\documentclass{slides} \pagestyle{plain} \setlength{\textheight}{5.3in} \setlength{\textwidth}{5.35in} \newcommand{\F}{{\cal F}} \newcommand{\Kprod}{\otimes} \newcommand{\Diag}{\rm Diag\,} \newcommand{\Sn}{{\cal S}_n} \newcommand{\tran}{^T} \newcommand{\diag}{\rm diag\,} \newcommand{\tr}{\rm trace\,} \newcommand{\trace}{\rm trace\,} \newcommand{\svec}{{\rm svec\,}} \newcommand{\sMat}{{\rm sMat\,}} \newcommand{\hMat}{{\rm hMat\,}} \newcommand{\dsvec}{{\rm dsvec\,}} \newcommand{\sdiag}{{\rm sdiag\,}} \newcommand{\vsMat}{{\rm vsMat\,}} \newcommand{\kvec}{{\rm vec\,}} \newcommand{\kmat}{{\rm Mat\,}} \newcommand{\beq}{\begin{equation}} \newcommand{\eeq}{\end{equation}} \newcommand{\nc}{\newcommand} \nc{\Hcal}{{\cal H}} %\renewcommand{\leftmargin}{-.5in} \newcommand{\rank}{{\rm rank\,}} \newcommand{\p}{{\cal P}} \newcommand{\trian}{{\rm trian\,}} \newcommand{\Trian}{{\rm Trian\,}} \newcommand{\BoDiag}{{\rm B^0Diag\,}} \newcommand{\OoDiag}{{\rm O^0Diag\,}} \newcommand{\arrow}{{\rm arrow\,}} \newcommand{\Arrow}{{\rm Arrow\,}} \newcommand{\bodiag}{{\rm b^0diag\,}} \newcommand{\oodiag}{{\rm o^0diag\,}} \newcommand{\ck}{{\cal C}_k} \newcommand{\dk}{{\cal D}_k} \newcommand{\uu}{{\cal U}} \newcommand{\uk}{{\cal U}_k} \newcommand{\vk}{{\cal V}_k} \newcommand{\wk}{{\cal W}_k} \newcommand{\wm}{{\cal W}_m} \newcommand{\w}{{\cal W}} \newcommand{\wks}{{\cal W}^s_k} \newcommand{\wms}{{\cal W}^s_m} \newcommand{\zk}{{\cal Z}_k} \newcommand{\zks}{{\cal Z}^s_k} \newcommand{\z}{{\cal Z}} \newcommand{\n}{{\cal N}} \newcommand{\ra}{{\cal R}} \newcommand{\q}{{\cal Q}} \newcommand{\s}{{\cal S}_n} \newcommand{\m}{{\cal M}_{n}} \newcommand{\req}[1]{(\ref{#1})} \newcommand{\adj}{{\rm adj\,}} \newcommand{\relint}{{\rm relint\,}} \def\QED{~\rule[-1pt] {8pt}{8pt}\par\medskip ~~} \begin{document} %======================= %======================= \begin{slide}{} \begin{center} {\bf Is Lagrangian (SDP) Relaxation Best for Quadratic Optimization? } \end{center} ~~\\ ~~\\ ~~\\ ~~\\ ~~\\ ~~\\ Henry Wolkowicz \\ University of Waterloo\\ ~\\ ~\\ \end{slide} \begin{slide}{} %\large{ \begin{center} {\bf OUTLINE} \end{center} %} \begin{enumerate} \item[$\bullet$] Quadratically constrained quadratic program, QQP. \item[$\bullet$] Special case of Max-Cut, MC, problem:\\ equivalent bounds to Lagrangian (SDP) relaxation\\ redundant constraints \item[$\bullet$] SDP equivalent to Lagrangian relaxation for QQPs. \item[$\bullet$] Theme (or conjecture): {\em Lagrangian relaxation is best} \item[$\bullet$] zero duality gap for nonconvex problems \end{enumerate} \end{slide} \begin{slide}{} \begin{center} {\bf QQP} \end{center} \[ q_i(x) : = x^TQ_ix+2g_i^Tx +\alpha_i, \quad Q_i=Q_i^T \] \[ (\mbox{QQP}_x) \begin{array}{rcl} q^*:= & \min & q_0(x)\\ &{\rm subject~to} & q_k(x) \leq 0\\ && k \in {\cal I} :=\{1, \ldots , m\}\\ && x \in \Re^n \end{array} \] Lagrangian of QQP$_x$ \[ L(x,\lambda):= q_0(x) + \sum_{k \in {\cal I} } \lambda_k q_k(x), \] $\lambda=(\lambda_k) \geq 0$ are nonnegative Lagrange multipliers. \end{slide} \begin{slide}{} {\bf Lagrange multipliers - two uses.} 1. Classical: if a CQ holds at optimum $\bar{x}$, then the KKT necessary conditions for optimality hold \begin{eqnarray*} \bar{\lambda} \geq 0, \nabla L(\bar{x},\bar{\lambda})=0\\ \bar{x} \mbox{ feasible }\\ \bar{\lambda}_k q_k(\bar{x})=0, \forall k \in {\cal I} \end{eqnarray*} If the Lagrangian at $\bar{\lambda}$ is also convex in $x$, then KKT sufficient for optimality. 2. Lagrangian Relaxation (duality): \[ q^* \geq d^*:= \max\limits_{\lambda \geq 0} \min_x q_0(x) + \sum_{k \in {\cal I} } \lambda_k q_k(x). \] \end{slide} \begin{slide}{} Zero duality gap holds if $q^*=d^*.$ Strong duality holds if $q^*=d^*$ and also $d^*$ is attained. Moreover, $d^*$ can be efficiently evaluated using SDP. Questions:\\ $\bullet$Can one do better than the Lagrangian relaxation?\\ $\bullet$When does a zero duality gap hold?\\ $\bullet$What redundant constraints can be added to close the duality gap? \end{slide} \begin{slide}{} \begin{center} Semidefinite Programming\\ looks just like\\ Linear Programming \end{center} \[ {\bf (P)} \begin{array}{cccc} p^*= & \mbox{sup} &c^tx \\ & \mbox{s.t.} & Ax \preceq b&(b-Ax \in \p)\\ && x \in \Re^m \end{array} \] $\preceq$ denotes the L{\"{o}}wner partial order \[ A : \Re^m \rightarrow {\cal S}_n, ~n \times n ~\mbox{symmetric matrices} \] $\p$, ~~cone of positive semidefinite matrices \begin{center} replaces \end{center} $\Re^n_+,$ ~~the nonnegative orthant \end{slide} \begin{slide}{} payoff function player $X$ to player $Y$ \[ L(x,U) := \left< U,b\right> +x^t(c-A^*U) \] The dual is obtained from the optimal strategy of the competing player \[p^* = \max_x\min_{U \succeq 0}L(x,U) \leq d^* =\min_{U \succeq 0} \max_x L(x,U) \] The hidden constraint $c-A^*U=0$ yields the dual \[ {\bf (D)} \begin{array}{ccc} d^*=& \inf &\tr bU \\ & \mbox{s.t.} & A^*U = c \\ && U \succeq 0. \end{array} \] for the primal \[ {\bf (P)} \begin{array}{ccc} p^*= & \mbox{sup} &c^tx \\ & \mbox{s.t.} & Ax \preceq b\\ && x \in \Re^m \end{array} \] \end{slide} \begin{slide}{} Characterization of optimality for the\\ dual pair $x,U$ \[ \begin{array}{cc} Ax \preceq b & \mbox{primal feasibility}\\ ~\\ A^*U = c & \mbox{dual feasibility}\\ ~\\ U \circ (Ax -b) = 0e & \mbox{complementary slackness} \end{array} \] \[ U \circ (Ax -b) = \mu e ~~~~~ \mbox{perturbed} \] Forms the basis for:\\ ~~\\ primal simplex method\\ dual simplex method\\ interior point methods \end{slide} \begin{slide}{} \underline{Example} If the primal is \[ {\bf (P)} \begin{array}{ccc} p^*= & \mbox{sup} &x_2 \\ & \mbox{s. t.} & \left[ \begin{array}{ccc} x_2 & 0 & 0\\ 0 & x_1 & x_2\\ 0 & x_2 & 0 \end{array} \right] \preceq \left[ \begin{array}{ccc} 1 & 0 & 0\\ 0 & 0 & 0\\ 0 & 0 & 0 \end{array} \right] \end{array} \] then the dual is \[ {\bf (D)} \begin{array}{ccc} d^*=& \inf &\tr U_{11}\\ & \mbox{s. t.} & U_{22}=0 \\ & & U_{11}+2U_{23}=1 \\ && U \succeq 0. \end{array} \] Then $p^*=0 < d^*=1.$ \end{slide} \begin{slide}{} {\bf Why use SEMIDEFINITE PROGRAMMING?} Quadratic approximations are better than linear approximations. {\bf Quadratic approximations are too hard to solve!} But, we can solve relaxations of quadratic approximations efficiently using semidefinite programming. \end{slide} \begin{slide}{} \begin{center} APPLICATIONS \end{center} \begin{enumerate} \item Finding bounds and good feasible solutions for hard combinatorial problems such as: \begin{enumerate} \item max-cut; \item graph partitioning; \item quadratic assignment problem; \item max-clique. \end{enumerate} \item Unconstrained and constrained optimization techniques, e.g. \begin{enumerate} \item quasi-Newton updates that preserve positive definiteness. \item Trust region algorithms for large scale minimization. \item Extended SQP techniques for constrained minimization. \end{enumerate} \item Partial Hermitian matrix completion problems. \item Min-max eigenvalue problems, matrix norm minimization, eigenvalue localization. \end{enumerate} \end{slide} \begin{slide}{} \begin{center} Max-Cut Problem \end{center} \[ \begin{array}{c} \max ~ \frac 12 \sum_{i