\documentclass{slides} \pagestyle{plain} \newcommand{\F}{\cal F} \newcommand{\Kprod}{\otimes} \newcommand{\Diag}{\rm Diag\,} \newcommand{\Sn}{{\cal S}_n} \newcommand{\tran}{^T} \newcommand{\diag}{\rm diag\,} \newcommand{\tr}{\rm trace\,} \newcommand{\trace}{\rm trace\,} \newcommand{\beq}{\begin{equation}} \def\QED{~\rule[-1pt] {8pt}{8pt}\par\medskip ~~} \begin{document} %======================= %======================= \begin{slide}{} \begin{center} {\bf Semidefinite Relaxations for Hard Combinatorial Problems } \end{center} ~~\\ ~~\\ ~~\\ ~~\\ ~~\\ ~~\\ Henry Wolkowicz \\ University of Waterloo\\ ~\\ ~\\ \end{slide} \begin{slide}{} Outline ????????? \end{slide} \begin{slide}{} {Problem Definition} \label{sect:probdef} Suppose that $G=(V,E)$ is an undirected graph with edge set $V = \{v_i\}_{i=1}^n$ and weights $w_{ij}$ on the edges $(v_i,v_j) \in E$. The {\em max-cut problem} consists in finding the index set ${\cal I} \subset \{1,2, \ldots n\},$ to maximize the weight of the edges with one end point with index in ${\cal I}$ and the other in the complement. This is equivalent to the following discrete optimization problem with a quadratic objective. \[ (MC)~~~ \begin{array}{c} \max ~ \frac 12 \sum_{i