Corollary 1.1.2, has at most
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two negative eigenvalues. a

The previous lemma allows the number of negative eigenvalue of the Lagrangean to be as
much as two when both constraints are active and is silent about the degenerate case (when the
constraints are tangent). First we note that the bound on the number of negative eigenvalues can
be strengthened. A very recent result of Peng and Yuan [51] concludes that the Hessian has at

most one negative eigenvalue when both constraints are active. We state the result without proof.

Proposition 2.1.2 If both constraints are active but not tangent at an optimal z, then there

exists optimal multipliers A for which Q + X\1Q1 + A2I has at most one negative eigenvalue.

Peng and Yuan [51] go on to consider the degenerate case, where the gradients of the constraints
at the optimal point z are linearly dependent. This degenerate case may be of little interest in
practice but the result is nevertheless interesting. The multipliers are not uniquely determined
and a wrong choice may lead to a Hessian which is not semidefinite. But there is a right choice

of multipliers.

Proposition 2.1.3 If both constraints are active and tangent at an optimal x, then there is a

choice of optimal Lagrange multipliers X such that QQ + A1 Q1 + A21 is positive semidefinite.

We will not give the proof but an intuitive understanding of the result is that, when both
constraints are active and tangent, the optimal solution is a global minimizer for one of the trust-
regions. Said differently, one of the constraint is redundant. This is clear in the 3-dimensional
case as can be seen in Example 2.3.3.

This case is the only one where the multipliers A are not uniquely defined. This is a well-
known consequence of the strong constraint qualification: linear independence of the gradients of
the constraints. (See Bazaraa and Shetty [2] for more details on the relative strength of various
constraints qualification.) We sketch a simple proof of the uniqueness of the multipliers in the

general case.

Lemma 2.1.4 Consider the program min{f(:n) | g(z) <0,z € ]Rn}. If we assume that = is a
local optimum and that the gradients of the active constraints are linearly independent at x, then

the optimal Lagrange multipliers corresponding to this primal solution are uniquely defined.
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Proof: Optimal multipliers satisfy stationarity of the Lagrangean, a necessary condition at the

local optimum z,
Vfz)+ Z AiVgi(z) =0,
i=1
or
A1
[Vgi(z) ... Vgm(z)] | --- | ==V f(z).
Am

Linear independence of the gradients of the constraints at z imply that the above matrix is full

column rank and the system, therefore, has a unique solution, which can be explicitly written as
A=—[Vgi(2)...Vgm(z)]' V(z),

where (-)! is the Moore-Penrose inverse. O
The generalized inverse is a nice expression for the solution of the linear system but numerically
it may be more efficient to find a decomposition [Vgi(z) ... Vgm(z)] = QR, where @ is orthogonal
and then solve by back substitution RA = —Q'V f(z).
In the hierarchy of constraint qualifications, linear independence of the gradients is one of the
more restrictive. But in the context of 2-TRS, where one of the trust-regions is usually under our
control, it is reasonable to expect the trust-regions not to be tangent in the generic case. This

allows us to usefully restrict the previous result to the 2-TRS case.

Lemma 2.1.5 Unless both constraints are active and tangent at an optimal solution z, the mul-

tipliers A1 and A3, corresponding to z, are uniquely defined.

Proof: Non-tangent constraints imply linear independence of the gradients. The result follows
from Lemma 2.1.4. a

As opposed to TRS, the program 2-TRS does not exhibit any hidden convexity. We cannot,
therefore, expect the necessary and sufficient conditions to coincide. A gap may remain between
the primal and dual optimal values, as we will see in the next section. There are nonetheless

sufficient Lagrange conditions that have been known for a long time. (See Luenberger [36], p223.)
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Lemma 2.1.6 Assume that x* is feasible for the program
NLP min{f(w) | g(z) <0,z € Rn}.

Assume also that there is a nonnegative vector \* € R™ such that the pair ©*, \* satisfies sta-
tionarity and complementarity. Finally, assume that the Lagrangean, L(z,\*) is conver. Then
z* is optimal for NLP. Moreover, x* is the unique optimal solution if the Lagrangean is strictly

conver.

Proof: By hypothesis, the program
min {E(x, N = f(2) + g(2)\ |z € R“}

is convex and stationarity, which is assumed to hold at (z*, \*), implies that
L(z*, A*) < L(z, ), forall zeR"

If we consider the left-hand side of this inequality, we can simplify to L(z*,X*) = f(z*) +
g(z*)*A\* = f(z*) by complementarity. On the other hand, if we restrict ourselves to the set
of z feasible for NLP, since A* > 0 and g(z) < 0, we obtain L(z,\*) = f(z) + g(z)'\* < f(=z).

We can now conclude from our original inequality that
f(@®) = L(=" A7) < L(z, A7) < f(z),

or that z* is optimal for NLP.

If the Hessian of the Lagrangean is positive definite, the first inequality now reads
L(z*, A") < L(z,A*), forall zeR"

and we conclude that the optimal solution is unique. a

This result, restricted to 2-TRS, can be expressed somewhat more compactly because the
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Hessian does not depend on z. (For a different proof, see Zhang [77].)

Lemma 2.1.7 Assume that a vector z, feasible for 2-TRS, together with a nonnegative vector
X\ € R? satisfy stationarity, complementarity and Q + A\1Q1 + A2I > 0. Then = is optimal for

2-TRS. Moreover, if Q + A\1Q1 + A2l = 0, then z is the unique oplimum.

Proof: The result follows from Lagrangean sufficiency, Lemma 2.1.6. i
The above proof holds for any number of active constraints at optimality but it is instructive
to consider the case of a single active constraint separately. Assuming A\; = 0, for example, the

conditions of Lemma 2.1.7 reduce to
(Q + XoX)z = —b, Ao (2t — §%) =0, Q+ oI >0,

conditions we recognize as necessary and suflicient for the optimality of TRS. This occurs when the
objective function is convex or, more generally, when one constraint isolates the global minimum
of the implicit TRS forced by the other constraint. In this manner, we relate 2-TRS to our

previous considerations of TRS.

2.2 Lagrangean relaxation

We have hinted at a gap between primal and dual optimal values of 2-TRS. It is time we describe
the dual program and show where and why these gaps originate.

To derive the dual, we first state 2-TRS as a minimax program,
min{max{:th:B +2b%z + A (2'Quz + 2biz — a1) + Aa(z'z — 52) | A > 0} | T € R"}.

As noted above, we can homogenize the quadratic function by y = (z¢ z)?, yet obtain the same

optimal value if we require 22 = 1. The homogenized program reads

min{maX{yth + Y MPry + Y Ao Poy + Y pBooy — p | A> 0, p€R} [y € R"“},
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where
0 bt —a; b
P= 7P1: 7P2: 7E00:
b Q b1 Q1 0 I 0 0

i
|
o,
[V]
[}
—
[}

To see the equivalence of this formulation with our previous exposition of 2-TRS, we note that

for the inner maximization to be bounded, we must have
Y Py <0, Y'Py<0, and ¢ puEoy= p.
These are equivalent to
£'Qiz + 2tz —ay <0, iz —62<0, and 2 =1,

conditions we recognize as primal feasibility for the homogenized 2-TRS. The maximization will
be attained when

t'Qur + 2z —a; =0 and zfz— 462 =0,

and we are left with the primal objective function to minimize.

To derive the dual, we interchange min and max and rearrange the Lagrangean to read
max{min{yt(P + AP+ XePo+ pEg)y—p |y € R”"'l} | A>0,p€ R}.
For the inner minimization to be bounded we must now have
P+ XPy+ M Py+ By - 0.
Since all principal minors of a positive semidefinite matrix are positive semidefinite, this implies
Q+21Q1+ X1 - 0.

This is where the duality gap arises. We remember that the optimality conditions, for 2-TRS, did



CHAPTER 2. TWO TRUST-REGIONS 32

not require the Hessian of the Lagrangean to be semidefinite. It was allowed up to two negative
eigenvalues. But the Lagrangean dual program we are deriving here requires the same Hessian
to be semidefinite. We therefore cannot expect the primal variables corresponding to an optimal
dual solution to be optimal for 2-TRS. They will be optimal only in cases where the Lagrangean
is convex at primal optimality.

We now pursue the derivation and note that the minimum over z will be attained at z = 0

from which we get the dual program
D2-TRS max{—/\lal — 2282 = | P+ MPy+ APy + pEoo = 0,A > 0}.

This is a semidefinite program of low dimension, whatever the original dimension of 2-TRS, and
is therefore potentially easier to solve. But unfortunately, as we will see by examples in the next
section, solving the dual does not, in general, yield an optimal primal solution.

There is a sense in which we can eradicate the duality gap by transforming 2-TRS. The

transformation involves adding a constraint.

Lemma 2.2.1 Suppose that = is a primal optimal solution to 2-TRS with associated Lagrange
multipliers A1 and 3. Then there exists a quadratic constraint that, added to the problem, will

yield a conver Hessian while retaining x as an optimal solution.

Proof: First we find the required multiplier A3 such that
Q+ AMQ1+ A2l + A3l = 0.
Such a multiplier is clearly not unique but we can make it so by choosing
Az = max {0, —Amin(Q + M1Q1 + A2I)}.

If A3 = 0 we are done, as the Lagrangean is convex. If not, we choose a vector b3 so that
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stationarity is still satisfied, namely,

(Q+ MQ1+ A2l + A3z + (b4 A1by + A3b3) = 0.

This is always possible. In a pinch, b3 = z will do. And finally, since we forced A3, to be positive

the third constraint must be binding and we compute a3 such that

'z + 25z + a3 = 0.

This is again always possible. By construction, all sufficient conditions for optimality (Lemma
2.1.7) are satisfied. Therefore z remains optimal. a

If we have chosen b3 = z, then a3z = 0 and the new constraint has no relative interior. This is
somewhat uninteresting. But better choices for b3 do exist. And it may be possible to find them
in a consistent and generally applicable manner that would lead to an algorithm. The question
remains open.

The lemma does provide a necessary condition for optimality, the driving force behind most
algorithms: At some iterate, potentially optimal, test necessary conditions and act on a failure
in order to improve the iterate. In the 2-TRS case, it might be possible, for example, to add a

constraint of maximum volume.

2.3 Classification of instances

In the following examples we wish to highlight the different cases described by the necessary
conditions of Lemma 2.1.1. First we want to show that they can all occur and that, therefore,
there are real gaps between primal and dual optimal values. But we also wish to consider the
relation between the optimal solution of 2-TRS and our previous work on the single trust-region
problem.

Since the necessary conditions of 2-TRS fall naturally into three cases, according to the number

of active constraints, the examples will fall into the same classes. We skip the first case as it is
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not essentially different from the TRS case where the constraint is inactive. No active constraints
implies a convex objective function and, therefore, a convex Lagrangean and no duality gap. In
fact, a convex objective, wherever the unconstrained optimum falls, implies a convex Lagrangean
and no duality gap.

As important as the convex case is, examples shed no additional light on the problem. In
the following, we therefore consider only non-convex objective functions. The vectors z* and A*
denote primal and dual optimal solutions.

The cases we illustrate are
e One active constraint

— Isolated global minimum of implicit trust-region (Example 2.3.1)

— Isolated non-global minimum (Example 2.3.2)
e Two active constraints

— Tangent active constraints (Example 2.3.3)

— Intersecting active constraints (Example 2.3.4)

In light of our work on TRS, the first interesting case occurs when only one constraint is active
at the optimal solution z* of 2-TRS. The necessary conditions of Lemma 2.1.1 tell us that the
Hessian @ + A1Q1 + A2I has at most one negative eigenvalue.

We consider first the case of a convex Lagrangean. Since only one constraint is active, one
of the multipliers, say A; is zero and the Hessian therefore satisfies @ + A2l > 0 so that all
necessary (Lemma 1.1.3) and sufficient (Lemma 1.1.1) conditions of TRS are satisfied for the
binding constraint. The second constraint must isolate the global minimum implicit in the active

trust-region. This is illustrated by the following.
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Example 2.3.1 Isolated global minimizer.

Consider min {:ctQ:c + 2b'z | 2'Qiz +2biz — a; < 0,2tz < (52},

2 0 1 10 2 )
Q: 7b: 7Q1: 7b1: ,01:1,0224.
0 2 0 0 1 0
0 =) , Loy
The optimal solution is \* = ,ot = , with VL =
2.5 0 0 2

N

-

)
A

=)

|
S

!
N

Figure 2.1: The primal objective function of Ez- Figure 2.2: The corresponding contour lines,

ample 2.9.1. superimposed on the two trust regions. The dark

point marks the isolated global minimum.

Note that the Hessian of the Lagrangean, in this example, is positive definite, clearly indicating
a global minimum, but need only be semidefinite. Either way, there is no duality gap; the primal
and dual optimal values are equal.

The second case concerns a Hessian with exactly one negative eigenvalue at z*, the optimal
solution of 2-TRS. Again, because one multiplier is zero, the condition that the Hessian satisfies,
namely Q + A1 Q1 + A2l > 0, concerns only the active trust-region. Yet the negative eigenvalue

implies that z* cannot be a global minimum for this trust-region considered separately. It is



CHAPTER 2. TWO TRUST-REGIONS 36

rather a local, non-global minimum. The following example is a slight variation of the last one.

Example 2.3.2 Isolated non-global minimizer.

Consider min {:BtQCB + 2b'z | 2'Qiz + 20z — a1 < 0,z'z < (52},

Q: ’b: ’Q]_: ,b]_: ,a1:1,52:4.

=)

-3
3

Figure 2.3: The primal objective function of Figure 2.4: The corresponding contour lines and
Ezample 2.3.2, which is the same as Ezample the two trust regions. The dark point marks the

2.3.1. The difference lies in the trust-regions. isolated local, non-global minimum.

The important point highlighted by this example is that the second constraint, even if not binding,
modifies the problem in a fundamental way. Because the Lagrangean is no longer convex, there
will be a gap between the primal and dual optimal values. Solving the dual is no longer sufficient
but we might consider solving for local, non-global minima of each trust-regions, in turn. We have
tried, somewhat informally, to gauge the frequency of such duality gaps by generating random

2-TRS problems of various dimensions. Almost a third of the problems fell in that category,
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suggesting that algorithms purporting to solve 2-TRS cannot ignore them.

Even if we rarely expect, in practice, to encounter cases where both constraints are active,

they are possible. For illustrative purposes, we can ignore instances where one constraint is only

weakly active in the sense that complementarity holds with the constraint at equality and the

multiplier at zero. These are limiting cases that can be considered either from the point of view of

a single active constraint or as two strongly active constraints, as we intend to do. The following

example is from Yuan[75].

Example 2.3.3 Two tangent active constraints.

Consider min {:Bth + 2b'z | 2'Qrz +2biz —a; < 0,2z < 52},

-2 0 3 10 -
Q: 7b: 7Q1: 7b1— ,CL1:0,62:4.
0 -3 0 0 1 0
0 2 ) S
The optimal solution is \* = ,zt = , with VL =
i 0 0 2

Figure 2.5: The primal objective function of Ex- Figure 2.6: The corresponding contour lines,

ample 2.5.3. superimposed on the two tangent trust regions.

Both constraints can be tangent at optimal z* so that the gradients are linearly dependent. In that
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case, as Lemma 2.1.5 showed, the multipliers are not uniquely defined and some valid choices will
lead to a Hessian with two negative eigenvalues. In this degenerate case it is always possible, as
Proposition 2.1.3 stated, to choose multipliers that will avoid Hessians with negative eigenvalues.
There are therefore no duality gaps as one constraint is essentially redundant.

If the constraints are not tangent, but are strongly active (non-zero multipliers), then neither
are redundant and the optimal solution z* is not a local minimum of either trust-regions considered
separately. The Hessian of the Lagrangean may have at most one negative eigenvalue in which

case there would be a duality gap. Or it may be positive semidefinite, as the following illustrates.

Example 2.3.4 Two intersecting active constraints.

Consider min {:Bth + 2b'z | 2'Qrr + 2biz —a; < 0,2z < 52},

-4 0 1 1 0 2 5
Q: 7b: 7Q1: 7b1: ,CL1:5,6 = 6.
0 2 0 0 1 3
2.63 —2.41 26 0
The optimal solution \* = , Tt = , with V2L =
3.97 —0.46 0 8.6

Figure 2.7: The primal objective function of Ez- Figure 2.8: The corresponding contour lines,

superimposed on the two trust regions. The dark

ample 2.5.4.

point marks the global minimum.
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Is it noteworthy that the Hessian is positive definite in this case so that we expect no duality gap
but there is no reason yet to believe that this is representative of the two active constraint case.

We close our bestiary of two trust-region problems after we remark, once more, that our
informal classification relied greatly on the implicit existence of local minimizers, both global and
non-global of the active trust-region problem. We will try, in the following section, to analyze more

closely the existence of these minimizers, for a solution approach may use these to its advantage.

2.4 Local minimizers

The existence of local minimizers deserves more attention. We pursue Example 2.3.2 above where

we saw both global and non-global minimizers.

Example 2.4.1 Ezample 2.3.2 revisited.

-2
Global z* = JAY = g,,u* =v* = —12, Non-global z = A= g, v=—4.
0

[\

(5/2,-12)

(312,-4)

Global

Figure 2.9: Stationary points of the dual func-

tional, v()\), corresponding to Example 2.4.1 Figure 2.10: And its first derivative, v'(X).
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As we have seen, the number of negative eigenvalues of the Lagrangean is often related to the
presence of local minima of one trust-region within the feasible set specified by the other. How
often such minima are isolated will strongly depend on the origin of the problem. In a Levenberg-
Marquadt type algorithm, for example, the added trust-region is expected to be the only one active
until, asymptotically, it becomes redundant. Therefore, most of the time, a global minimum will
be feasible.

But in other settings, the existence of non-global minima may play an important role. As
we stated in the first chapter, the existence of such non-global minima, explored by Lyle and
Szularz [39] via the dual Lagrangean, was fully characterized by Martinez [42] and is a somewhat
surprising result. We will not prove the result but rather provide a sketch.

Recall the diagonalized form of the single trust-region program
TRS min{u(m) =2'Dz 422 | 2'2< 6% 2 € R"}.

With this formulation, we can state Martinez’s result in the following manner.

Proposition 2.4.2 There is at most one local, non-global minimizer x of TRS. If there is one
such x, then ¢; # 0 for all i where A\; = A1(D + M), and the dual optimal solution \ occurs in the

interval (—Az, —Aq1).

Sketch of proof : By Lemma 1.1.3, a local optimum dual pair z, A of TRS must satisfy y*(D +
M)y > 0, for all y such that y*z = 0. From this we conclude that D + AI has at most one
negative eigenvalue. Now, by Lemma 1.1.1, it must have exactly one such eigenvalue for z not to
be global. Therefore, we can now restrict our attention to an interval where D + AI is full rank
and invertible, A € (—Az2, —A1) and the pair z, A must satisfy z*(D + AI)z < 0.

By stationarity, z = —(D + M)~ !¢, and the above inequality can be rewritten,

2 (D+ M)z = (D+AX)"H D+ M)(D+ M) e =cH(D+ M) te < 0.
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This provides the first characterizing condition of a local minimum. Now, since A # 0, because a

local minimum must be on the boundary, complementarity yields
2 —2lz =8 -cH(D+A)HD+A)"te=6* (D + M) %c=0,

the second condition.

Rewriting this pair of conditions in terms of the so-called ezplicit secular function [72],we get

2

0 > o1 )\ic-im = —v(\) —Ad®

0 = X ()\ij.i)\y — 42 v'(A).

With this formulation of the necessary conditions for a non-global minimum, it is clear that there
can be no more than two such points on the interval A € (—Az, —A1). (See Example 2.4.1.) Not
so easy to see is that there can be only one. Herein lies the surprising result of Martinez. a

With a little additional work, we can see that there will never be a non-global minimum if
the global minimum is an instance of the hard case: For A\; # A1, the denominators A; + A are
all positive on the domain of interest, A € (—Az, —A1). In order to satisfy the first of the two
required conditions for non-global minima, we therefore must have ¢; # 0 for some ¢ such that
Ai = A1(D + AI). And since the hard case is characterized by all such ¢; = 0, it cannot harbor
non-global minima.

Martinez went on to describe an algorithm to find these non-global minima. Some work
remains to be done in this area since, even is a characterization of non-local minima is known, an

efficient and stable algorithm might eschew the search completely given a simple test for existence.

2.5 Semidefinite relaxation

As we did for TRS, we derive the semidefinite relaxation of 2-TRS. Details of the derivation are

omitted when they are identical to the TRS case. We recall the primal problem,

2-TRS min{u(m) =z'Qz + 2b'z | 2 Qur + 2z —ay < 0,2'z < 8%z € R"}.
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We homogenize by adding a new component to the z vector and move into the semidefinite cone

by relaxing the rank one constraint to get
PSDP  min {ﬁ(Y) = (P,Y) | (P1,Y) < a1, (P1,Y) < 6%, (Eoo, Y) = 1,Y » 0},

where

0 bt 0 btl 0 0 1zt
P= 7P1: 7PI: 7Y:
b Q by Q1 0 I zr X

The matrix Ego has only one non-zero entry in the top left corner, and all matrices are in

R(®+1)x(n+1)  The corresponding dual program is
DSDP max{l/(,u, A)=—p— Aag — 62 | P4+ X P14+ AP+ pEgo = 0, X > 0},

a program we recognize as the Lagrangean dual, after homogenization, with an explicit semidefinite

constraint. This leads to the following set of equalities, stated here explicitly for future reference.

Lemma 2.5.1 The dual optimal values of 2-TRS denoted v*, and of DSDP, denoted v*, are

equal to each other and to the optimal value of the primal semidefinite program, p*.

Proof: The equality v* = v* follows by construction of the semidefinite relaxation. The equality
of v* = p* follows from strong duality of a linear semidefinite pair under Slater’s constraint
qualification, which holds in this case. a

We recall the definitions of the feasible sets of interest and of the projector map used for

TRS to simplify the next lemma relating the feasible set of the original problem to the set of the

relaxation.
F = {zeR™z'z <% 2'Qiz + 2biz —a; <0},
F o= {Y €Sup1,(Eoo,Y) =1,(Pr,Y) <8, (PL,Y) < a1},
a zt ) ) 1zt
Pr :Spy1 = R"; Pr( Y=z, Pg :R"=S,11; Pp (z)=

z X z zzt
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Lemma 2.5.2 The feasible set of 2-TRS, denoted F, and the mapping, under Pgr, of the feasible

set of PSDP, denoted F are equal. In short, F = PR(ﬁ').

Proof: The proof follows from Lemma 1.4.2 applied to each constraint in turn. a
Solving the semidefinite relaxation of 2-TRS therefore yields a feasible solution to the original

problem. Moreover, in some cases, as we now see, this feasible solution is optimal.

Lemma 2.5.3 If Q > 0, then fromY, an optimal solution of PSDP, we can obtain z = Pg(Y),

an optimal vector for 2-TRS. Moreover, if the objective function is strictly convex, Y is rank one.
Proof: The result follows from Lemma 1.4.3. a
Lemma 2.5.4 IfY, the optimal solution of PSDP, is rank one, then x = Pr(Y) solves 2-TRS.

Proof: The result follows from Lemma 1.4.4. a

At this point, TRS and 2-TRS begin to differ. In the former case we could, by moving in
the nullspace of the Hessian of the Lagrangean, attain the optimal solution. This is not always
possible in 2-TRS as the following example shows. There can be an unsurmountable gap between

the optimal values of 2-TRS and of its Lagrangean (thus semidefinite) relaxation.

Example 2.5.5 An instance of 2-TRS with a gap between its optimal value and the

optimal value of the its semidefinite relaxation.
pt = min {1023 — 223 + 1221 — 10| 23 + 23 — 1021 — 422 + 20 < 0,23 + 23 — 36 < 0 }.

The optimal solution is z* = (6 0)*, with optimal value p* = —298. The semidefinite relax-

ation, after some rearranging to simplify the presentation, is given by
B= min{<P07Y> | (Pr,Y) <0,1<k <2,(E,Y)=1Y = 0}7

-10 6 0 —-36 0 0 20 =5 -2 100
Py = 6 -1 0 |,P= 0 10|, P=| -5 1 0 [sBoo=|0 0 0
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Objective function

Figure 2.11: Primal objective function of Example 2.5.5.

From the optimal semidefinite primal solution, the first column yields y = (5.48 0.3)?, after
the projection discarding the homogenization component. The corresponding (strictly positive)
optimal Lagrange multiplier vector is A= (1.2 8.8)". Since Y is optimal for the SDP problem, it
must be that the constraints of the relaxation are both active, i.e., (P1,Y) =0, and (P5,Y) = 0.

Yet the projection, given by the first column, satisfies no constraint with equality. Now we let

~2928 —6 -—2.4 064 0 —2.4
P:ZA,-P,-: _6 10 0 , Z=P+pEgp+Py= 0 0 0 ,
24 0 10 —24 0 8

and consider the Lagrangean.

Figure 2.12: Lagrangean of Example 2.5.5 with optimal multipliers. Its Hessian is singular.
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The Hessian of the Lagrangean is not full rank, so there is a direction in which we can move,

as we did in the TRS case, while maintaining the same optimal objective value for the relaxation.

Relaxation: y* Optimal solution: x*
2 T T T

15 wPw=0 q

1k 4

0.5F wZw=0 q

Figure 2.13: Corresponding to Example 2.5.5, the darker lines indicate the trust-regions. The
optimal solution, z*, is marked by a star, and the semidefinite relaxation, y*, by a circle. The
line wZw = 0 is the nullspace of the Hessian of the Lagrangean and wPw = 0 is the linear
combination of the trust-regions given by the optimal multiplier vector A*.

We can move in the nullspace of the Lagrangean, the line w®Zw = 0, improving the objective
value of 2-TRS, until we hit the boundary of the feasible region, but we will not attain the optimal
value. How close to the optimal solution the nullspace-restricted step moves is difficult to quantify.

But, if nothing else, it produces a reasonable upper bound for the primal value.

2.6 Branch and bound for approximate solution

Whenever we are only concerned with a bound for the optimal value or an approximation to the
optimal solution, the nullspace-restricted move described above is appropriate and we will use it
while solving general nonlinear programs. But before we leave 2-TRS, we give a few more results
that potentially yield a better approximate solution and shed some light on a complete solution.
This section should be viewed as tangent to the general direction of our work, and is stated here

for completeness only.
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We have hinted that a complete solution for 2-TRS might involve looking at the global and
non-global minimizers of each trust-region. We now describe how these points are related to the
optimal solution we seek.

To simplify the discussion, we restate 2-TRS in a slightly more general manner,
2-TRS min{qo(:c) | q1(z) <0,q2(z) < 0},

where ¢; and g are convex quadratic constraints. We explicitly define the two implicit trust-region

problems,

TRS; min {qo(:v) | qi(z) < 0} TRS,  min {qo(x) | g2(z) < 0}.

With this notation the next two results can be easily stated. They appeared, without proof and
in a slightly different format, in Williamson thesis [73] and form the basis of her 2-dimensional,

projected CDT-solving algorithm.

Lemma 2.6.1 If a local minimum = of either trust-region problems TRS; or TRS> is feasible
for 2-TRS, then z is a local minimum of 2-TRS. If, in addition, x is a global minimum of either

trust-regions, then it is optimal for 2-TRS.

Proof: Since z is a local minimum for one trust-region, there is no feasible direction improving
the objective function within that trust-region. Reducing the feasible set can only reduce the set
of feasible directions. Therefore, since z is feasible for 2-TRS, it is a local minimum. If z is a
global minimizer for one trust-region, by the same argument, it is global for 2-TRS. i

Note that the converse is not necessarily true. A global minimizer of 2-TRS need not be
a global minimizer of either trust-regions. What the previous lemma implies is that looking for
minimizers of the implicit trust-regions is, in those cases where such minima are feasible for 2-TRS,

sufficient to solve 2-TRS. The other cases are handled by looking at the intersections.

Lemma 2.6.2 If no local minima of either trust-regions TRS; or TRS> are feasible for 2-TRS,

then the optimal solution x* lies somewhere on the intersection of their boundaries.
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Proof: By way of contradiction, assume that the optimal solution for 2-TRS, z, does not satisfy
both constraints with equality and is not a local minimum of either trust-regions. We distinguish
two cases.

In the first case, there are no active constraints and the objective is convex. Therefore z is
the unconstrained minimizer. It must be optimal for both trust-regions, a contradiction.

In the other case, on the implicit trust-region problem of the single active constraint, since
we assumed z was not optimal, there is a feasible direction improving the objective. Since the
second constraint is inactive, the direction is also feasible with respect to 2-TRS, contradicting
the optimality of z. We conclude that z must lie on the intersection of the boundaries of both
trust-regions. a

We could, in principle, solve 2-TRS by looking at all global and non-global solutions of each
trust-region and at all intersections of the constraints. But this is a daunting task if the problem
is of any dimension higher than two. The set of local minima is finite but the intersection set
need not be. Williamson did look at all such points because the problem she considered was two-
dimensional and the number of intersections was at most four. An alternative was investigated
by Heinkenschlos [28] who replaced the two constraints by a single constraint equivalent to the
manifold of the intersections.

We contend ourselves with an approximate solution that we may find easily by looking at the
global then the local minima, since we know there are a finite number of them, and then, by
looking at one intersection point.

The general idea for the algorithm is to solve first the semidefinite relaxation and possibly
apply the nullspace-restricted step. Whenever the objective is convex over the feasible set or
when the optimal solution can be attained by the nullspace-restricted step, we are done. In all
other cases we get a feasible point and bounds on the optimal value.

If the first step did not yield the optimal solution, it provided a feasible, strictly interior point.
Starting from this point and using the bounds to stop the iterations whenever appropriate, we
look for global minimizers of each trust-region. This generally involves few steps of the interior-

point code. Either we find one such feasible global minimum and we are done, or we update our
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bounds.

If neither approach found the optimal solution, we look for non-global minima of each trust-
region, again truncating the iterations with the help of the previously found bounds. If one
non-global is feasible, we have a local minimum of 2-TRS (that may fail to be optimal). If no
local minima was found, we find the closest intersection to the strictly interior point found in step

one. The usual method used to find such intersections is Gauss-Newton.

2.6.1 Generalized Newton step

The following is a slight digression on solving systems of equations, included here only because of
an interesting relation between Gauss-Newton and a generalized Newton step. The intersection

of two quadratic functions can be found by solving

where g;(z) are, say, the two quadratic constraints of 2-TRS. The best-known approach to solve
such a system is probably Gauss-Newton, applied to the 2-norm of q. We describe a somewhat
more general approach and then show that Gauss-Newton is a only a special case of this approach.

We linearize q at z(*) and solve for a step from z(*) to z(*+1) by

2t = 28— [ (2*))] 7 g (™)
| Vi (z®))f g1 (=*))
_
qu(x(k))t qz(m(k))

This type of Newton step, based on a generalized inverse (indicated by (-)~) since ¢/(z(¥))? is
a rectangular (2 x n)-matrix, was investigated by Ben-Israel and Greville [4]. They show that
any 2-inverse, under some additional boundedness conditions, will produce a convergent sequence
{=®)}.

In the case where the gradients of ¢; and g5 are linearly independent which, we recall, is not
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a requirement of the generalized Newton step, then [¢/(z(¥))]~ is full column rank and the limit
point z* of the sequence {z(¥)} will therefore satisfy ¢(z) = 0.

An interesting question is the relation, if any, between this generalized-inverse Newton step
and the classical Gauss-Newton step that we now derive.

First, as above, we linearize q at £(*) to get
q(z) = q(z®) + ¢ (=™)3,
for § = **+1) — 2(*) and we minimize the 2-norm of the linearization for the new point by

240 = axgmin {|jg(z) 2}

argmin {[|g(="))||* + 2[¢' (+®)!g(+ @))% + 8¢/ (2®)'¢’ (25 }

a quadratic unconstrained program. Clearly the Hessian, ¢'(z(*))t¢’(z(*)), is positive semidefinite

and if we assume that is is invertible (as we must in Gauss-Newton), we obtain the minimum by

solving for stationarity,

ql(l:(k))tql(ib(k))(5+ q/(w(k))tq(w(k)) — 0’

which leads to the step

The interesting fact arises when we compare the Gauss-Newton step to the previous, generalized-
inverse Newton step. They are equal if and only if [q'(m(k))t]_ =¢'(z}) [q’(x(k))tq’(m(k))]_l. It

easy to see that this equation satisfies the four Penrose conditions. Let A = q'(:B(k))t.

AA~A = AA[AAY)1A = A
A= AA- = AYAAY"LAAYAAYY = A-
(AA™)t = (AA'[AA!]-1) = AA-
(A-A)t = (A'[AA!]"1A) —A-A
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Since there is only one matrix satisfying the Penrose equations, we conclude that the Gauss-
Newton step is a special case of the generalized Newton step for the choice of the Moore-Penrose

inverse. All of this comes together in the following pseudo-code.

ALGORITHM FOR BRANCH AND BOUND SOLUTION OF 2-TRS

BB2-TRS(Q,Q1,b,b1,a1,48%)
Find feasible point z and bounds by solving SDP relaxation
for each trust-region
(z,\) = TRS()
if z is feasible
zt ==
else
update the bound
fi
Solve by Martinez algorithm for non-global minimizer z
if z is feasible
update the bound and potential minimizer z*
fi
endfor
if no optimal z* was found
Solve by (generalized-inverse) Newton’s method
2'Qiz + bx —a; = 052tz — §% = 0 for z*
fi

return(z*)

This algorithm has the same overall structure but is nevertheless different from Williamson’s
[73] algorithm in the sense that it is applied to m-dimensional problems and uses bounds to

truncate the searches for local minima. And, of course in that it does not guarantee an optimal
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solution, just an approximation.

2.7 A second step

One of the more interesting results of this chapter is the relation between the feasible set of the
original problem (denoted F') and the set of feasible solutions to the semidefinite relaxation, after

projection on the first column (denoted 14:') The result can be summarized as

F C F in all cases,

F = F for convex F.

This relation allows us to develop an algorithm based on a primal-dual pair of semidefinite
problems that will solve convex 2-TRS programs and approximate non-convex instances. If the
feasible region is convex, the algorithm always yields a feasible point, and both an approximate
solution and bounds on the optimal value.

Each step of the algorithm solves a subproblem based on a semidefinite primal-dual pair. We
describe, in a later chapter, one of many possible interior-point approaches used to solve such
problems. This type of subproblem is the mainstay of the general nonlinear solver we describe in
the next section.

The generalizations of 2-TRS can be taken in different directions. We intend to consider
multiple trust-regions, not in detail, but as the last stepping stone towards a general nonlinear

solver.



Chapter 3

Fully quadratic programming

Sequential Quadratic Programming, denoted SQP, also known as Recursive Quadratic Program-
ming, falls under the heading of Lagrange [38] or Newton-Lagrange [21] methods and is arguably
the most efficient general-purpose algorithm for medium size nonlinear constrained programs [66],
[8]. With solid theoretical foundations where, with the appropriate quadratic subproblem, the
method can be viewed as an extension of Newton or quasi-Newton algorithms to constrained
optimization, it is also very successful in the practical, even the commercial world. In a recent
[46] list of over thirty optimization packages, some variation of SQP appears prominently as the
basic algorithm.

Yet the very existence of these many variations indicates that the last word on SQP has not
been written. Recent research has produced variations known as SL; QP [11], [21] for their choice
of non-differentiable merit function and FSQP [48] for a method where iterates are kept within
the feasible region. And much of the current research aims to apply the method to large-scale
problems [25].

The approximation of the objective function to second order, and of the constraints only up to
first order, has been viewed as an incoherence of the method. But the subproblem of a quadratic
objective function subjected to quadratic constraints has long been considered intractable, so that

the attempts to exploit the curvature of the constraints were, if efficient, somewhat complex to
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implement [11] [12].

We investigate how semidefinite programming can be used to produce and to solve a second-
order subproblem within the general framework of an SQP algorithm. Most of the results concern
the convex case but some extensions to non-convex programs with convex feasible sets will be

given. This is work in progress towards a general nonlinear program solver.

3.1 Traditional sequential programming

In order to set the notation used throughout and to motivate the work, we start by describing
the standard SQP approach. The original algorithm dates from Wilson’s [74] dissertation in 1963
but was made well-known by Beale [3] a few years later.

Consider the general, nonlinear programs with equality and inequality constraints
NEP min{f(:r:) | h(z) =0,z € }R"} and NLP min{f(:v) | g(z) <0,z € R"},

where f : R® = R, and h,g : R® = R™. We sometimes write vector-valued functions, like h(z),

as

h(z) = (hi(z) ha(z) ... hm(z))".

We define the Lagrangean of NEP as L(z,)) := f(z) + A'h(z). The first-order necessary
conditions for NEP at an optimal point z* state VyL(z*,A) = 0. Together with feasibility

(equivalent to VaL(z*, A) = 0), stationarity expands to

Vf(z*) + W (z*)A = 0,

where A = (A1 A2 ... Amm)? is the vector of (free) Lagrange multipliers. To simplify the exposition,
we use h'(z) to denote [Vhq(z)Vhs(z).. .th(w)]t, the Jacobian of h.
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An iterative attempt at the non-linear system above by Newton’s method produces

V2f(z0) + AP 2h (20))  p(z(0) 5z —VF(z®) — B (z®))EAE)
h'(ac(k))t 0 Ox —h(ac(k))

where §, = 2*+1) — 2(*) and §y = A¢+1) — X(*)| The usual simplification, at this point, is to let
AEFD) — (k) 4§y and d = 6, to obtain what we will refer to as the First-Order Newton Step,
V2L (z®) AF)y bt (z(R)) d —Vf(z®)

(FONS) =
B () 0 A1) —h(z®))

This system produces a direction d and a new vector of Lagrange multipliers A(¥+1),
An important remark is that the system of equations (FONS) can also be derived as the

first-order necessary conditions of the quadratic program

QP min gq(d) = f(z®)+ Vf(z®)td+ 1atviL(z®), AF))d
st Li(d) = hi(z®)) 4+ Vhi(z®)td = 0, 1<i<m,

hereafter known as the QP subproblem. Stationarity of the Lagrangean of QP yields the first line
of (FONS), and feasibility yields the second line. This is why SQP is viewed as an extension of
Newton’s method to constrained optimization.

The expression QP, for quadratic programming, is somewhat unfortunate since there is very
little worthy of the term quadratic in the above system. There are, in general, many more linear
constraints than the one and only quadratic function we find in the objective. A better description
would have been almost-linear programming. In fact, the very efficient active set approaches [7]
used to solve QP can be viewed as generalizations of the simplex method. They are therefore
much closer in spirit to linear than to nonlinear programming. But we shall abide by tradition. A
quadratically constrained quadratic program, examples of which we will shortly see, will therefore
be called a fully quadratic program and will be denoted by Q*P.

There are advantages gained by solving the QP subproblem by some optimization code con-
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verging to a solution of the first-order condition of NEP, as opposed to solving the system of
equations (FONS) by a linear solver: The iterates of the optimization subproblem, under the
assumption that the second-order sufficient condition holds for the original problem, will converge
to a minimum of the objective function while solving the system guarantees only stationarity.
The subproblem eliminates undesirable stationary points. Moreover, the QP program, described
above for NEP, generalizes easily to NLP, the inequality constrained program, while (FONS) does
not.

We must recognize some characteristics of the QP subproblem. A Taylor first-order approxi-
mation of the constraint defines the feasible set while a second-order expansion of the objective,
to which we add second-order terms of the constraints, completes the problem definition. These
second-order terms are essential. A linear objective in the original problem, for example, may
fail to have a solution if constrained only by linear approximations, as the following example

illustrates.

Example 3.1.1 The second-order terms are essentials in the program (from Fletcher [21]),
min{—xl — T | 1—z?— 23 = 0},
since a linear-linear subproblem, from point (—1 — 2)*, for direction (dy da2)' would yield
min {—dy — da | ~4 +2d; +4d; = 0},
a badly-defined problem. Some curvature information is necessary.

We can forgo discussion of the line search under the assumption that a full step is taken at each
iteration. But this is justified only if the initial estimate z is close enough to the optimal solution
z*. In general, the SQP approach relies on a merit function ¢(z, ), reduced at each iteration and
minimized when the system of first-order conditions (FONS) is satisfied. This function, ideally,

has only global minima and is exemplified, for convex NEP programs, by

pl2,2) = 31V (@) + S MTh(a) | + Sl
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Clearly, if an algorithm decreases this function to zero, it must have found a feasible solution
satisfying the first-order conditions of NEP. In general, a well-behaved merit function has a local
minimum where the constrained problem has a solution and it must allow the line search to accept
a full step, at least asymptotically.

This line search procedure is expressed in the following algorithms as
a= linesearch(go(ac(k), )\(k)), d).

This is meant to suggest that the procedure minimizes, perhaps approximately, the merit function
@, from the current iterate (:D(k), )\(k)), in the direction d, and returns the step length « corre-
sponding to this one-dimensional minimization. In theoretical works, line searches return either
the exact minimum or some other length guaranteed to satisfy the Goldstein-Armijo or Powell

conditions, yet, in practical algorithms, they are often relaxed.

SEQUENTIAL QUADRATIC PROGRAMMING ALGORITHM

SQP(f,Vf,V2f, h,Vhi, V2h;, () \0)
do
d € argmin{V f(z®))td + Ld*V2f(z®))d : hi(z*)) + Vh;(z(*))d = 0,1 <i < m,d € R"}
a = linesearch(p(z*), A(*F)), d)
2*+1) — (%) L od
kE=k+1
Estimate new Lagrange multipliers

until convergence

return(z(®), A(¥))

We leave undefined the convergence criterion of this algorithm since practical considerations cloud

the issue. In theory, since SQP converges to a point satisfying the first-order necessary condition
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of NEP, it is appropriate to use some tolerance € > 0 and define convergence as
V(™) + Y XiVhi(®)] + [[a(z™)] < e,

where € is appropriately scaled. A simpler test on the step length might be more practical, less
costly and just as appropriate; while a more complex test, involving the merit function, might
have better theoretical justification. (For a wealth of details about termination criteria, see Gill,
Murray and Wright [50], §8.2.3.)

It is instructive to look at a few iterations of a convex program solved by SQP. Consider

Example 3.1.2
min{—xl—wz |$§+$§—1§0,$%+$§ gO},

with optimal solution (1/+/2,1/4/2). Starting from initial point (1/2,1)!, close enough to the
optimal solution, a naive SQP approach, without any line search, solved this program to five
significant digits in four iterations. The algorithm stopped when the QP subproblem could find

no direction for improvement, implying that the current z satisfied the first-order conditions.

Iter (21, z2)" (A1, A2)? (d1,d2)t
1 (.51) (+0.0000 +0.0000 ) | (40.4167-0.3333)
2 | (+0.9167 +0.6667 ) | (+0.3333 +0.6667 ) | (-0.1695 +0.0196)
3 | (+0.7471 +0.6863 ) | (+0.0000 +0.7304 ) | (-0.0384 +0.0205)
4 | (+0.7088 +0.7068 ) | (4+0.0000 +0.7067 ) | (-0.0017 +0.0003)
5 | (40.7071 40.7071 ) | (+0.0000 +0.7071 ) | (4+0.0000 +0.0000)

Figure 3.1 illustrates the iterations of SQP. The curves bound the original feasible set and the
lines represent the linear constraints of the QP subproblem. The circles (o) are the successive
iterates converging to the optimal solution (). And the arrows represent the solution of the QP
subproblem. We note that the feasible region of the linear approximation of the QP subproblem

always contains the original feasible region. This is true in general of convex programs.
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Iteration 1 Iteration 2
1 \ 1
0.75 0.75
0.5 0.5
0.25 0.25
0 0
Iteration 3 Iteration 4
1 1
0.75 0.75
0.5 0.5
0.25 0.25
0 0

Figure 3.1: Iterations of SQP on Example 3.1.2 from initial point (% 1)* to optimal solution
(0.7071 0.7071)%, with unit step-lengths at every iteration.

Lemma 3.1.3 If the feasible set of a nonlinear program, F := {z | g(z) < 0}, described by the
conver function g : R™ = R™, is approrimated at the point x¢ by the first-order Taylor expansion
of g, as in

F = {z | gi(zo) + Vgi(zo)'(z — z0) <0, 1 <i <},
then F C F.

Proof: For any © € F, the first-order characterization of convexity, namely

Vgi(zo)' (z — z0) < gi(2) — gi(zo0), 1 <i<m,

implies that we have g;(zo) + Vgi(zo)'(z — z0) < gi(z) <0, for all 1 < i < m. We conclude that
z € F and, therefore, F C F. a
There are a few problems with this algorithm, most of them due to the fact that the linear

approximations are not good unless we are already very close to the optimal solution. Consider,
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for example starting the iterations, on the previous example, from a point close to the left-hand
side intersection of the constraints. The resulting QP subproblem is then unbounded. Some
modification, adding a trust region for example, is required, making practical implementations of
SQP much more complex than our naive description would suggest.

But there is more. The Lagrange multipliers are not, in most implementations of SQP, a
by-product of the subproblem. Although the multipliers resulting from QP can be added to the
previous estimates used in the objective function, most authors suggest solving a separate least
square problem [50] to get a better approximation of the “true” Lagrange multipliers.

We will return to these considerations when we describe the subproblem we wish to investigate
since our intention is not to survey all the possible variations required to make SQP work in
practice but rather to indicate how a different subproblem does away with some of the difficulties

(unbounded problem, inaccurate feasible set, poor multipliers) while converging faster.

3.2 Higher-order expansions

We have described some of the problems associated with the quadratic program used in traditional
SQP. After these negative considerations, to motivate positively the replacement subproblem that
forms the basis of our recursive algorithm, we now consider Taylor expansions in relation with
Newton’s method.

We recall that the QP subproblem is used in the SQP approach because it implicitly produces
a Newton step for a system of equations describing the first-order conditions. Newton’s method
for solving h(z) = 0 can be viewed as an expansion of the function h to first order around z(®),
ie.,

h(z) = hz™) + 1 (*)5 + o(|4])),

which is then truncated to produce the linear system

h(z®) + b/ (z*)) = 0,
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solved for 8. The next iterate is then obtained by z(*+1) = z(¥) 4§ and the process is repeated
until convergence.

Some iterative methods using higher-order derivatives have been known for a long time. In-
teresting examples can be found in a 1870 paper by Schroder, translated from the German by
Stewart[65]. In the one-dimensional case, the simplest extension of Newton’s method is a second-
order expansion of h,

h(z®)) + b/ (z®)6 + %h"(a@(k))az =0,

which is then solved to yield

—h(z®) £ /[0 (z®))]2 — 2h(x®)) - b (2F))

6= h”(w(k)) ’

by the quadratic formula. The two possible solutions for § are then investigated separately.
This approach converges faster than the first-order Newton’s method (assuming that the second
derivative does not vanish). If we forget for a moment that there is no simple quadratic formula to
solve for ¢ in the case where it lies in a space of dimension greater than one, we can nevertheless
show in a very general fashion this faster convergence.

Say that z* is a root of h(z) = 0. Let the error at step k be d*) = z* — z(¥) and let p! (d(*))
be a truncated Taylor expansion, around z(*), of the function hi(z). For example, if » = 2, the

case that concerns us in most of this work, the expansion is
pi(d(k)) — hi(:,;(k)) + Vhi(x(k))td(’“) + %d(k)tVZhi(x(k))d(k) + 0(||d(k)||2).

With an explicit error term, we can therefore write

where e(z(®), d(*)) is a vector of error terms that satisfy e;(z(*),d*)) — 0 as ||[d*)|| — 0. If we
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assume that m < n and that we can solve a truncated system, then a “Newton” step of order r

is given by the solution of

pi(6™)
Pr(6®)) .= =0
P (60))
Subtraction of the two equations above yields
Pi(6®) pi(d®) ei(z®),d®)
- = ld®]"
Pr(6®) P (@) e (z®),d))
We now apply the Mean Value Theorem to each p; to yield
ei(z"), d®) (p})" ()
=] | 6 - a®),
e (2®),d®) (Phn)' (ém)

where each & € [§(), d(F)].

To simplify the notation, we introduce the symbol P’ for the m x n matrix,

(p1)'(&1)
P =

(Ph)' (ém)

If we assume that o7, the smallest singular value of P’, satisfies o1 > € > 0, for all values of
& € [6(®), d*)], and that we started sufficiently close to the root of h(z) = 0, then a Moore-Penrose
inverse exist and has a spectral norm bounded away from infinity !. We will denote this inverse
by [P].

This allows us to quantify the decrease of the distance of z(*) to z* for a “Newton” method of

1If » = 1, for example, this requires the gradients of the h; to be linearly independent at 2*, a familiar constraint
qualification.
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order 7. The rate of decrease is larger whenever r is larger; that is, whenever h is approximated

by a Taylor polynomial of higher-order. This conclusion follows from

D) = o _ (B0 — o () () — §) _ (k) = [pr]te(z(®), qtk)y||at)||r,

so that, by considering compatible norms (Euclidean vector norm and spectral matrix norm), we
get
[8*) = a®|[ = I[P e(z®), d®)|| [[d®][" < [P e, d®)]| 1))

As we stated above, for each row of the error vector, e;(2*), d*)) = 0 as ||d*)|| = 0. The second
factor on the right-hand side of the inequality is therefore bounded. And, under the assumptions
made for P’, the inverse satisfies ||[[P’]!|| < K < oo, for some scalar K. We therefore have a
g-convergence rate of r.

For future reference, we restate without further proof the last expression for the rate of con-

vergence of a Newton-type method of order r.

Proposition 3.2.1 Say that h is an analytic function with root z*, approzimated at =*) by
a Taylor polynomial of order r, denoted by P’"(d(k)) with error d*®) = z* — z(®)_ Under the
assumptions described above there is a neighborhood where the solutions §(*) of Pr(é(k)) =0 exist

and form a convergent sequence with g-convergence rate 7.

Traditional sequential quadratic programming solves iteratively a system of equations describ-
ing stationarity of the Lagrangean. Each iteration updates not only z, the primal solution, but
also A the Lagrange multipliers. From a second-order approximation of the constraints, we expect,
possibly better primal iterates, but certainly better multipliers. Such an approximation applies
more equal weight to primal and dual variables, in contrast to SQP, an algorithm biased towards
primal variables. The next section formalizes the expected improvement. But informally, if an
analytic function can be replaced by its infinite Taylor expansion, then the higher the degree of

the polynomial approximation, the better the estimates.
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3.3 Quadratic approximations of nonlinear programs

Recall that the standard SQP subproblem approximated the objective function to second order
yet approximated the constraints only to first order. Some attempt is made to include curvature
information in the objective function but this is done using the previous Lagrange multipliers.

We wish a better balanced, yet tractable, subproblem where the feasible region is also a second-
order approximation. As the original subproblem considered was called the QP subproblem, we
will call this program the Q*P subproblem. Such a subproblem has often been considered before,
but has, just as often, been discarded as unsolvable. One notable exception is an algorithm by
Maany [40] developed, interestingly enough, because the standard SQP approach failed on the
highly nonlinear orbital trajectory problems they were studying. (See Dixon, Hersom and Maany
[16].)

Before we attempt the Q?P subproblem, we will precisely construct it and analyze the prop-

erties it possesses that make it an attractive approximation to a nonlinear program.

3.3.1 Feasible region

First we investigate the feasible region of our subproblem. Consider a vector z(*) € R™, an estimate
of the primal solution. Expand the functions of NLP by second-order Taylor polynomials and

€Xpress

NLP-Q*P min gqo(d) = Vf(z®)td+ 1dtv2f(z*)d
st gi(d) = gj(:B(k)) + ng(:lc(k))td—l— %dtvzgj(m(k))d <0, 1<j<m.

Since the subproblem above differs from the traditional QP subproblem mostly in the feasible
region it describes, we need to investigate this region in some detail. First, we note the absence
of any sort of active set strategy. All the constraints of NLP are included in NLP-Q*P. This

simplifies not only the notation, but more importantly, the results about optimality conditions.
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Lemma 3.3.1 If a conver program has a feasible region F := {z|g(z) < 0}, then the feasible

region of the quadratic approximation given by

“ 1
F := {z|gi(z0) + Vgi(zo)'(z — z0) + 5(53 — 20)'V?gi(zo)(z — zo) < 0, 1 <i < m},

is contained within the feasible region of the linear approximation
F = {z|gi(20) + Vgi(zo) (z — 20) <0, 1 <3< m}.

Proof: Since F is a linear approximation to F, it is also a linear approximation to F'. The result
therefore follows by Lemma 3.1.3. i

It would be fortunate if the quadratic approximations were always between the original fea-
sible regions and the linear approximations. Unfortunately, this is not the case, even for convex

programs. Consider the epigraph of y = € approximated at z = 1.5 as in the following figure.

Approximations of a convex function
14 T T T

12

10r

Quadratic

Linear

Figure 3.2: Linear and quadratic approximations of the convex function y = e” at z = 1.5.

Even if the feasible region of the quadratic approximation does not always include the original
feasible region, it is closer in some sense to that region, for the Taylor residual is smaller. Also, since

the second-order feasible region is within the linearly enclosed region, a bounded QP subproblem
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implies a bounded second-order subproblem. But note that the reverse is false so that Q*P may
be bounded while QP is not.

As as aside, there is a sense in which the semidefinite relaxation yields a feasible set somewhere
in between the linear and the quadratic approximations. It is true, as we have seen in Lemma
3.4.2, that the first column of the semidefinite feasible solutions is isomorphic to the feasible set
of the quadratically constrained program. But, as the matrices need not be rank one, there are
more feasible solutions in the lifted space. The relation between the possible rank of the optimal
solutions and the number of constraints was investigated by Pataki [49], but we will not pursue

it further here.

3.3.2 Second-order Lagrange multiplier estimates

In traditional SQP, the multipliers are not usually by-products of the iterations. Yet, since they
are essential in the formulation of the objective function, they must be reasonably accurate.

We recall that a pair of vectors z* and A*, optimal for NLP, are related by the stationarity
equation,

V(=) + Z&'Vgi(m*) =0.

This condition suggests that the optimal solution A of the least-square problem,
min {||Vf(z®) + 3 AiVaia®)[3 | A e R"},

might provide an appropriate estimate of the true multiplier. An estimate which improves as
z*) approaches feasibility and the right active set is identified. This is the path taken by most
implementations of SQP.

In a section of their book devoted to the identification of accurate multipliers, Gill, Murray
and Wright [50] pursue this further and suggest aiming for second-order multiplier estimates: The

approach is to let d = z* — z(*) and expand the stationarity condition of NLP, around z(*), by a
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Taylor polynomial of first order to get
V(™) + V2 f(e™)d+ Y7 Xi(Vgi(a®) + Vgi(e™)d) + of||d]]*) = 0,
or, using the Lagrangean,
V™) + V2L, A7) d+ ) A Vgi(z®)) + of]|d]?) = 0.

Gill, Murray and Wright note at this point that it is impossible to estimate A* directly from
the above equation for two reasons: First, d is unknown; second, components of A\* are buried
inside the Hessian of the Lagrangean. They reason that the best available multipliers A and an

approximating step d used in a least-square problem such as
min {||V£(®) + V2L, \)d+ 3 0:Vgi(a®)3 | 5 € R,

would provide a vector 77, deemed a second-order estimate of A* if d is sufficiently small and X is,
at least, a first-order estimate of A*.
This is where the Q*P subproblem yields another advantage over QP. From stationarity of

NLP-Q?P, at optimal vectors d and A, we obtain
VH@®) + V2L, N)d+ > Aivei(z®) = o.

These optimal multipliers A therefore solve the second-order least-square problem for the given
d. One of the two concerns of Gill, Murray and Wright, namely that the correct multipliers are
buried in the Hessian of the Lagrangean is implicitly taken care of. We need only to assume
that z(*) is close to z* to conclude that the multipliers obtained from the Q*P subproblem are
second-order estimates of the true optimal multipliers. Without solving an additional least-square

problem, Q2P yieclds valuable dual variables in tandem with primal updates.
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3.3.3 Primal step

We now turn our attention to the the vector d obtained from Q*P, to qualify its value as a primal
update. In this section we assume that the strong constraint qualification holds for NLP: at

optimality, the gradients of the active constraints are linearly independent.

Lemma 3.3.2 Assume that z*) is feasible for NLP. If the NLP-Q*P subproblem is solved by
d = 0 with multipliers \, then the pair of vectors z*) and X satisfies the first-order conditions of

NLP.

Proof: Since the components of the multipliers A satisfy the necessary conditions of NLP-Q*P,

they are nonnegative. By complementarity for NLP-Q?P,
| 1
A (gi(:v““) + Vgi(z®)'d + 5dtvzgi(aﬂ’“))al) =0, 1<i<m,

and by d = 0, this reduces to

complementarity for NLP.

Finally, stationarity of the Lagrangean of NLP-Q?P implies
V) + V2 H(a®)d+ 3 ATa(®) + 3 AT (e = 0.
i=1 i=1
Again by d = 0, this reduces to stationarity of NLP
V(z®) + i XiVgi(z®) = 0.
i=1

Therefore all first-order conditions of NLP are satisfied. a
This shows that the Q2P subproblem does at least as well as the QP subproblem since they

both solve the first-order conditions. In fact, Q*P does better.
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Lemma 3.3.3 Assume that z(*) is feasible for NLP. If the NLP-Q*P subproblem is solved by
d = 0 with multipliers X, then the pair of vectors *) and X satisfies the second-order conditions

of NLP.

Proof: The necessary second-order conditions of NLP-Q?P imply that the matrix
V() + D Nivigi(=")
i=1

is positive semidefinite on the subspace tangent to the active constraints, namely the elements

1€ {1,...,m} for which
gi(z®)) + Vg (z®))td + %dtvzgi(m(k))d =0.

But, as d = 0 this reduces to gi(:v(k)) =0, the set of constraints of NLP active at z(*), a
The above two lemmata imply that if d = 0 solves NLP-Q?P, we have solved for a pair of

primal-dual vectors satisfying first and second-order conditions of NLP. The reverse also holds.

Lemma 3.3.4 Assume that z(*) and ) satisfy the first and second-order necessary conditions of

NLP. Then the pair of vectors d = 0, \ satisfy the first and second-order conditions of NLP-Q*P.

Proof: First we note that d = 0 is feasible for NLP-Q?P since z(*) is feasible for NLP. Comple-

mentarity follows similarly. For all 1 <4 < m,
1
i (gi(w(k)) + Vai(z®)td + Edtvzgi(w(k))d> = Xigi(zF)) = 0,

where the first equality follows from the choice d = 0 and the last, from complementarity for NLP.
Stationarity for NLP-Q*P reads

(sz(:n(k)) +3° )\ivzgi(x(k))) d+VFE®)+> Aivgi(z®) = VE®)+> " Aivgi(z®) =0,

where the last equality is stationarity of NLP. Finally, the second-order condition holds since the

Hessians of the Lagrangean of both problems are identical. a
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We can summarize lemmata 3.3.4, 3.3.3 and 3.3.2: Under the usual constraint qualification
of linear independence of the gradients, the pair of vectors z(*), X satisfy first and second-order
necessary conditions of NLP if and only if the pair d = 0, A satisfy first and second-order con-
ditions of NLP-Q?P. We emphasize here that there is no question yet of solving this NLP-Q?P
subproblem, by semidefinite relaxation or otherwise. We are simply justifying it’s existence, i.e.,
showing why it is a better subproblem than the standard QP subproblem.

As an aside, we can also describe in positive terms what a non-zero solution d of NLP-Q?P
yields from a feasible point z(*) of a convex program. We will not pursue this much as we do
not intend to force feasibility of the iterates (in the manner of Panier and Tits [48]). But it does
suggest that an interior-point type algorithm for convex programs is possible in the framework
we describe. It might be interesting to implement this idea and compare its practical behavior
to other algorithms like, for example, Vanderbei’s LOCO, the restriction of LOQO [70] to convex
optimization problems. Given convex constraints of high curvature, an interior-point SQ*P might

perform well.

Lemma 3.3.5 Suppose that qqo, the approzimation of f at z*), is convexr and that qo(d) # 0
solves NLP-Q®P, then d is a descent direction for f.

Proof: Since d = 0 is a feasible vector for NLP-Q?P with objective value 0, we conclude that the

optimal value is negative. Therefore,
1
Vi(z®)td + Edtvzf(az(k))d <0

or,

Viz®)td < —%dtvzf(a:(’“))d <0,

where the last inequality follows from the convexity of ¢q. a
Whether we can always find such improving directions is related to global convergence of the
algorithm, an issue we will leave open while we attack the practicalities of solving NLP-Q*P.
At this point we have shown some of the characteristics of the NLP-Q?P subproblem. It may

be worthwhile to repeat that an algorithm iterating exclusively on feasible points is possible. But
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one strength of SQP, in most of it’s variations, is not to require feasibility until convergence. We
wish to consider iterations of our algorithm based on infeasible points. We therefore address now

the more complex problem of solving NLP-Q?P from arbitrary starting points.

3.4 Semidefinite relaxation of multiple trust-regions

The solution method of NLP-Q*P we suggest in this section is a generalization of the previous

chapter concerning the two trust-region problem. Consider the following program,
Q*P min{:ntQO:B + 2bkz — ag | 2 Qrr + 2bkz —ar < 0,1 <k < m}

Since this program is clearly general enough to include 2-TRS as a special case, it can exhibit du-
ality gaps unless the objective function and the constraints are convex. We can nevertheless state

standard sufficient conditions for optimality, characterizing cases where no duality gap occurs.

Lemma 3.4.1 Assume that a pair of vectors x € R", feasible, and X € R™, nonnegative, satisfy

the following conditions.

(Qo+ ity MiQi)z = —bo — A'h (stationarity),
AMz'Qiz + 2blz — a;) = 0, 1<i<m (complementarity),
(Qo+ X", Qi) =0 (strengthened second-order).

Then z solves Q*P. Moreover, if (Qo + Y i, XiQi) = 0, then z is the unique minimizer.

Proof: The proof is similar to Lemma 2.1.7. a
From the Lagrangean dual, as in the Poljak, Rendl and Wolkowicz [52] recipe, or by introducing

the now familiar vector y = (1 z)?, we can homogenize to get Q*P in pure quadratic form,

QP miﬂ{ytpoy | ' Booy = 1,4’ Pry < ar, 1 <k <m,y € R"H},
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where

0 b
Pk: s 0<k<m.

br  Qr

From this primal we derive the Lagrangean dual,
Dual-Q’P max{—,u —Ma | Py + wEoo + Z)\iPi =0,A> 0}.
i=1

We can also rewrite the primal in matrix form using ¥ = yy*, as we did in the previous chapters,

and drop the rank one condition to obtain the semidefinite relaxation,
PSDP min{<P0,Y> | (Boo, Y) = 1,(Py,Y) <as, 1 <k <m,Y » 0}.

We can now generalize some of the results obtained for 2-TRS, using the same projector map
and the same definitions of feasible sets. We recall the necessary definitions. The feasible set of
QP

F={z|2'Qre +2biz < ap, 1 < k < m};

the feasible set of PSDP,

F:={Y|(P,Y)<ap1<k<m};

and the projector map,

Lemma 3.4.2 Suppose that'Y is a feasible solution of PSDP. The projected vector, ¢ = Pgr(Y),
is then feasible for all convexr constraints of Q>P. Moreover, if the feasible set of Q>P is convex,

then F = PR(ﬁ').

Proof: The proof follows from Lemma 1.4.2 applied to each convex constraint in turn. a
From the feasibility of the projected vector, we can establish some relations between optimality

of Q?P and of the semidefinite relaxation PSDP.
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Lemma 3.4.3 Suppose that Q*P has a convex feasible set and that Y, an optimal solution of
PSDP, is rank one, then = = Pr(Y) solves Q*P.

Alternatively, suppose that Q>P is a convex program and that Y is an optimal solution of
PSDP, then the projection © = Pr(Y) is an optimal solution for Q*P. Moreover, if the objective

function is strictly convezx, Y is rank one.

Proof: The first result follows from Lemma 1.4.4. The second one, from Lemma 1.4.3. a

This takes care of the convex case and of some non-convex cases (those without any duality
gap). When the constraints are convex but the objective is arbitrary, we can move along the
nullspace of the Lagrangean as we did in the 2-TRS case until we hit one of the constraints.
This is possible since the the first column of the semidefinite relaxation is feasible for Q2?P.
This nullspace-restricted step improves the objective value even if it does not lead to an optimal

solution.

Lemma 3.4.4 If the semidefinite primal optimal solution Y is not rank one, let = Pr(Y), the
first column of Y. Then © = & + Z, where T is chosen in N'(Qo + Y. A\iQi + pEoo), the nullspace

of the Lagrangean, and so that = is feasible, will improve the primal objective value of Q*P.

Proof: Since (Qo + Y AiQi + pEqgo)Z = 0, we can pre-multiply by Z and obtain

0 = J7't(Q0+z:/\iQi-1'/117/100)35

= 2'Qoz +7'(>_ \iQi + nEoo)7,
where the second term is nonnegative since the constraints are convex. Therefore 2Qoz < 0 and
'Qoz = (2 +2)'Qo (% + 7) < ' QoZ,

so that moving in the nullspace improves the objective value. a
We have improved the objective function but cannot guarantee optimality in the non-convex
case. There is an interesting avenue to explore here, the addition of another constraint, a trust-

region, around our best current solution, excluding the previous stationary point to which the
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algorithm had converged. This, on a few examples, seems promising.

Recall Example 2.5.5 where the semidefinite relaxation produced a strictly interior point
(5.48 .3)*, which failed to satisfy complementarity. We moved along the nullspace of the La-
grangean to the boundary (5.9925 .3)%, as illustrated in Figure 3.4, a blow-up of Figure 2.5, with

the first additional trust-region.

5 5.2 5.4 5.6 5.8 6 6.2 6.4 6.6 6.8 7

Figure 3.3: Nullspace-restricted step of Example 2.5.5.

The constructed trust-region excludes the unwanted stationary point and another iteration
improves the solution. This can then be repeated. The following table illustrates these iterations,
converging, albeit slowly, to the optimal (6 0)?, from the best point produced by the relaxation,

after the nullspace-restricted step.
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Iter (21, z2)" (A1, A2)? (d1,d2)?
1| (4+5.9925 +0.3000) | (+1.2000 +8.8000) | (-0.5125 +0.0000)
2 | (45.9947 40.0376) | (+0.0000 +8.9987) | (+0.0022 -0.2624)
3 | (+5.9891 40.0047) | (4+0.0000 +8.9991) | (-0.0055 -0.0329)
4 | (+5.9890 +0.0006) | (+0.0000 +8.9982) | (-0.0001 -0.0041)
5 | (+5.9890 +0.0001) | (4+0.0000 +8.9982) | (-0.0000 -0.0005)
6 | (+5.9890 +0.0000) | (+0.0000 +8.9982) | (-0.0000 -0.0001)
7 | (+6.0000 40.0000) | (4+0.0000 +8.9982) | (-0.0110 +0.0000)
8 | (+6.0000 4+0.0000) | (4+0.0000 +9.0000) | (-0.0000 +0.0000)

This is barely scratching the surface of what can be done with this approach and is not meant as
a proof that the additional constraints guarantees convergence, especially since the right choice
of radius for the additional trust-region has not been found. But the example suggests that it
might be possible to close the gap between the relaxation and the original problem, at least in
some cases.

The reasons for the success of this approach are certainly related to Lemma 2.2.1. The addi-
tional constraint, a trust-region constructed to exclude the spurious stationary point, convexifies
the Lagrangean and reduces the gap between our convex primal-dual approach and the original
non-convex problem. We will not pursue this any further as we are restricting most of our results
to the convex case.

We now have all the tools required to solve quadratically constrained convex quadratic pro-

grams. We now describe how to recursively attack more general programs.

3.5 Quadratically constrained quadratic programming

Now that a reasonable subproblem is defined and its solution is known to be useful, we combine it
to our previous work on semidefinite relaxations to fully describe the SQ*P approach. For most of
the details, we will again restrict ourselves to convex programs but will indicate some extensions

we have been able to make for the non-convex case.
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The original problem under study is

NLP min{f(:c) | g(z) <0,z € ]R”}.

k)

At some point z(¥), possibly infeasible, we expand every function by second-order Taylor polyno-

mials and construct the subproblem

NLP-Q*P min go(d) = Vf(z®)td+ 1d!V2f(z*))d
st gi(d) = gi(e®) + Vgi(zM)ld + 3d'V?gi(2*))d <0,  1<i<m
did < §2.

We added a trust-region to guarantee a bounded subproblem, in cases of non-convex objective
functions.

This problem is in the same form as every other quadratic problem we considered. Homoge-
nization, obtained by adding a component to the vector d, together with the constraint d3 = 1,

allow the semidefinite relaxation,

PSDP min{<P0,Y> | (Boo, ¥) = 1,(P,,Y) < a;, 1 < i <m, (Pr,Y) <Y » 0},

where
0 VENt 0 0 Vgi(z®)t 0

Po=| Via®) vfe®) 0 |, Pi=| vg(®) VigE®) o |, a=-2h(x®),
0 0 0 0 0 0

and where Eqg and Py have their usual definitions,

Ego = ,Pr=
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The dual program is
DSDP max{—,u —Na|Py+Eoo+ Y Pit Pri0,1> 0}.
i=1

Solving the above pair, in the case of convex NLP, is enough since, as we have seen, the first
column is optimal for the quadratic approximation. But, in general, we need an appropriate
merit function to ensure sufficient decrease at each step and guarantee global convergence of the
algorithm, whether we use a line search or a trust-region strategy.

The choice of merit function for SQP algorithms varies considerably. For infeasible iterates
there is a need to balance improvement in the objective function and movement towards feasibility.
The description of the following merit functions owes much to the survey papers of Boggs and
Tolle [8] and of Stoer [66]. Where it appears, the constant 7 is positive and increasing at each
iteration of the algorithm. The rules for increase vary from one implementation to the next and
are described in the referenced papers.

The classical choice is the quadratic penalty function
p(z) = flz) +)_gi(2)’,
iel

where the index set includes only violated constraints, i.e., I := {i|g;(z) > 0}. A better choice,

for equality constrained, is the augmented Lagrangean,
o(z) = f(z) + h(z)A +nl|h(z)]|*.

It was first proposed by Fletcher [19] and then used as a merit function by Powell and Yuan [54].

An analogue for inequality constrained optimization was introduced by Rockafellar [58],

m

p(z) = f(z) +1/(4n) Y _[6(A: + 2ngi(x))* — AT],

i=1

where 6(t) = max{0,t} extracts only the violated constraints. Shittkowski [60],[61] developed a
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related form,

ola) = F(z) + Yo Digi(a) + ggi(2)?] +1/(2m) YA,

iel igl
where the multipliers, interestingly, are those of QP, not those obtained from the least-square

problem. The index set is defined as

and includes all violated constraints and no “safely” satisfied constraints.
Another avenue uses the l; exact penalty function, which, for equality constrained problems
yields

p(z) = f(z) + ()],

and was first suggested by Han [27] as a merit function.
Finally, because the solutions of NLP-Q?P tend to points satisfying at least the first-order

conditions of NLP, the merit function can be
p(z) = [[VL(z, N)|* + ||h(z)],

a particularly appropriate choice for convex programs as described in [37].

We will come back, briefly, to the merit function when we investigate convergence of the
algorithm but we first complete its description. After solving the Q*P subproblem for a direction
d # 0, the next iterate is obtained by 2(#+1) = 2(*) 4 4. This new point serves for the expansion
of a new problem by second-order polynomials and we iterate until the subproblem yields d = 0.
As with any trust-region based algorithm, we adjust the trust-region radius according to the ratio
of predicted improvement to actual improvement. At the end, we have a solution satisfying both

first and second-order conditions of NLP. Somewhat more formally, here is the SQ?P algorithm.
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SEQUENTIAL QUADRATICALLY CONSTRAINED PROGRAMMING ALGORITHM

SQ*P(f,V£,Vf,gi,Vgi, Vgi,z()
do
Y € argmin{(Po,Y) : (P.,Y) < a;, (B0, Y) = 1,Y = 0}
(g, \E+Y)) € argmax{—p — 3T Nia; : P+ S APi + pEgo > 0, ) > 0}
d = Pp(Y)
2k +1) — o(k) 4 g

E_ el@®)—p(tt)
™ = 20@®)—go(a®FD)

if (r* < %)
§=4/4
elseif (7* > 2) and |e®+D) — ()| =4
§=126
fi
k=k+1
while (||d]| > ¢)
Find maximal d € N (VL) such that g(z*) +d) <0
2®) = 2®) 4 g

return(z(®), A(%))

3.6 Convergence of SQ’P

We now investigate the convergence of an iterative algorithm developped within the SQ*P frame-
work.

For the asymptotic convergence rate, we will make a simplifying assumption: When z*) is
close to z*, the active constraints of the Q*P subproblem are the same as the active constraints
of NLP. (For more detail on this assumption, see Boggs and Tolle [8].) That we have identified

the active, and therefore the inactive constraints for NLP at z*, allows us to ignore inactive
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constraints and change the active constraints to equalities. Therefore, under this assumption, we

need consider only the equality-constrained program
NEP  min {f(:n) | h(z) =0,z € R"}.
We rewrite the stationarity condition of the Lagrangean as

VL (™), A®)) = VL@, A) = VIR + K = 0.
VAL (z®), Ak) h(z(®))

We have described in detail, in a previous section, how a higher-order Newton method can
be used to solve a system of nonlinear equations as the one above. From the definition of £, a
second-order Newton step can be written as a nonlinear system of equation in §, and d. The
manner in which we write it has little to do with a method of solution. It has everything to do
with the comparison we wish to make between three systems of equations: From a second-order
Newton method, from the SQ?P step and from the standard SQP step.

First, here is the second-order Newton step,

YAV (a®) + (V2 f(25)) + XV hi(2®))) 6, + Ha(0z,5x) ~Vf(z®)
W (@), + 16t (28))5, _h(a®)

where we have grouped the third-order derivatives of f and h under the name H3. We can contrast

this step to stationarity of the Lagrangean of NLP-Q?P,

S AiVhi(e®) + (V2 (™) + A V2hi(2 ) 6, —Vf(z*)
W25, + LA (25, h(z®)

and to stationarity of the Lagrangean of the QP subproblem or, equivalently, of a first-order
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Newton step,

S AiVhi(z®) + (V2 f(z®) + XAV hi(®))) &, —V f(z®))
B (z(*))4, —h(z™)

The main difference between the stationarity of NLP-Q?P and a second-order Newton’s method
lies in the third derivative terms missing in the former. But the second-order terms related to
the curvature of the constraints are present and this is where we expect SQ*P to overtake SQP,
namely when the original problem has highly curved constraints. Viewed differently, the NLP-
Q* P subproblem produces a first-order step towards stationarity and a second-order step towards
feasibility.

The asymptotic g-quadratic convergence rate follows from stationarity of NLP-Q*P, as ex-
pressed above, and from the convergence of a Newton’s method of order ¢, as given in Proposition
3.2.1.

For global convergence of the algorithm from an arbitrary starting point we use the following

merit function )

(k) )\(k)
o(z®) A®)) = L VL(z™), AR ’
g* (™)

DN | =

2

where

The derivative, in the direction d, satisfies
d'Vp(z® A = &'V2L(x )+ Y digf (2™ Vgi(e®),
which, since the solution of NLP-Q?P, d satisfies the system

V2L(z® A®)d 4 vL(e® AE)y = ¢

IA
=

%dtvzgi(w(k))d + Vgi(z®))d + gi(z*)
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implies dtho(:E(k), )\(k)) <0, i.e., dis a descent direction for the merit function. Notice that this

descent property does not rely on convexity. It therefore applies to general nonlinear programs.

3.7 Conclusion

The SQ?P approach solves convex programs to a vector satisfying first and second-order con-
ditions with a convergence rate at least as high as standard SQP; higher if the constraints are
highly curved. The following example illustrates how the two methods compare. To simplify the
presentation and highlight the main difference between the algorithms, a full step was taken at
each iteration of SQP and, in the case of SQ*P, the trust-region was chosen large enough never

to be binding.

Example 3.7.1 Illustrative comparison of SQP and SQ?P.

min{—xl—mz|m?—$2§0, x“;’—i—:cg—lg()}

Figure 3.4: Iterations of SQP on Example 3.7.1, Figure 3.5: Iterations of SQ*P on the same ex-
from initial point (% %)t. As the first iteration ample. The horizontal scale is changed to high-
demonstrates, the direction given by the QP sub- light the value of the direction provided by the

problem can be poor. Q2P subproblem.
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The strength of the algorithm lies in the uses it makes of the curvature of the constraints while
remaining very simple to implement. This is in striking contrast to most algorithms that take
advantage of second-order information. The subproblem provides a better balance between primal
and dual iterates. This balance, in turn, allows a faster convergence rate.

The next step in this direction is obviously to extend the algorithm to non-convex problems.
As it is, we only guarantee an approximation to the optimal solution in the non-convex case since
the results concerning descent direction and convergence to points satisfying first and second-
order conditions, even if they apply to arbitrary objective functions, only concern NLP-Q?P, not
its semidefinite relaxation. And since these two are different unless NLP is convex, it does not
immediately follow that the solution produced by the relaxation also is a descent direction or
that, if it is, the limit points of the algorithm satisfy the optimality conditions. But a convex set
with an arbitrary objective, as in the 2-TRS case should be tractable by this approach. Some
preliminary results seem to indicate that this is indeed the case, but much more work remains to
be done.

We have completely neglected the possibility of an inconsistent subproblem. This has been
the cause of much concern in the standard SQP case but has known solutions, the simplest
of which is to take a steepest-descent step on the merit function whenever the subproblem is
inconsistent. This is justified by the expectation that the subproblem can only be inconsistent
when the iterates are unreasonably far from a solution and a few steepest-descent steps will forever
remedy the problem.

The line searches also need to be considered for future research. There are two of them. There
would be three if we had not used a trust-region approach. The inner line search is done within
the semidefinite solver to remain in the cone of positive definite matrices. Then there is the
nullspace-restricted step to improve the solution in the case of non-convex objective. And finally,
as an alternative to a trust-region strategy, there is the traditional search along the direction
provided by the subproblem. There may be relations between these searches to be analyzed
and exploited. And the alternative “trust-region or line search” is worthy of further research.

Also, the last line search can be done either with the original constraints or with the quadratic
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approximations. In the former case, we may guarantee feasible estimates, in the latter, we may

improve the convergence rate, at least in some cases.



Chapter 4

Semidefinite solver

The work we have done to solve nonlinear programs assumed a solver for semidefinite linear
programs, much in the same way that SQP requires a QP solver. We have, until now, considered
this solver as a black box into which we stored the program and from which we retrieved an
optimal solution. This was appropriate for the exposition of the work and was, in fact, how the
implementation of SQ?P was initially carried out. We relied on the code of Rendl [56].

There is little to be gained by a special-purpose code since, for our subproblem, there is no
structure that can simplify or reduce the size of the problem, as there is, for example, when
semidefinite programming is used to solve combinatorial problems like quadratic assignment or
graph partitioning. But, for the sake of completeness, we sketch here a primal-dual approach that
can be used to solve a pair of semidefinite linear programs. We closely follow [30] to describe this
implementation of an interior point algorithm.

The original primals we considered throughout in R” can be stated as
Pg min{thow + 2bbx + ag | £'Qir 4+ 2blz 4+ a;, 1 < i< m,zlz < (52}.
After homogenization we move into the semidefinite cone and get the following relaxation
Pr min{(Po,Y) | (Foo,¥)=1,(P,¥) < —ai, 1 <i<m+ 1Y =0},

84
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Where we made the simplifying notational changes,

, 0 b , 10
Amy1 = —0", Qmy1 =1, Pi = 1<e<m+ 1, bpyr =0, Ego =
b, Q; 0 0

We introduce slack variables z; in order to get a pair of symmetric primal-dual programs; the first

of which now reads
Px min{<P0,Y> | (Boo, Y) = 1,(P;,Y) + 2z = —a;, 1 <i<m+1,2>0,Y » 0}.

It is clear that each primal semidefinite program considered in the previous chapters can be

formulated in this manner. To find the correct dual, we consider the min-max program,
m+1

min{max{(Po,Y> + 1((Boo, Y) = 1)+ S N(PLY) +zi+ai) | A € }Rm+1} |2>0,Y » 0}.
1

This reduces to our primal since, for the maximization to be bounded, we get back primal feasi-

bility. We get the dual by reversing the max and min.
m+1
max{min{(Po + pEoo + Z PY)—p+ Az + Mg |z>0Y > 0} | A€ Rm+1}.
1
The boundedness of the inner minimization implies

m+1
(Po+ pEoo+ ¥ Pi,Y)>0, and Xz>0,
1

which, since Y > 0 and z > 0, reduces to Py + uEgo + ZT+1 P; > 0 and A > 0. We therefore get,

after adding slack variable Z, the dual program

m+1
Dx min{—,u—k)\ta P0+/LEOO+ZPZ»:Z,Z§0,/\ZO}.
1

We now have the symmetric pair of primal and dual programs we required. For an interior-point
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method, we need a measure of the duality gap which we get by computing

m+1 m+1
(Po,Y) = (—p+Xa) = (Z-pEow— Y PuY)+p+ Y MN({(P,Y)+2z)
1 1

m+1 m+1
= (2Y)—(nEoo+ »_ P,Y)+p+(>_ P,Y)+ )z
1 1

= (Z,Y)+ Nz

Since we assumed throughout that a strictly interior point was feasible, there is no duality gap.
Therefore (Z,Y) + A’z = 0 and, since Z,Y > 0, and z, A > 0, we also have that both products

(Z,Y), and X'z are nonnegative. This leads to the complementarity equations we required, namely
ZY =0 and Aoz =0,

where (o) is denotes the Hadamard product.
To derive an interior-point method from these equations, we now introduce a barrier parameter
4 — 0 and rewrite the complementarity equation as Az = 4 and (Z,Y) = 4. From which we

conclude that, for a given solution Z,Y, z, A, we can compute

1

t
————{(Z.Y)+ ).

"y:

We call this a barrier parameter since the derivation of the above equations for primal and dual

feasibility as well as complementarity can be done using a so-called dual-barrier program.
m+1

min{—,u—}—/\ta—i—fy(logdetZ—l—log/\) |,uE00—|— Z P+P=2Z,Z>0,\> 0},
1

where v > 0 is the barrier parameter. A sequence of such parameters converging to zero generates

a sequence of p,, A, converging to a fixed point, solving the dual semidefinite program. The
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Lagrangean associated to a specific value of v is

m+1
L(p,\Y, Z,z) = —p+ MNa+y(logdet Z + log \) + (—Z + pEoo + E P+ P, Y).
1

The stationarity condition for this Lagrangean, namely VL = 0, reduces to primal feasibility, dual
feasibility and complementary-slackness, but depends on the barrier parameter .

We expand the stationarity condition as

Fy = Z—-Po—pBoo+ L7 R = 0
F. = 1 —(Eoo,Y) =0
Fyi= (Fa)i = zi+(PuY) +ai =0
. o= ZY — I =0
F.., := zo A —nye =0

The interior-point approach computes, for a given value of v, the damped Newton step As =

(Ap, AN, AY, AZ, Az) satisfying

F,(p, \Y, Z,2) + VF,(p, N\, Y, Z,2)As = 0.

Differentiation yields

AZ — ApEoy— SSTHPANP = —Fy
—(Eqo, AY) = _F.
Az + (P, AY) = (=F,);
AZY + ZAY = —F.n
AzoX+ Zo A = —Fep»

This system can be solved for Ay, A)X, which are then substituted back to obtain AY,AZ.
The new value for Y may not be symmetric, in which case symmetry-inducing transformation
such as Y = (Y + Y*)/2 is used. Finally a step is taken in that direction provided it maintains

strict feasibility,
Y=Y+AY, Z=Z+4+AZ, A=+ A\ p=p+ Ap.



Chapter 5

Semidefinite programming for

continuous optimization

Semidefinite programming has only recently enjoyed the attention of the mathematical program-
ming community. Even if some of its roots date as far back as the discipline as a whole — A
monograph of Berman [5] refers to papers written in the sixties, barely ten years after the birth
of the simplex method for linear programming (Dantzig [13]) and of the optimality conditions for
nonlinear programming (Kuhn and Tucker [33]). — its name and most of its successes are fairly
recent. The name itself seems to have appeared in the nineties (Alizadeh, Haeberly and Overton
[1], Helmberg, Poljak, Rendl and Wolkowicz [29], Nesterov and Nemirovsky [47]), even if some
researchers in the field, until recently, preferred a different name. A paper that has circulated
for the past two years under the name Positive Definite Programming (Vandenberghe and Boyd
[68]),a name justified by the algorithmic approach used to solve such problems has just been
published under the title Semidefinite Programming [69]. The name seems now firmly entrenched.

The successes are due in no small part to Nesterov and Nemirovsky [47] who provided a
unifying framework for polynomial-time algorithms and to Goemans and Williamson [26] who
radically improved, by means of a semidefinite relaxation, the guaranteed bounds for max-cut

and max-2sat, both classical problems of combinatorial optimization. The use of this kind of
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relaxation has multiplied thereafter in discrete optimization (Lovdsz and Schriver [35], Poljak and
Wolkowicz [53]). Work in continuous optimization (Stern and Wolkowicz [63]) has also led to
interesting results, most notably a very fast algorithm solving the trust-region subproblem, an
archetypal problem of nonlinear optimization.

The work presented here aimed above all to collect disparate results concerning optimization of
quadratic surfaces over ellipsoids. And then to show how semidefinite programming first provides
a simple framework to describe such problems — contrast the two given proofs of the strong duality
of TRS— and second produces very simply-stated algorithms. Especially when these algorithms
are compared to classical algorithms that use curvature information. Of course the semidefinite
programs would not be easy to solve if it were not for the very recent developments of interior-point
methods.

Our work is, in some sense very classical since we extend old and trusted methods like SQP and
trust-regions to look for points satisfying both Karush-Kuhn-Tucker and second-order conditions.
We do this by modifying the standard SQP subproblem. But the tools required to solve this
subproblem owe much to recent work, both for the lifting of the problem into a different space
and for the interior-point methods of solution.

The approach was restricted to convex programs where the implementation was concerned and
this offers a possible path for future work. The choice of subproblems for non-convex programs
might be different, relying more on the Lagrangean or other convexity inducing functions. The
relation between the original feasible set and the lifted set also offers avenues of research and
might lead to different relaxations. The implementation itself needs to be more robust and the
best choice of interior-point algorithm is unclear. A dual-only approach might be more appropriate
since the dimension of the duals considered will often be much smaller than the dimension of the

primals. All of these provide much food for thought and will be considered, in time.
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