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Abstract

Linear Programming, LP, problems with finite optimal value have a zero duality
gap and a primal-dual strictly complementary optimal solution pair. On the other
hand, there exists Semidefinite Programming, SDP | problems which have a nonzero
duality gap (different primal and dual optimal values; not both infinite). The duality
gap is assured to be zero if a constraint qualification, e.g Slater’s condition (strict
feasibility) holds. And, there exist SDP problems which have a zero duality gap but
no strict complementary primal-dual optimal solution. We refer to these problems as
hard instances of SDP .

In this paper, we introduce a procedure for generating hard instances of SDP. We
then introduce two measures of hardness and illustrate empirically that these measures
correlate well with the size of the gap in strict complementarity as well as with the
asymptotic local convergence rate, and also with the number of iterations required to
obtain optimal solutions to a specified accuracy. In addition, our numerical tests show
that no correlation exists between the complementarity gaps and recently introduced

geometrical measures or with Renegar’s condition number. We include tests on the
SDPLIB problem set.
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1 Introduction

Linear Programming, LP , problems with finite optimal value have a zero duality gap and a
primal-dual strictly complementary optimal solution pair. On the other hand, there exists
Semidefinite Programming, SDP , problems which have a nonzero duality gap (different
primal and dual optimal values; not both infinite). The duality gap is assured to be zero if
a constraint qualification, e.g Slater’s condition (strict feasibility) holds. Measures of strict
feasibility, also called distance to infeasibility, have been used in complexity analysis, e.g.
(17,5, 6, 7].

In addition, there exist SDP problems which have a zero duality gap but no strict com-
plementary primal-dual optimal solution pair. We refer to these problems as hard instances
of SDP . Similar to the lack of strict feasibility, the lack of strict complementarity can result
in both theoretical and numerical difficulties. For example, many of the local superlinear
and quadratic convergence results for interior-point methods depend on the strict comple-
mentarity assumption, e.g. [16, 11, 1, 14, 13]. Also, the convergence of the central path to
the analytic center of the optimal face relies on strict complementarity, see [9].

In this paper we present an algorithm for generating hard instances of Semidefinite Pro-
gramming, SDP | i.e. by hard we mean problems where strict complementarity fails. We
use this set of hard problems to study the correlation between the loss of strict complemen-
tarity and the number of iterations needed to obtain optimality to a desired accuracy by
interior-point algorithms. We compare and contrast our results to recent work by Ordonez,
Freund, and Toh [6], who found that the number of iterations needed by practical interior-
point methods correlated well with the their aggregated geometrical measure as well as with



Renegar’s condition number.
The primal SDP we consider is

p*:= min traceCX
(PSDP) st A(X)=0d (1.1)
X*0
and 1ts dual
d*:= max bly
(DSDP) st. A*(y)+Z2=C (1.2)
Z x 0,

where C, X, Z € 8™, 8™ denotes the space of n X n real symmetric matrices, y,b € R™,
and > (>) denotes positive semidefiniteness (resp. positive definiteness), known as the
Lowner partial order; A : 8" — R™ is a (onto) linear transformation and A”* is the adjoint
transformation. The set of optimal primal (resp. dual) solutions is denoted P* (resp. D*).

The SDP model has important applications, elegant theory, and efficient solution tech-
niques, see [20]. Moderate sized problems can be solved to near optimality using primal-dual
interior-point (p-d i-p) methods. These methods are based on Newton’s method with path
following, i.e. the (Newton) search direction is found using a linearization of the (perturbed,
symmetrized) optimality conditions. The iterates follow the central path, i.e. primal-dual
feasible solutions with ZX — uI =0, g > 0. On the central path, X and Z are mutually
orthogonally diagonalizable, X = QDxQ7,Z = QDzQ7"; and their corresponding vectors of
eigenvalues, Ax = diag (Dx), Az = diag (D), satisfy

/\XO/\ZZMG, (13)

where o denotes the Hadamard or elementwise product of the vectors, and diag (W) is the
vector formed from the diagonal of W. The optimum dual pair of SDPis attained in the
limit as p | 0; strict complementarity is indicated at p = 0 if X + Z > 0, 1.e. strict positive
definiteness. Therefore, as in linear programming, either (Ax); | 0,(Az); — O(1) holds,

r (Az)i 4 0,(Ax); — O(1) holds. However, examples exist where the optimal X, Z have
a nontrivial nullspace vector in common, i.e. strict complementarity fails. From (1.3), this
means there exists 1 with both (Az); | 0,(Ax); 4 0 but (Az):(Ax)i = p, i.e. the value
of each eigenvalue is order \/u. For example, if the p-d i-p algorithm stops with a near
optimal solution with duality gap g = trace ZX/n = O(107'?), then we can expect the
value of both eigenvalues to be as large as \/z = 107°. In addition, the Jacobian of the
optimality conditions at an optimum is singular, raising the question of slowed convergence.
(See Remark 4.1.) These problems result in hard instances of SDP . P-d i-p methods typically
run into difficulties such as slow (linear rate) convergence and low accuracy of the optimum.

1.1 Outline of Results and Main Contributions

In this paper we outline a procedure for generating hard instances of SDP . We then introduce
two measures of hardness. We empirically show that: (i) these measures can be evaluated
accurately; (ii) the size of the complementarity gaps correlate well with the number of



iteration for the SDPT3 [19] solver, as well as with the local asymptotic convergence rate;
and (iii) larger complementarity gaps correlate with loss of accuracy in the solutions. In
addition, the numerical tests show that there is no correlation between the complementary
gaps and the geometrical measure used in [6], or with Renegar’s condition number.

We include tests on the SDPLIB problem set. Here we only found weak correlations due
to lack of accuracy in the optimal solutions.

The procedure for generating hard problems has been submitted to the Decision Tree for
Optimization Software, URL: plato.la.asu.edu/guide.html. See also SDPLIBe.g. [2],
URL: www.nmt.edu/ sdplib/. The MATLAB programs are available with URL:

orion.math.uwaterloo.ca:80/ " hwolkowi/henry /software /readme.html

2 Generating Hard SDP Instances

In this section we show how to generate the hard SDP instances; i.e. the problems where
strict complementarity fails.

Definition 2.1 A primal-dual pair of optimal solutions (X,Z) € P* x D* is called a
maximal complementary solution pair to the problems (P) and (D), if the pair mazimizes
the sum rank (X) + rank (Z) over all primal-dual optimal solution pairs (X, Z).

A primal-dual pair of optimal solutions (X, S) is maximal complementary if and only if
R(X) CR(X), VX eP*, R(S)C(S), V§eD, (2.1)
where R denotes range space. This follows from the fact that
XS=X§=X$5=0, VX € P*,VS € D,
i.e. all optimal solution pairs are mutually orthogonally diagonalizable.

Definition 2.2 The strict complementarity gap is defined as g = n — rank (X) — rank (Z),

where (X, Z) is a mazimal complementary solution pair.

Note that g is equal to the minimum of the number of zero eigenvalues of X 4+ Z, where the
minimum is taken over all optimal solution pairs (X, Z).

For more details and proofs of these characterizations see [4], [8] and the references
therein.



Algorithm 2.3 Constructing Hard SDP Instances with gap g

. Given: positive integers r > ( and m > 1 are the rank of an optimum X and the

number of constraints, respectively.

. Let Q = [Qp|QN|Qp] be an orthogonal matrix, where the dimensions of Qp, Qn,

Qp are n X r,n X g, n X (n —r — g), respectively, and r > 0. Construct positive
semidefinite matrices X and Z as follows:

X = QPDXng Z = QDDZan

where Dy and Dy are diagonal positive definite.

. Define
0 0 YT
A =[Qp|QnIQp] |0 Y1 Y| [Qr|lQNIQD], (2.2)
Y, Y5 Y,

where Y7, Y3, Y3, and Y, are block matrices of appropriate dimensions, ¥; > 0,

and QpYz # 0.

. Choose A; € §",i =2,...,m, such that {A;Qp, A2Qp, ..., AnQp} is a linearly

independent set. (Note that 4,Qp = QpYs # 0.)

. Set

b:=A(X), C:=A"y)+ Z, with y € R™ randomly generated.

Theorem 2.4 The data (A,b,C) constructed in Algorithm 2.8 gives a hard SDP instance

with a strict complementarity gap g.

Proof.

Step 2 guarantees that X, Z are positive semidefinite and ZX = 0 (complementary
slackness holds). Step 5 guarantees that X,y,Z are primal-dual feasible. Therefore, our

construction implies that X, (y, Z) are a primal-dual optimal pair.

Choose any X, Z € P* x D* with R(X) C R(X) and R(Z) C R(Z). We now show that
R(X)
Since X and Z must also be an optimal pair, i.e XZ = 0, we get that R(X) C R(Z)* =

R(X) and R(Z) = R(Z), i.e. by (2.1) X, Z are a maximal complementary pair.

R([@p|@nN]). So, we can write

_ Does WT
X = (oriow | 07 %

| sl

where, in particular, Dy x = 0. Let

Since

) o T
AX =X — X = [Qp|Qn] {DP@VX Dx g‘; XX] [Qr|QN]".

trace (4;AX) =0,
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We have

o T
trace ([QP|QN]TA1 [QP|QN] [DPJI(/VX o g?;}) =

From the structure of A;, we see that

CEESINCEERE L
So

. T
0 = trace (A;AX) = trace ({0 0} [DP,X Dx Wg

0 Yi]| W DN,X} ) = trace (NDr.x)

By Y1 > 0 and Dy x = 0, we have that Dy x = 0. Since X is positive semidefinite, we have
Wx =0 and R(X) = R(Qp) = R(X).

Similarly, we see that R(Z) C R(Qn,Qp). Let AZ = Z — Z and Ay = y — y, where
A*(y) + Z = C. Then we have A*(Ay) = —AZ. Since Qp is a subspace of the the null
space of both Z and Z, we have —AZQp = 0, i.e. A*(Ay)Qp = 0. We write it in matrix

form,
Z A;QpAy; = 0.
i=1
Since {A;Qp} are nonzero and linearly independent, we see that Ay; = 0 for all ¢. Thus,
Z=12Z.
Therefore X, Z is also a maximal complementary pair. Since, by construction, rank (X )+

rank (Z) = n — g, we have shown that the SDP is a hard instance with complementarity gap
g- |

To avoid conflicts between loss of strict complementarity and loss of strict feasibility,
we can use the following additional condition.

Corollary 2.5 Suppose that the data (A ,b,C) is constructed using Algorithm 2.3 with the
additional condition that Ay satisfies

[Qr|QN]TA2[QP|QN] - 0. (2.3)
Then Slater’s condition holds for the dual program (DSDP).

Proof. Suppose that X, y, Z are as constructed by the algorithm. Then Z = C— A" (y) =
QpDzQL = 0. From [3, Lemma 7.1], we get that Slater’s condition fails for (DSDP) if and
only if

dR > 0 with R #0,RZ = 0,V trace R(A*y — C) = A(R) = 0.
Now RZ = 0 implies that R = [Qp|Q~]Dr[Qr|Qn]T, for some symmetric Dg of appropriate
size. Therefore, A (R) = 0 implies that

0 = trace As R = trace Az[QP|QN]DR[QP|QN]T = trace([QP|QN]TA2[QP|QN])DR.

The assumption (2.3) now implies that Dp = 0 and so also R = 0. Therefore, Slater’s
condition holds. [ |



3 Measures for Strict Complementarity Gaps

In [6], the authors indicate the following difficulties in measuring the existence and size of
the strict complementarity gap.

“Furthermore, in interior-point methods for either linear or semidefinite program-
ming, we terminate the algorithm with a primal-dual solution that is almost op-
timal but not actually optimal. Hence there are genuine conceptual difficulties
in trying to quantify and compute the extent of near-non-strict-complementarity
for an SDP instance.”

The measure, £ in (3.6), is proposed in [6]. However, this measure does not distinguish
between a small or large complementarity gap ¢g. But, as our numerical tests in Section 4
indicate, large values of g are well correlated with large iterations numbers. This motivates
the introduction of our following two new measures.

3.1 Complementarity Gap Measures ¢; and g,
3.1.1 Measure g;

For barrier parameter ¢ > 0, ¢ | 0, and corresponding feasible pairs X = X,,, Z = Z,, on the
central path, let the orthogonal eigenvalue decomposition be X = QAx QT and Z = QA,Q7.
Consider the eigenvalue ratios w? := Az;/Ax,. Then

XZ = QAxQTQAZQ" = AxAy = pul,  wi=—L_.
(AX)Z'

Suppose that X — X, Z — Z. We then expect the following behaviour.

00 if Ax;+ Az > 0 (no gap) and Ax; — 0
wi =<0 if Ax;+ Az, > 0 (no gap) and Az; — 0
O(1) if Ag;+ Az =0 (agap).

Empirical evidence suggests that the sequence {wf} converges when there is a complemen-
tarity gap. The measure we define exploits this behaviour. In practice, we use the vector of
eigenvalues
1

w? = 5 (X'Z+2X7). (3.1)
(Note that the eigenvalues of X~'Z interlace the eigenvalues of I (X 'Z + ZX™'), e.sg.
[15].) For given tolerances T, and T}, we estimate the strict complementarity gap using the
cardinality

g = |{w! Ty < w! < T} (3.2)

3.1.2 Measure g,

The second measure exploits the idea from [6]. As in Section 3.1.1, we let X and Z to be
a solution pair on the central path corresponding to p > 0. The eigenvalue decompositions
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of X and Z are X = QAxQT and Z = QA;QT. The measure uses the numerical rank (e.g.
[18, 10]) of X + Z. We compute

1
w® = —\NX+72), 3.3
s X+ 2) (3.3
where py = trace ZX/n. Given a tolerance T' > 0, we estimate the strict complementarity

gap ¢ using the cardinality
gs = {w} 1w} < T} (3.4)

Remark 3.1 Note that on the central path, X,Z are mutually diagonalizable. Therefore,
the eigenvalues of the sum X + Z is the same as the sum of the eigenvalues. However, this is
not necessarily true off the central path, see the recent paper [12]. In this remarkable paper
the author solves a classical problem about the eigenvalues of sums of Hermitian operators,
connecting it to the Schubert calculus for the homology of Grassmannians and the moduli of
vector bundles.

However, we should point out that this measure g, may incorrectly include some indices
which do not belong to the complementarity gap when the solution estimates X, Z are not
accurate enough. Consider the following results from a randomly generated problem instance
with strict complementarity gap 1. The first 7 eigenvalues from the solution estimates X

and Z (obtained using SDPT3) are

[7.3 x 1077] [ 65 1
1.8 x 1076 59
2.0 x 1076 54
Ax = [Lax107|, a=| 24 |, (3.5)
6.2 2.1 x 1075
8.6 x 10° 4.7 x107°
| 9.2 % 10% | 4.5 % 10~
Note that
(Ax)a << (Ax)s << (Ax)e.  (Az)s << (Az)s << (Az)as

i.e. the fifth elements are relatively small/large compared to the next/previous larger /smaller
elements. This indicates that there is a strict complementarity gap ¢ = 1. However, the sum
of these two eigenvalues fails to correctly estimate the size of the gap,

65
59
54
Ax + Az = 2.4

6.2
8.6 x 103
9.2 x 103

Higher accuracy in the approximate optimal solutions X, Z often corrects this issue, see the
numerics in Section 4.



3.2 Measure

The last measure we introduce is £ used in [6]. For a given tolerance T', define the following

index set T° := {j : w} < T'}, where w* is defined in (3.3). Then
= In(w?)/|T7. (3.6)

JeT*

When strict complementarity holds (resp. fails), we expect to see a relatively large (resp.
small) &

4 Numerics

We now compare the various measures on randomly generated instances with guaranteed
strict complementarity gaps as well as on problems from the SDPLIB test set, [2].

4.1 Randomly Generated Instances

We use Algorithm 2.3 to generate the hard instances. To implement the algorithm, we
generate a random orthogonal matrix () and random diagonal Dy and D;. The elements of
Dx and Dy are uniformly distributed in the range of [0.1, 100.1] to ensure positivity of Dx
and Dyz. The optimal solution of this hard SDP instance is then determined from step 2 in
Algorithm 2.3. For the special matrix A, we construct ¥; according to:

1. generate the random symmetric matrix ¥; with uniformly distributed elements in

[—10000, 10000];
2. add rI to the above matrix Y7, where r is a random number in [0, 20000];

3. if Y] 1s not sufficiently positive definite, repeat the process from step 1.

All the elements of the random matrices Y3, Y3, and Y, are uniformly distributed in the
interval [—10000,10000]. If necessary, we symmetrize the matrices. If QpY; is close to a
zero matrix, we repeat the process for Y,. Our special matrix A; is then constructed from
Step 3 in Algorithm 2.3. Once we have such a special matrix, we generate random symmetric
uniformly distributed matrices A;. If one of the A;Q, is not properly linearly independent,
then we add a new A; to the list. To guarantee that Slater’s condition holds, we apply the
condition in Corollary 2.5.

We present the average of results from 100 groups of tests. Each group comnsists of
SDP instances with 26 different gap values. We set the following parameters: m = 10,n =
30,gap = 0,...,25. The rank for the dual optimal solution is fixed at 4. The name of the
instance shows how large the gap is, e.g. gap5. The accuracy of solutions is given by the err

term:
err::max{HA( ) — b]| + [ min(eig(X), )|’||«4 (y )+Z—CII+|mm(elg(Z),0)|’
1+ [|b]] 1+ 1Ol
|C-X—bTy|}
Y 4.1
1+ |bTy| (4.1)



When computing ¢: (3.2), we set the tolerances T,,T; dynamically. More precisely, we

sort the w{ (3.1) in ascending order. We then use the ratios w{ := w{/w? , to measure how

fast the w? are changing. If there is only one small (< 0.02) w?, we assume that there is no
gap. Otherwise, we find the two smallest valued w? and set the two indices to be j and k
(j < k). Then T; := wj + € and T, := wy, + €. In practice, once we have found the indices j
and k, the estimated gap ¢; is returned by using the value of k& — j.

When computing g, in (3.4), we set the tolerance T' = max{100, min,(w?)}, where w?® is
defined in (3.3). The tolerance T for the measure & is the same as the one used for g,. This

is the same tolerance as that used in [6].

4.2 Plots for Randomly Generated Instances

To illustrate the relationships among the various measures we consider three groups of figures.
To illustrate the influence of accuracy in the solutions, each group consists of three figures
with decreasing stop tolerances 107%, 107'°, and 107'2, respectively.

The x-axis of each figure represents the complementarity gap ranging from 0 to 24. The
y-axes, from left to right, represent, respectively:

iteration numbers,

negative log (base 10) of errors (4.1),

measure g,

measure s,

measure K,

local convergence rate (discussed in Item 4 on page 12).

.8 30 30 -1 4
16 //v"”"‘
-1.5 0.3
14 8.6 20 20
12 -2 0.2
B.4 10 10

10 -2.5 0.1

8 2 0 0 -3 0
0O 10 20 0 10 20 0O 10 20 O 10 20 O 10 20 O 10 20

Vs iters vs —log10(err) vs g, Vs g, VS K vs local cvgnce

Figure 4.1: Slater’s holds; stop tolerance 10~%; complementarity gaps from 0 to 24 versus:
iterations, —log,qerr, g, gs, K, local convergence; 100 instances.

o The first three Figures 4.1, 4.2, 4.3, are average results from 100 instances. We apply
Corollary 2.5 to guarantee that Slater’s condition holds.

e The next three figures 4.4, 4.5, 4.6, show the behaviour of a typical single instance
without applying Corollary 2.5. We see in Table 4.2 that Slater’s condition generally
holds for the primal but generally fails for the dual.
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10.8 30 30 -1 4
20
-2 0.3
10.6 20 20
15 -3 0.2
1p.4
10 10 4 0.1
10 10.2 0 0 -5 0
0 10 20 0 10 20 0 10 20 0 10 20 0 10 20 0 10 20
Vs iters vs —log10(err) vs g, Vs g, VS K vs local cvgnce

Figure 4.2: Slater’s holds; stop tolerance 107!°; complementarity gaps from 0 to 24 versus:
iterations, —log,qerr, g:, gs, K, local convergence; 100 instances.

24 1.8 30 30 0 4
22 0.3
20 1.6 20 20 -2

18 0.2
16 m.4 -4

14 10 10 0.1
12 1.2 0 0 -6 0

0 10 20 0 10 20 0 10 20 0 10 20 0 10 20 0 10 20
Vs iters vs —log10(err) vs g, Vs g, VS K vs local cvgnce

Figure 4.3: Slater’s holds; stop tolerance 107'?; complementarity gaps from 0 to 24 versus:
iterations, —log,qerr, g, gs, K, local convergence; 100 instances.

e The last three Figures 4.7,4.8,4.9 consider the average behaviour on 100 instances.
Again, we do not apply Corollary 2.5.

Observations from the nine figures 4.1 to 4.9:

1. There is a strong correlation between the iteration number to achieve the desired stop-
ping tolerance and the size of the complementarity gap. The correlation is stronger
when the desired stopping tolerance is smaller.

2. The measures g;, g; both improve dramatically as the accuracy increases in Figures 4.1,

25 10 30 30 0 .8
20 9 -1 0.6
20 20

15 8 -2 0.4
10 7 10 10 -3 0.2

6 0 0 -4 0

0 10 20 0 10 20 0 10 20 0 10 20 0 10 20 0 10 20
Vs iters vs —log10(err) vs g, Vs g, VS K vs local cvgnce

Figure 4.4: Slater’s generally fails; stop tolerance 107%; complementarity gaps from 0 to 24
versus: iterations, —log,qerr, g:, gs, K, local convergence; single instance.
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25 12 30 30 0 .8
0.6

20 10 20 20 -2
15 0.4

8 -4
10 10 0.2

10
6 0 0 -6 0
0 10 20 0 10 20 0 10 20 0 10 20 0 10 20 0 10 20
Vs iters vs —log10(err) vs g, Vs g, VS K vs local cvgnce

Figure 4.5: Slater’s generally fails; stop tolerance 107'°; complementarity gaps from 0 to
24 versus: iterations, — log,qerr, g:, gs, K, local convergence; single instance.

12 30 30 0 .8

25 0.6
10 20 20 -2

20 0.4
8 -4

15 10 10 0.2

10 6 0 0 -6 0

0 10 20 0 10 20 0 10 20 0 10 20 0 10 20 0 10 20
Vs iters vs —log10(err) vs g, Vs g, VS K vs local cvgnce

Figure 4.6: Slater’s generally fails; stop tolerance 107'?; complementarity gaps from 0 to
24 versus: iterations, — log,qerr, g:, gs, K, local convergence; single instance.

4.2, 4.3. We see this same phenomenon in the other two groups of figures.
3. The measure k also improves with smaller stopping tolerances.

4. Local Asymptotic Convergence Rate vs Complementarity Gap In the literature, e.g.
[16] [11] [1] [14] [13], local superlinear or quadratic convergence results depend on the
assumption of strict complementarity. Thus it is intuitive to expect this in practice as
well. Our numerical results confirm this conjecture. The convergence rate is defined
by the ratio of the relative duality gap at successive iterations. We list the geometrical

9 30 30 -1 .8
20 -5 0.6
8.5 20 20
15 -2 0.4
8
10 10 10 -2.5 0.2
7.5 0 0 -3 0
0 10 20 0 10 20 0 10 20 0 10 20 0 10 20 0 10 20
Vs iters vs —log10(err) vs g, Vs g, VS K vs local cvgnce

Figure 4.7: Slater’s fails; stop tolerance 10™%; complementarity gaps from 0 to 24 versus
average of: iterations, error, g, gs, &, local convergence; 100 instances.
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25 11 30 30 -1 8
10 0.6
20 20 20 -2
15 9 , 0.4
8 10 10 0.2
10
7 0 0 -4 0
0 10 20 0 10 20 0 10 20 0 10 20 0 10 20 0 10 20
Vs iters vs —log10(err) vs g, Vs g, VS K vs local cvgnce

Figure 4.8: Slater’s fails; stop tolerance 1071%; complementarity gaps from 0 to 24 versus
average of: iterations, error, g, gs, &, local convergence; 100 instances.

12 30 30 0 .8

25 0.6
10 20 20 -2

20 0.4
8 -4

15 10 10 0.2

10 6 0 0 -6 0

0 10 20 0 10 20 0 10 20 0 10 20 0 10 20 0 10 20
Vs iters vs —log10(err) vs g, Vs g, VS K vs local cvgnce

Figure 4.9: Slater’s fails; stop tolerance 107'%; complementarity gaps from 0 to 24 versus
average of: iterations, error, g, gs, %, local convergence; 100 instances.

mean of the convergence rate for the last five iterations. This is illustrated in the
rightmost picture in the figures.

Remark 4.1 The slow convergence rates can be partially explained by the singularity of the
Jacobian, which occurs in the presence of a complementarity gap.

Suppose that strict complementarity fails for the optimum pair estimate X, Z. Then we
can assume the joint diagonalization structure

Dx 0 0 00 0
X=Q|o0o o0 o|QT Z=Q1|0 0 0]|QF
0 00 0 0 Dy

for some orthogonal matriz () and positive definite diagonal matrices Dx, Dy. Then we can
rewrite the Jacobian of the SDP optimality conditions as

0 A" I
A 0 0 AX
Dx 0 0 00 0 Ay | =0,
0 00f 0o |oo0 0 AZ
0 0 0 0 0 Dy

where AX = QTAXQ,AZ = QTAZQ and the symmetric matrices A; defining the linear
transformation A are changed to QT A;Q for A. If we assume that both AX,AZ are diag-

onal, then this reduces the problem to an ordinary square system and the resulting Jacobian
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Problem

its -logyg(err) | ¢ g5 K | local convergence
gapl 10 10.7 0 2 -39 0.09
gapl 13 9.8 1 2 -31 0.22
gap?2 14 8.8 2 4 -29 0.26
gap3 14 9.2 3 5 -28 0.31
gap4 15 9.2 4 6 -2.7 0.36
gapo 16 7.7 5 7 -28 0.40
gapb 16 7.0 6 8 -28 0.43
gap7 17 8.1 7 10 -2.8 0.46
gap8 17 6.7 § 11 -28 0.48
gap9 18 6.5 9 12 -29 0.50
gapl0 | 18 7.2 10 14 -2.8 0.51
gapll 19 7.7 11 14 -2.8 0.53
gapl2 | 19 6.7 12 16 -2.8 0.54
gapl3 | 20 6.4 13 17 -2.7 0.55
gapld | 20 6.7 14 18 -2.6 0.56
gapld | 20 6.9 15 19 -2.6 0.57
gapl6 | 21 7.1 16 20 -2.6 0.58
gapl7 | 21 6.9 17 21 -24 0.57
gapl8 | 21 7.1 18 22 -24 0.58
gapl9 | 22 4.9 18 23 -2.2 0.59
gap20 | 22 6.8 18 24 -1.7 0.54
gap2l | 23 7.1 14 24 -1.6 0.48
gap22 | 23 8.7 16 24 -1.7 0.39
gap23 | 22 9.9 15 24 -1.9 0.37
gap24 | 21 10.2 13 25 -21 0.37

Table 4.1: The data corresponding to Figure 4.9.
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1s singular due to the zero row. The diagonal assumption does not change the feasibility of
the first and third blocks of equations. We can then modify the off-diagonal part of AZ to
gquarantee the feasibility of the second block of equations.

The singularity of the Jacobian means that we should expect loss of both quadratic and
superlinear convergence for Newton type methods.

4.2.1 Geometrical Measure vs Large Complementarity Gaps

In [6], the authors use SDPT3 and the SDPLIB test set. They show that the aggregate geo-
metrical measure g™, i.e. the geometric mean of the four geometric measures D, g,, D4, g4,
in Table 4.2, is (generally) well correlated with the iteration number. They also show that
the correlation holds for Renegar’s condition number, see also Table 4.3. The values for
these measures for the SDP instance in Figures 4.7,4.8,4.9 are given in Tables 4.2, 4.3. For
details on the geometrical measure and Renegar’s condition number and their computation,
please see [6] and the references therein. We use the same code used in [6] to compute the
geometrical measure g™ and Renegar’s condition number. !

As pointed out in [6], the strict complementarity gap might not be theoretically related
to the geometrical measures or Renegar’s condition number. In fact, our numerical computa-
tions on our generated instances confirm this, see Tables 4.2, 4.3, 1.e. though these geometric
measures correlate well with the iteration number, they do not correlate well with the size
of the complementarity gap.

4.3 SDPLIBInstances

Our results in Section 4 show that, generally, measure g; can accurately measure the gap g,
though it can give large errors when the solution estimates are not accurate enough. The
measure ¢, is more consistent in measuring the strict complementarity gap, g. The measure
k 1s also sensitive to the accuracy of the solution.

We applied these measures gy, gs, and & to the SDPLIB [2] problem set. Though we used
107! as the stop tolerance in SDPT3, it was rarely attained. For some of the problems, there
were big discrepancies between the two measures g; and g;. There was also no significant
correlation between the iteration numbers and the three measures:

corr (g, its ) = —0.01, corr (gs,its ) = —0.067, and corr (k,its ) = 0.2856.

However, if we only consider those SDP instances (47 such instances), where the error ob-
tained was less than 1077, then we see a significant increase in the correlations between the
measures and the iteration numbers:

corr (gq,1ts ) = 0.1472, corr (g,,its ) = 0.4509, and corr (k,its ) = 0.4371.

Their plots are showed in Figure 4.10.

! Acknowledgement: The authors thank Professor Ordéiiez, University of Southern California, for
providing the software for the measure evaluations.

Z In [6] it is shown that g4 = co <= pp(d) = 0. However, due to inaccuracy from SDPT3, we get
inconsistencies here.
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Problem D, 9p Dy Ja qg"
gapl Inf 1.9e402 1.5e402 Inf Inf
gapl 1.2e4+12 1.5e4+02 2.4e402 Inf Inf
gap2 2.9e+08 1.6e+02 2.3e+02 Inf Inf
gap3 3.1e+08 1.4e4+02 1.7e402 Inf Inf
gapd 1l.le+11 1.8¢+02 1.9e4+02 MAXIT N/A
gapd 1.6e4+08 1.1ed402 2.4e4+02 Inf Inf
gapb 4.5e+08 9.9e4+01 2.8e+02 Inf Inf
gap7 1.9e4+08 1.6e4+02 1.1e4+02 Inf Inf
gap8 1.4e4+09 2.1e4+02 1.3e4+02 Inf Inf
gap9 1.4e4+09 1.8¢4+02 1.8¢4+02 Inf Inf
gapl0 | 2.1e+09 1.3e4+02 4.0e+02 6.2e404 | 4.7e+00
gapll | 1.0e4+09 1.7e4+02 1.4e+02 Inf Inf
gapl?2 Inf 1.3e4+02 3.2e402 Inf Inf
gapl3 Inf 1.6e4+02 2.6e+01 Inf Inf
gapld Inf 1.6e402 Nacc Inf N/A
gaplh Inf 1.7e4+02 6.9e+01 Inf Inf
gapl6 3.0e+10 2.5e4+02 2.2e402 Inf Inf
gapl7 Inf 2.6e+02 2.1e+02 Inf Inf
gapl8 Inf 1.5e4+02 2.6e+02 Inf Inf
gapl9 1.2e4+10 1.1e402 2.6e4+02 Inf Inf
gap20 | 6.3e+10 1.8e4+02 2.3e+02 Inf Inf
gap21 1.2e4+10 2.2e4+02 1.4e4+02 Inf Inf
gap22 | 2.7e+02 1.2e+02 2.3e+02 MAXIT N/A
gap23 1.8¢+02 2.5e+02 1.4e402 Nacc N/A
gap24 | 3.6e+01 2.5e+02 1.le+02 MAXIT N/A

Table 4.2:  Notation from [6]: (D,, ¢,) - primal geometrical measure; (D4, ga) - dual
geometrical measure; (¢™) - aggregate geometrical measure, i.e. geometrical mean of D,, g,,
Dy, and gg. MAXIT - max iteration limit reached; Nacc - no accurate/meaningful solution.
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Problem | pe(d)  po@) | Tl lldle | CWdi _ C(d
gap0 2.8e+04 7.4e-04 | 1.1e4+09 1.1e4+09 | 1.5e+12 1.5e+12
gapl 3.1e4+04  9.9e-04 | 2.2e+09 2.2e+09 | 2.2e+12 2.2e+12
gap2 2.9e+04 1.3e-03 | 2.5¢4+09 2.5e¢409 | 2.0e4+12 2.0e+12
gap3 3.2e4+04  2.5e-04 | 7.3e+08 7.3e+08 | 2.9e+12 2.9e+12
gap4d | 3.4e+04 1.1e-03 | 8.0e4+08 8.0e+08 | 7.3e+11 7.3e+11
gapd 2.9e4+04 2.4e-03 | 8.1e+08 8.1e4+08 | 3.4e+11 3.4e+11
gapb 3.0e4+04 1.9e-04 | 1.0e+09 1.0e+09 | 5.3e4+12 5.3e+12
gap?7 | 3.0e+04 1.4e-03 | 4.3e4+09 4.3e+09 | 3.0e4+12 3.0e+12
gap8 3.1e4+04 2.4e-04 | 1.1e4+09 1.1e4+09 | 4.6e+12 4.6e+12
gap9 2.7e4+04  2.6e-03 | 3.2e4+09 3.2e409 | 1.3e4+12 1.3e+12
gapl0 | 3.1e4+04 4.2e-03 | 8.5e+08 8.5e408 | 2.0e+11 2.0e+11
gapll | 3.2e4+04 2.6e-04 | 4.3e+09 4.3e+09 | 1.7e4+13 1.7e+13
gapl2 | 2.8e+04 6.7e-03 | 1.9e+09 1.9e+409 | 2.9e+11 2.9e+11
gapld | 2.5e+04 1.1e-03 | 6.9e+08 6.9e408 | 6.1e+11 6.1e+11
gapld | 2.4e+04 6.4e-03 | 9.8e+08 9.8e408 | 1.5e+11 1.5e+11
gapld | 2.5e+04 2.8e-04 | 2.1e+09 2.1e409 | 7.2e4+12 7.2e+412
gapl6 | 2.4e+04 3.1e-03 | 5.0e+09 5.0e4+09 | 1.6e+12 1.6e+12
gapl7 | 2.4e+04 2.4e-04 | 7.1e+08 7.1e408 | 3.0e+12 3.0e+12
gapl8 | 2.1e4+04 3.0e-04 | 7.1e+08 7.1e408 | 2.3e+12 2.3e+12
gapl9 | 2.5e+04 5.1e-03 | 1.9e+09 1.9e+409 | 3.7e+11 3.7e+11
gap20 | 2.0e+04 4.2e-03 | 1.4e4+09 1.4e+409 | 3.3e+11 3.3e+11
gap2l | 1.6e+04 1.1e-03 | 4.1e+09 4.1e409 | 3.7e4+12 3.7e+12
gap22 | 2.3e+04 4.0e-03 | 7.0e+08 7.0e4+08 | 1.7e+11 1.7e+11
gap23 | 1.5e+04 1.9e-03 | 4.5e+09 4.5e+09 | 2.3e+12 2.3e+12
gap24 | 1.5e4+04 8.0e-03 ? | 4.4e4+09 4.4e4+09 | 5.de+11 5.de+11

Table 4.3: Renegar’s condition number on SDPswith complementarity gaps.
from [6]: (pp(d)) - distance to primal infeasibility; (pp(d)) - distance to dual infeasibil-
ity; (||d|l, |d]|) - lower and upper bounds of the norm of the data; (C(d);, C(d),) - lower

and upper bounds on Renegar’s condition number, C(d) =
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Figure 4.10: Scatter plots of g;, g5, k versus # iterations for SDPLIB instances with attained
tolerance < 1077.

5 Conclusion

We have presented an algorithm for generating hard SDP instances, i.e. problem instances
where we can control the strict complementarity gap, g. We then tested several measures
on randomly generated instances. The tests confirm the intuitive expectation: The number
of iterations for interior-point methods are closely related to the size of the complementarity
gaps. In addition, we tested three measures ¢, g5, and & on the generated hard SDP instances.
These measures ¢g;, gs generally provide accurate measurement of the strict complementarity
gaps; with the measure g, being more consistent. All three measures are negatively affected
by inaccurate solution estimates.

We also tested the aggregated geometrical measure and Renegar’s condition number
on the generated hard SDP instances; and, we did not find any correlation between them
and the size of the complementarity gaps. It appears that these geometric measures are
more closely related to distance to infeasibility, i.e. strict feasiblity. One class of generated
hard SDP instances have consistently large aggregate geometrical measure and large Renegar
condition number, despite having different complementarity gap values.

Finally, we used the SDPLIB test set but had trouble coming to any concrete conclusions
since the approximate solutions we found were not accurate enough. We hope to obtain
improved solutions and redo these tests in the future.
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