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Linear Programming (A : ℜm → ℜn)

ℜn
+ is a closed convex cone

(P)

p∗ = sup ctx

s.t. Ax � b (b− Ax ∈ ℜn
+)

x ∈ ℜm

Lagrangian (payoff function):

L(x, U) = ctx+ 〈U, b−Ax〉

p∗ = max
x

min
U�0

L(x, U)

(the constraint U � 0 is needed to recover

the hidden constraint Ax � b.)
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The dual is obtained from the optimal strat-

egy of the competing player

p∗ ≤ d∗ = min
U�0

max
x

L(x, U) = 〈U, b〉+xt(c−A∗U)

The hidden constraint c− A∗U = 0 yields the

dual

(D)
d∗ = inf trace bU

s.t. A∗U = c

U � 0.

for the primal

(P)
p∗ = sup ctx

s.t. Ax � b

x ∈ ℜm
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If Slater’s condition fails for the primal LP,

then there are an infinite number of different

dual programs.

The implicit equality constraints are:

Aex = be

where A =

[

Al

Ae

]

(D)

d∗ = inf trace bU
s.t. A∗

lUl +A∗
eUe = c

U ∈ U
{U : U � 0} ⊂ U

U ⊂ {U : Ul � 0, Ue free} .

for the equivalent primal program

(P)

p∗ = sup ctx

s.t. Alx � bl
Aex = be
x ∈ ℜm
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DUALITY THEOREM

1. If one of the problems is inconsistent, then

the other is inconsistent or unbounded.

2. WEAK DUALITY

Let the two problems be consistent, and

let x0 be a feasible solution for P and U0

be a feasible solution for D. Then

ctx0 ≤
〈

b, U0
〉

.

3. STRONG DUALITY

If both P and D are consistent, then they

have optimal solutions and their optimal

values are equal.
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4. COMPLEMENTARY SLACKNESS

Let x0 and U0 be feasible solutions of P

and D, respectively. Then x0 and U0 are

optimal if and only if
〈

U0, (b−Ax0)
〉

= 0.

if and only if

U0 ◦ (b− Ax0) = 0.

5. SADDLE POINT

The vectors x0, U0 are optimal solutions

of P and D, respectively, if and only if

(x0, U0) is a saddle point of the Lagrangian

L(x, U) for all (x,U),

L(x, U0) ≤ L(x0, U0) ≤ L(x0, U)

and then

L(x0, U0) = ctx0 =
〈

b, U0
〉

.



Characterization of optimality for the

dual pair x,U

Ax � b primal feasibility

A∗U = c dual feasibility

U ◦ (Ax− b) = 0e complementary slackness

U ◦ (Ax− b) = µe perturbed

Forms the basis for:

primal simplex method

dual simplex method

interior point methods
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What is SEMIDEFINITE PROGRAMMING?

Why use it?

Quadratic approximations are better than lin-

ear approximations. And, we can solve relax-

ations of quadratic approximations efficiently

using semidefinite programming.
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How does SDP arise from quadratic approxi-

mations?

Let

qi(y) =
1

2
ytQiy + ytbi + ci, y ∈ ℜn

(QQP)
q∗ = min q0(y)

s.t. qi(y) = 0
i = 1, . . .m

Lagrangian:

L(y, x) = 1
2y

t(Q0 −
∑m

i=1 xiQi)y

+yt(b0 −
∑m

i=1 xibi)
+(c0 −

∑m
i=1 xici)

q∗ = min
y

max
x

L(y, x) ≥ d∗ = max
x

min
y

L(y, x).

homogenize

y0y
t(b0 −

m
∑

i=1

xibi), y20 = 1.
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d∗ = maxxminy L(y, x)

= maxx min
y20=1

1
2y

t(Q0 −
∑m

i=1 xiQi)y (+ty20)

+y0y
t(b0 −

∑m
i=1 xibi)

+(c0 −
∑m

i=1 xici) (−t)

The hidden semidefinite constraint yields the

semidefinite program, i.e. we get

A : ℜm+1 → Sn+1

B =

(

0 bt0
b0 Q0

)

, A

(

t

x

)

=

[

−t
∑m

i=1 xib
t
i

∑m
i=1 xibi

∑m
i=1 xiQi

]

B −A

(

t

x

)

� 0.
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The dual program is equivalent to the SDP

(with c0 = 0)

(D)

d∗ = sup −
∑m

i=1 xici − t

s.t. A

(

t

x

)

� B

x ∈ ℜm, t ∈ ℜ

As in linear programming, the dual is obtained

from the optimal strategy of the competing

player:

(DD)

d∗ = inf traceBU

s.t. A∗U =

(

−1
−c

)

U � 0.
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Example

If the primal is

(P)

p∗ = sup x2

s. t.







x2 0 0
0 x1 x2
0 x2 0





 �







1 0 0
0 0 0
0 0 0







then the dual is

(D)

d∗ = inf traceU11
s. t. U22 = 0

U11 +2U23 = 1
U � 0.

Then p∗ = 0 < d∗ = 1.
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What is a proper duality theory?

Do duality gaps occur in practice?

Are there an infinite number of duals if

Slater’s condition fails?
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the cone T ⊂ K is a face of the cone K,

denoted T ✁K, if

x, y ∈ K, x+ y ∈ T ⇒ x, y ∈ T.

Each face, K ✁ P, is characterized by a sub-

space, S ⊂ ℜn.

K = {X ∈ P : N (X) ⊃ S}.

Moreover,

relintK = {X ∈ P : N (X) = S}.

The complementary face of K is Kc = K⊥∩P

Kc = {X ∈ P : N (X) ⊃ S⊥}.

Moreover,

relintKc = {X ∈ P : N (X) = S⊥}.
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the face K (respectively, Kc) is determined

by the supporting hyperplane corresponding

to any X ∈ relintKc (respectively, relintK);

and

XY = 0,∀X ∈ K,Y ∈ Kc
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The minimal cone of P is defined as

Pf = ∩{faces of P containing (b−A(F))}.

Therefore, an equivalent program is the reg-

ularized P program

(RP)
p∗ = max ctx

s.t. Ax �Pf b

x ∈ ℜm.

there exists x such that b − Ax ∈ relintPf .

(generalized Slater’s constraint qualification)

strong duality pair is RP and

(DRP)

p∗ = min trace bU
s.t. A∗U = c

U �(Pf)+ 0.
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Find Pf? Properties?

LEMMA 1

Suppose Pf
✁K ✁ P. Then the system

A∗U = 0, U �K+ 0, traceUb = 0

is consistent only if

the minimal cone Pf ⊂ {U}⊥ ∩K.

PROOF

Since traceU(Ax − b) = 0, for all x, we get

A(F)− b ⊂ U⊥, i.e. Pf ⊂ {U}⊥.

✷

LEMMA 2 (surprising)

Suppose that K ✁ P. Then

P+ +K⊥ is closed.

✷
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Define: P0 := P and

U1 := {U �(P0)
+ 0 : A∗U = 0, traceUb = 0}

Choose U1 ∈ U1 ∩ relintUf
1 (if 0 - STOP)

P1 := Uc
1 = {U1}

⊥ ∩ P0 ✁ P0

———————–

(RP1)

p∗ = max ctx

s.t. Ax �P1
b

x ∈ ℜm.

—————— p∗ ≤ d∗1 ≤ d∗ ——————-

(DRP1)

d∗1 = min trace bU
s.t. A∗U = c

U �(P1)
+ 0.

——- (P1)
+ = (P ∩P1)

+ = P +(P1)
⊥ ——-

(ELSD1)

d∗1 = min trace b(U + (W +W t))

s.t. A∗(U + (W +W t)) = c

A∗U1 = 0, traceU1b = 0

U � 0,

[

I W t

W U1

]

� 0.
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We used

P⊥
1 =

{

(W +W t) : A∗U1 = 0, traceU1b = 0,
[

I W t

W U1

]

� 0

}

and

U1 � WW t iff

[

I W t

W U1

]

� 0

implies W = U1H, for some matrix H
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U2 := {U �(P1)
+ 0 : A∗U = 0, traceUb = 0}

= {U + Z : A∗(U + Z) = 0, traceUb = 0,

U �(P0)
+, Z ∈ (P1)

⊥}

Choose U2 ∈ U2 ∩ relintUf
2 (if 0 - STOP)

P2 := Uc
2 = {U2}

⊥ ∩ P1 ✁ P1
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(RP2)

p∗ = max ctx

s.t. Ax �P2
b

x ∈ ℜm.

————–p∗ ≤ d∗2 ≤ d∗1 ≤ d∗————-

(DRP2)

d∗2 = min trace bU
s.t. A∗U = c

U �(P2)
+ 0.

——–(P2)
+ = (P ∩ P2)

+ = P + (P2)
⊥——-

(ELSD2)

d∗1 = min trace b(U + (W +W t))

s.t. A∗(U + (W +W t)) = c

A∗U1 = 0, traceU1b = 0

A∗(U2 + (W1 +W t
1)) = 0,

trace (U2 + (W1 +W t
1))b = 0

U � 0,

[

I W t
1

W1 U1

]

� 0
[

I W t

W U2

]

� 0.
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HOMOGENIZATION

Alternate view of optimality conditions

(HP)
0 = max ctx+ t(−p∗)

subject to Ax+ t(−b) + Z = 0
w ∈ K = ℜm ⊗ℜ+ ⊗P

This defines the objective, constraints, and

variables:

(= 〈a, w〉)
(Bw = 0)






w =







x

t

Z













the feasible set is

FH = N (B) ∩K,

Bw = 0, w ∈ K implies 〈a, w〉 ≤ 0.
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Optimality conditions:

a =







c

−p

0






∈ −(N (B) ∩K)+.







−c

p

0






∈ R(B∗) +K+,

WCQ - Weakest Constraint Qualification:

CLOSURE HOLDS
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Conditions for closure:

If C,D are closed convex sets and the in-

tersection of their recession cones is empty,

then D − C is closed.

cone(FH −K) is the whole space

(Slater’s)

∃x̂ ∈ F such that Ax̂ ≺ b.

FIX: Find sets, T , to add to attain the clo-

sure. Equivalently, find sets, C, C+ = T , to

intersect with K to attain the closure since

(N (A) ∩ (K ∩ C))+ = R(A∗) +K+ + C+.
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