Linear Programming:

Part (i): Strict Feasibility and Degeneracy

Part (ii): Best Approximation and

Exterior Point Path Following

Prof. Henry Wolkowicz hwolkowicz@uwaterloo.ca

Monday 11:15AM, April 10, 2023, in M103

at:

LP Part (i): Strict Feasibility and Degeneracy

Henry Wolkowicz

Dept. Comb. and Opt., University of Waterloo, Canada

Monday 11:15AM, April 10, 2023, in M103

at:

joint work with: Jiyoung Im, Univ. of Waterloo

Motivation/Main Results

Background

- Currently: simplex and interior point methods are most popular algorithms for solving linear programs, LPs.
- Unlike general conic programs, (finite) LPs do not require strict feasibility for strong duality. Hence strict feasibility (no variable fixed at zero; one type of degeneracy) is often less emphasized.

History Degeneracy

- techniques for resolving degeneracy:
 - (symbolic) perturbation Charnes '52 [10];
 - lexicographic Dantzig-Orden-Wolfe '55 [14];
 - modified lexicographic Wolfe '63 [38] (more efficient Ryan-Osborne '88 [32]);
 - Bland finite pivoting rule 77 [5] (simple/less efficient)
- Megiddo '86 [26]: "exiting degenerate vertex as hard as solving general LP"

Motivation cont...

We show that lack of strict feasibility:

- causes numerical difficulties in both simplex and interior point methods.
- 2 and \implies all basic feasible solutions, BFS, are degenerate

We introduce:

- the notion of implicit singularity when strict feasibility fails;
- an extension of Phase-I of simplex method for the two part preprocessing for strict feasibility

4

Background and Notation

Feasible LPs; standard form (with <u>FINITE</u> opt. value)

$$(\mathcal{P})$$
 (finite) $p^* = \min_{x} c^T x$
s.t. $Ax = b \in \mathbb{R}^m$
 $x \in \mathbb{R}^n_+$

assume wlog rank (A) = m;

with feasible set: $\mathcal{F} = \{x \in \mathbb{R}^n : Ax = b, x \geq 0\}$

Dual LP

(D)
$$p^* = d^* = \max_{\mathbf{s.t.}} b^T y$$

s.t. $A^T y \le c \in \mathbb{R}^n$
 $y \in \mathbb{R}^m$

(equivalently $A^T y + s = c, s \ge 0$ slack)

History: Kantorovich; Dantzig, Karmarkar

Kantorovich '39, USSR, WWII

- transportation models and optimal solutions (algorithm)
- helped NKVD with transportation problems

Dantzig '47, USA, SIMPLEX METHOD

- following duality/game-theory by Von Neumann
- Hotelling: "but the world is nonlinear"
- Von Neumann: "if you have a linear model, you can now solve it"
- SIAM survey 1970's: 70% of ALL world computer time is spent on the simplex method

Karmarkar '84, Interior Point Revolution

- Lustig-Marsten-Shanno OB1 code '90; large went from: $(m = 1e3 \times n = 1e4)$ to $(m = 1e5 \times n = 1e7)$
- to modern day: $(m = 1e6 \times n = 1e10)$

Strict Feasibility, Slater, Mangasarian-Fromovitz CQ

Feasible LPs; standard form (with <u>FINITE</u> opt. value)

$$(\mathcal{P})$$
 (finite) $p^* = \min_{\substack{x \in \mathbb{R}^m \\ x \in \mathbb{R}^n_+}} c^T x$

there exists \hat{x} with $A\hat{x} = b, \hat{x} > 0$ (MFCQ)

Dual LP

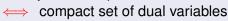
(D)
$$p^* = d^* = \max_{\mathbf{s.t.}} b^T y$$

s.t. $A^T y \le c \in \mathbb{R}^n$
 $y \in \mathbb{R}^m$

there exists \hat{y} with $A^T \hat{y} < c$ (Slater CQ)

Stability: MFCQ/Slater 🛶

stability wrt RHS perturbations



Basic (Feasible/Degenerate) Solutions

Definition (basic (feasible) solution)

• Given: $x \in \mathbb{R}^n$, Ax = b and $\mathcal{B} \subset \{1, ..., n\}$, $|\mathcal{B}| = m$; let $\mathcal{N} = \{1 ... n\} \setminus \mathcal{B}$.

Then x is a basic solution if

$$A(:,\mathcal{B})$$
 is nonsingular and $x_i = 0, \ \forall i \in \mathcal{N}$

• x is a basic <u>feasible</u> solution, BFS, if in addition $x \ge 0$. It is <u>degenerate</u>, if $\exists i \in \mathcal{B}, x_i = 0$

Equivalently, if $Ax = b, x \ge 0$ (feasible):

x is basic if there exists

$$\mathcal{N} \subset \{1,\ldots,n\}, |\mathcal{N}| = n-m, x_i = 0, \forall i \in \mathcal{N};$$

and the corresponding matrix of active constraints

$$\begin{bmatrix} A \\ I_{\mathcal{N}} \end{bmatrix}$$
 is nonsingular.

It is degenerate if there are redundant active constraints.

Two Kinds of Degeneracy

Definition (Degenerate BFS)

x BFS is $\begin{cases} \text{nondegenerate}, & \text{if } x_i > 0, \ \forall i \in \mathcal{B}, \\ \text{degenerate}, & \text{otherwise} \end{cases}$

Definition (variable fixed at 0)

Let $i_0 \in \mathcal{I} = \{1, \dots, n\}$. x_{i_0} is fixed at 0 if $x_{i_0} = 0, \forall x \in \mathcal{F}$. Let

$$\mathcal{I}^{=} = \{i \in \mathcal{I} : x_i \text{ is fixed at } 0\}, \, \mathcal{I}^{<} = \mathcal{I} \setminus \mathcal{I}^{=}$$

\bar{x} a degenerate BFS with basis \mathcal{B} is of type:

- **②** if: there exists $i \in \mathcal{B} \cap \mathcal{I}^=$

Below we see that:

if $\mathcal{I}^{=} \neq \emptyset$, then ALL BFS are of Type 2.

Facial Reduction, FR, for LPs that fail Strict Feasibility

Two Steps

- obtain an equivalent problem with strict feasibility;
- recover full-row rank for the constraint matrix (always needed for MFCQ)

Definition (Face of a convex set K)

A convex set $F \subseteq K \subseteq \mathbb{R}^n$ is a face of K, denoted $F \subseteq K$, if $y, z \in K, x = \frac{1}{2}(y+z) \in F \implies y, z \in F$.

The minimal face for F, face(F), is the intersection of all faces of K containing C.

faces of \mathbb{R}^n_+ , nonnegative orthant

for fixed indices
$$\hat{\mathcal{I}} \subseteq \{1, \dots, n\}$$

 $F = \{x \in \mathbb{R}_+^n : x_i = 0, \forall i \in \hat{\mathcal{I}}\}$

Facial Reduction; Basics

Theorem (DW: [15, Theorem 3.1.3] Theorem of the Alternative)

For the feasible system ${\cal F}$ of the LP, exactly one of the following statements holds:

- **1** There exists $x \in \mathbb{R}^n_{++}$ with Ax = b, i.e., strict feasibility holds;
- 2 There exists $y \in \mathbb{R}^m$ such that

(*)
$$0 \neq \mathbf{z} := A^T y \in \mathbb{R}_+^m$$
, and $\langle b, y \rangle = 0$,

exposing vector $\mathbf{z} \in \mathbb{R}^n_+$

(*) is equivalent to:

exposing vector $0 \neq z \geq 0$ exists for the minimal face containing the feasible set, i.e.,

$$x \in \mathcal{F} \iff Ax = b, x \ge 0$$

 $\Rightarrow \langle \mathbf{z}, \mathbf{x} \rangle = \langle \mathbf{A}^T \mathbf{y}, \mathbf{x} \rangle = \langle \mathbf{y}, \mathbf{A} \mathbf{x} \rangle = \langle \mathbf{y}, \mathbf{b} \rangle = 0$

11

Facial Reduction two steps; Outline

suppose strict feasibility fails; i.e., get exposing vector z

1 Thm of Alternative implies: $\exists 0 \leq \mathbf{z} = \mathbf{A}^T \mathbf{y} \in \mathbb{R}^m$:

$$x \in \mathcal{F} \implies 0 \le \langle x, \mathbf{z} \rangle = \langle x, A^T y \rangle = \langle Ax, y \rangle = \langle b, y \rangle = 0$$
 $\implies 0 = x \circ \mathbf{z}$
 $\iff 0 = x_j \mathbf{z}_j = 0, \forall j$
yields complementary unit vectors \mathbf{e}_k

cardinality of support of z: $s_z = |\{i : z_i > 0\}|$

$$\mathbf{z} = \sum_{j=1}^{5\mathbf{z}} \mathbf{z}_{t_j} e_{t_j}, t_j \text{ nondecreasing order}$$

$$x = \sum_{j=1}^{n-s_2} x_{s_j} e_{s_j}$$
, s_j nondecreasing order.

$$V = \begin{bmatrix} e_{s_1} & e_{s_2} & \dots & e_{s_{n-s_z}} \end{bmatrix} \in \mathbb{R}^{n \times (n-s_z)}, \quad Vz = 0.$$

3
$$\mathcal{F} = \{x \in \mathbb{R}^n_+ : Ax = b\} = \{x = Vv \in \mathbb{R}^n : AVv = b, v \in \mathbb{R}^{n-s_2}_+\}$$

1 Recover full row rank: $A \leftarrow P_{\bar{m}}AV, b \leftarrow P_{\bar{m}}b$

Facial Reduction, FR; Two Steps

matrix $V \in \mathbb{R}^{n \times (n-s_z)}$, facial range vector

Every facial reduction step yields at least one redundant constraint, BW: [8],IW: [21, Lemma 2.7],S: [36, Section 3.5].

Lemma (step 2: redundant constraint)

Consider the facially reduced feasible set

$$\mathcal{F}_r = \left\{ v : AVv = b, v \in \mathbb{R}^{n-s_z}_+
ight\}.$$

Then at least one linear constraint of the LP is redundant.

Proof.

Let: $0 \neq \mathbf{z} = A^T y \geq 0$ exposing vector; V corresponding facial range vector; Then:

$$0 = V^T z = V^T A^T y = (AV)^T y = \sum_{i=1}^m y_i ((AV)^T)_i$$

Since $0 \neq y \in \mathbb{R}^m$, the rows of AV are linearly dependent.

Summary FR

Result of full two step FR: strict feas.; full rank

$$\mathcal{F} = \{ x \in \mathbb{R}_{+}^{n} : Ax = b \}
= \{ x = Vv \in \mathbb{R}^{n} : \bar{A}v := (P_{\bar{m}}AV)v = (P_{\bar{m}}b) =: \bar{b},
v \in \mathbb{R}_{+}^{n-s_{z}} \}$$

- after substit: $\min(V^T c)^T v$ s.t. $\bar{A}v = \bar{v}, \ v \in \mathbb{R}^{n-s_z}_+$
- $\exists \hat{\mathbf{v}} > \mathbf{0}, \bar{A}\hat{\mathbf{v}} = \bar{b}$ (MFCQ)
- full rank $\bar{A} = P_{\bar{m}}AV$: $P_{\bar{m}} : \mathbb{R}^m \to \mathbb{R}^{\bar{m}}$, $\bar{m} = \operatorname{rank}(AV) < m$. $P_{\bar{m}}$ is projection that chooses the linearly independent rows of AV.
- BOTH # variables, # constraints are strictly reduced.

This emphasizes the ILL-CONDITIONING of problems where strict feasibility fails, i.e., Implicit singularity is eliminated using FR.

1/

Facial Reduction, FR

a journey to reformulate a problem until strict feasibility is met

Facial Reduction, FR

a journey to reformulate a problem until strict feasibility is met

Solve the auxiliary system:

Find
$$y \in \mathbb{R}^m$$
 s.t. $A^T y \in \mathbb{R}^n_+ \setminus \{0\}$, $\langle b, y \rangle = 0$
Set $V = I(:, \text{supp}(A^T y)^c)$
 $x \leftarrow Vv$
 $\mathcal{F} \leftarrow \{v > 0 : (AV)v = b\}$

Facial Reduction, FR

a journey to reformulate a problem until strict feasibility is met

[STEP 1]

Solve the auxiliary system:

Find
$$y \in \mathbb{R}^m$$
 s.t. $A^T y \in \mathbb{R}^n_+ \setminus \{0\},\$
 $\langle b, y \rangle = 0$

Set
$$V = I(:, \operatorname{supp}(A^T y)^c)$$

$$x \leftarrow Vv$$

$$\mathcal{F} \leftarrow \{v \geq 0 : (AV)v = b\}$$

[STEP 2]

Any nontrivial FR

discovery of redundant equalities

Use $P_{\bar{m}}$ to discard redundancies

$$\mathcal{F} \leftarrow \{v \geq 0 : P_{\tilde{m}}AV(v) = P_{\tilde{m}}b\}$$

Facial Reduction, FR

a journey to reformulate a problem until strict feasibility is met

[STEP 1]

Solve the auxiliary system:

Find
$$y \in \mathbb{R}^m$$
 s.t. $A^T y \in \mathbb{R}^n_+ \setminus \{0\},\ \langle b, y \rangle = 0$

Set
$$V = I(:, \operatorname{supp}(A^T y)^c)$$

$$x \leftarrow Vv$$

$$\mathcal{F} \leftarrow \{v \geq 0 : (AV)v = b\}$$

[STEP 2]

Any nontrivial FR

discovery of redundant equalities

Use $P_{\bar{m}}$ to discard redundancies

$$\mathcal{F} \leftarrow \{ v \geq 0 : P_{\bar{m}}AV(v) = P_{\bar{m}}b \}$$

 $\begin{array}{c} \text{implicit loss of} \\ \longrightarrow \\ \text{surjectivity} \end{array}$

Example

Consider \mathcal{F} with the data

$$A = \begin{bmatrix} 1 & 1 & 3 & 5 & 2 \\ 0 & 1 & 2 & -2 & 2 \end{bmatrix}$$
 and $b = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$.

Set
$$y = \begin{pmatrix} 1 \\ -1 \end{pmatrix} \implies A^T y = \begin{pmatrix} 1 & 0 & 1 & 7 & 0 \end{pmatrix}^T \ge 0$$
 and $\langle b, y \rangle = 0$.

$$V = \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 1 \end{bmatrix}, \quad X \leftarrow Vv = \begin{pmatrix} 0 \\ v_1 \\ 0 \\ 0 \\ v_2 \end{pmatrix}, \quad Ax = b \leftarrow AVv = b \equiv \begin{bmatrix} 1 & 2 \\ 1 & 2 \end{bmatrix} v = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

(*) Side note

There are exactly six feasible bases in \mathcal{F} ; (BFS all degenerate)

•
$$\mathcal{B} \in \{\{1,2\},\{2,3\},\{2,4\}\} \text{ is } x = \begin{pmatrix} 0 & 1 & 0 & 0 & 0 \end{pmatrix}^T;$$

•
$$\mathcal{B} \in \{\{1,5\}, \{3,5\}, \{4,5\}\}\)$$
 is $x = \begin{bmatrix}0 & 0 & 0 & \frac{1}{2}\end{bmatrix}^T$.

Example

Consider \mathcal{F} with the data

$$A = \begin{bmatrix} 1 & 1 & 3 & 5 & 2 \\ 0 & 1 & 2 & -2 & 2 \end{bmatrix}$$
 and $b = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$.

Set
$$y = \begin{pmatrix} 1 \\ -1 \end{pmatrix} \implies A^T y = \begin{pmatrix} 1 & 0 & 1 & 7 & 0 \end{pmatrix}^T \ge 0 \text{ and } \langle b, y \rangle = 0.$$

$$V = \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 1 \end{bmatrix}, \quad X \leftarrow Vv = \begin{pmatrix} 0 \\ v_1 \\ 0 \\ v_2 \end{pmatrix}, \quad Ax = b \leftarrow AVv = b \equiv \begin{bmatrix} 1 & 2 \\ 1 & 2 \end{bmatrix} v = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

(*) Side note

There are exactly six feasible bases in \mathcal{F} ; (BFS all degenerate).

•
$$\mathcal{B} \in \{\{1,2\},\{2,3\},\{2,4\}\}\)$$
 is $\mathbf{x} = \begin{bmatrix}0 & 1 & 0 & 0 & 0\end{bmatrix}^T$;

•
$$\mathcal{B} \in \{\{1,5\},\{3,5\},\{4,5\}\}\$$
is $x = \begin{pmatrix} 0 & 0 & 0 & \frac{1}{2} \end{pmatrix}^T$.

Detect Redundancy

Recall:

Lemma (AV is rank deficient)

Consider the facially reduced feasible set

$$\mathcal{F}_r = \left\{ v : AVv = b, v \in \mathbb{R}^{n-s_z}_+
ight\}.$$

Then at least one linear equality of AVv = b is redundant.

(proof) Let $z = A^T y$ be the exposing vector, V be a facial range vector induced by z. Then

$$0 = V^T z = V^T A^T y = (AV)^T y.$$

Found a nontrival row combination of AV, i.e., detected redundancy

Definition (implicit problem singularity)

The implicit problem singularity (ips) = The number of implicit redundant equalities of \mathcal{F}

Detect Redundancy

Recall:

Lemma (AV is rank deficient)

Consider the facially reduced feasible set

$$\mathcal{F}_r = \left\{ v : AVv = b, v \in \mathbb{R}^{n-s_z}_+
ight\}.$$

Then at least one linear equality of AVv = b is redundant.

(proof) Let $z = A^T y$ be the exposing vector, V be a facial range vector induced by z. Then

$$0 = V^T z = V^T A^T y = (AV)^T y.$$

Found a nontrival row combination of AV, i.e., detected redundancy

Definition (implicit problem singularity)

The implicit problem singularity (ips) = The number of implicit redundant equalities of \mathcal{F}

Detect Redundancy

Recall:

Lemma (AV is rank deficient)

Consider the facially reduced feasible set

$$\mathcal{F}_r = \left\{ v : AVv = b, v \in \mathbb{R}^{n-s_z}_+
ight\}.$$

Then at least one linear equality of AVv = b is redundant.

(proof) Let $z = A^T y$ be the exposing vector, V be a facial range vector induced by z. Then

$$0 = V^T z = V^T A^T y = (AV)^T y.$$

Found a nontrival row combination of AV, i.e., detected redundancy

Definition (implicit problem singularity)

The implicit problem singularity (ips) = The number of implicit redundant equalities of \mathcal{F}

Singularity Degree $sd(\mathcal{F})$, Sturm '20 [37]

Definition (
$$d = sd(\mathcal{F}) = min |FR | steps|$$
)

Definition (Hölder regularity)

the pair of closed, convex subsets A, B is γ -Hölder regular if $\forall U$ compact, $\exists c > 0$ with:

$$\operatorname{dist}(x,A\cap B)\leq c\cdot \Big(\operatorname{dist}^{\gamma}(x,A)+\operatorname{dist}^{\gamma}(x,B)\Big) \qquad \text{ for all } x\in U.$$

Sturm [37] error bound Theorem for SDP, $\mathcal{F} = \mathcal{L} \cap \mathbb{S}^n_+$

 $(\mathcal{L}, \mathbb{S}^n_+)$ is $\frac{1}{2^d}$ -Hölder regular. (\mathcal{L} linear manifold)

- for LPs, FR in *one* iteration using maximal exposing vector, i.e., $d = sd(\mathcal{F}) \le 1$
- FR for LPs does not alter sparsity pattern of A. (only involves discarding columns of A; rows of A, b)

A Theoretical Result on degenerate BFS ↔ MFCQ

Theorem

^a Suppose that strict feasibility of $\mathcal F$ fails. Then every basic feasible solution, BFS, $x \in \mathcal F$ with basis $\mathcal B$ has $\mathcal B \cap \mathcal I^= \neq \emptyset$ and thus is degenerate.

^aContrapositive found in Bertsimas-Tsitsiklis book [4, Exer. 2.19].

Proof.

- $\mathcal{F} = \{x \in \mathbb{R}^n : AVv = b, \ v \in \mathbb{R}^{n-s_z}_+\}$, facial range vctr V
- wlog $V = \begin{bmatrix} I_r \\ 0 \end{bmatrix}$ and $r = n s_z$;
- recall by redundant constraint lemma: rank AV < m
- implies rank $A(:, \{1, ..., r\}) < m$
- BFS implies rank $A(:, \mathcal{B}) = m$; implies $\exists i \in \mathcal{B}, i > r$
- implies $\exists i \in \mathcal{B} \cap \mathcal{I}^=, x_i = 0$ (degeneracy)

Corollary, Stability, Converse

Corollary (contrapositive motivates phase I part 2)

If there exists a nondegenerate basic feasible solution, then there exists a strictly feasible point in \mathcal{F} .

Stability from above corollary

Recall: strict feasibility (and full rank, MFCQ) is equivalent to stability wrt RHS perturbations.

Example (converse fails; all BFS degenerate → MFCQ fails)

$$A = \begin{bmatrix} 1 & 0 & 2 & 0 & -2 \\ 1 & -3 & 2 & 1 & -2 \end{bmatrix}$$
; $b = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$, $0 < x = \frac{1}{10} \begin{pmatrix} 1 & 1 & 5.5 & 3 & 1 \end{pmatrix}^T$ 4 deg. feas. bases: $\mathcal{B} = \{\{1,2\},\{1,4\}: x = (1,0,0,0,0)^T$ $\mathcal{B} = \{2,3\},\{3,4\}: x = (0,0,1/2,0,0)^T$ (Also, the linear assignment problem is highly degenerate but has a strictly feasible point (average).)

20

Empirics for FR Preprocessing

We want to avoid implicit singularity

• improve conditioning, number of iterations

interior point methods

- Condition number of normal equation system
- stopping criteria

$$\mathsf{KKT} = \left(\frac{\|Ax^* - b\|}{1 + \|b\|}, \ \frac{\|A^Ty^* + s^* - c\|}{1 + \|c\|}, \ \frac{\langle x^*, s^* \rangle}{n}\right).$$

simplex methods (NETLIB data set)

• percentage of degenerate iterations

Interior Point Methods

Optimality Conditions at current $(x > 0, y, s > 0), \mu > 0$

$$X = \text{Diag}(x), S = \text{Diag}(s).$$

$$A^T \Delta y + \Delta s - c = 0$$
 dual feasibility
 $A \Delta x - b = 0$ primal feasibility
 $S \Delta x + X \Delta s = \mu e$ complementary slackness

After block elimination, solve normal equations for Δy

- Use Δs in eqn 1 to eliminate Δs in eqn 3.
- Solve for Δx in eqn 3 and eliminate it in eqn 2.
- We get the normal equations

$$AS^{-1}XA^{T}\Delta y = RHS.$$

• Backsolve for Δx , Δs to get the Newton direction.

Numerical Experiments with Interior Point Methods

condition numbers of normal matrix; x^*, s^* near optimal

$$\kappa \left(AD^*A^T \right)$$
, where $D^* = \operatorname{Diag}\left(x^* \right) \operatorname{Diag}\left(s^* \right)^{-1}$ (1)

three families of instances

- \bigcirc $(\mathcal{P}_{(A,b,c)})$ do not have strictly feasible points;
- $(\bar{\mathcal{P}}_{(A,\bar{b},c)})$ have strictly feasible points;
- $(\mathcal{P}_{(A_{FR},b_{FR},c_{FR})})$ facially reduced instances of $(\mathcal{P}_{(A,b,c)})$.

Condition Numbers of Normal Matrix Near Optimum

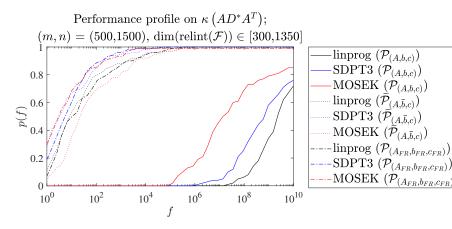


Figure: Performance profile on κ (ADA^T) with(out) strict feasibility near optimum; various solvers

Empirics on Stopping Criteria

test the average performance of 10 instances of size (n, m, r) = (3000, 500, 2000)

$$\mathsf{KKT} = \left(\frac{\|Ax^* - b\|}{1 + \|b\|}, \ \frac{\|A^Ty^* + s^* - c\|}{1 + \|c\|}, \ \frac{\langle x^*, s^* \rangle}{n}\right)$$

		Non-Facially Reduced System Facially Reduced Sys			
	KKT	(9.58e-16, 1.80e-12, 5.17e-09)	(5.78e-16, 1.51e-15, 5.57e-08)		
linprog	iter	23.30	17.60		
	time	1.10	0.76		
SDPT3	KKT	(1.51e-10, 1.49e-12, 4.67e-03)	(8.54e-12, 3.75e-16, 4.19e-06)		
	iter	25.40	19.80		
	time	0.82	0.53		
	KKT	(8.40e-09, 7.54e-16, -5.16e-06)	(5.16e-09, 3.81e-16, -2.03e-08)		
MOSEK	iter	35.90	10.10		
	time	0.58	0.31		

Table: Average of KKT conditions, iterations and time of (non)-facially reduced problems

Numerical Experiments with (Dual) Simplex Method

Empirics on the Number of Degenerate Iterations

- MOSEK (values in the table) reports percentage of degenerate iterations i.e., 'DEGITER(%)' is ratio of degenerate iterations. (smaller value is better).
- $r = |\sup(s)|$; smaller value (r/n)% means entries of s are identically 0; 100% means strict feasibility holds.
- note significant decrease in 'DEGITER(%)'.

		(r/n)%					
		60%	70%	80%	90%	100%	
(n, m)	(1000, 250)	36.62	10.18	0.01	0.02	0.00	
	(2000, 500)	39.72	18.28	0.07	0.15	0.01	
	(3000, 750)	25.99	10.66	0.32	0.75	0.02	
	(4000, 1000)	29.78	18.25	0.25	0.53	0.02	

Table: Average of ratio of degenerate iterations DEGITER(%)

Phase I(b): Towards Strict Feasibility

• \bar{x} , \mathcal{B} degenerate BFS/basis; Wlog basic variables located first \bar{x} as are degenerate variables. Solve (using basis from phase I simplex method)

$$p_1^* = \max\{x_1 : Ax = b, x \ge 0\}.$$

- Suppose that $p_1^* > 0$. Then, the the variable x_1 is not an identically 0 variable, i.e., $1 \notin \mathcal{I}_0$.
- Suppose that $p_1^* = 0$. Then, the variable x_1 is an identically 0 variable, i.e., $1 \in \mathcal{I}_0$. Let \mathcal{B}^* be an optimal basis. Then we have an exposing vector

$$y^* = A(:, \mathcal{B}^*)^T e_1, \ \langle b, y^* \rangle = 0 \ \text{ and } A^T y^* \ge e_1.$$

• Add up certificates: $y^{\circ} = \sum_{i} y^{j}$ to get exposing vector

$$A^Ty^\circ = \sum_i A^Ty^j \ge 0, A^Ty^\circ \ne 0, \langle b, y^\circ \rangle = \sum_i \langle b, y^j \rangle = 0.$$

Conclusion

- loss of strict feasibility has many applications recent survey Drusvyatskiy-W. [15].
- though not needed theoretically in LP, loss of MFCQ results in stability/numerical issues.
- In the paper we introduced new concept: Implicit
 Singularity Degree, maximum number of FR steps,
 and presented an algorithm, phase I (b), that regularizes
 an LP, for strict feasibility holding.

Regularized Nonsmooth Newton Algorithms for Best Approximation with Applications to Large Scale LP

Prof. Henry Wolkowicz hwolkowicz@uwaterloo.ca

Monday 11:15AM, April 10, 2023, in M103

at:

joint work with: Yair Censor (Univ. of Haifa);

Walaa Moursi and Tyler Weames (Univ. of Waterloo)

Motivation/Main Results

Main Problem/Best Approximation

Given $v \in \mathbb{R}^n$ and $P \subset \mathbb{R}^n$ a polyhedral set, find the nearest point to v from the set P

Nonsmooth Algorithms

- Application of Moreau Decomposition/elegant equation
- present regularized nonsmooth method; singular Jacobian
- compare computational performance to classical projection methods (e.g., HLWB projection method)

Applications

solving large scale linear programs; triangles from branch and bound methods; generalized constrained linear least squares.

Notation

best approximation problem to polyhedral set $P \subset \mathbb{R}^n$

find the nearest point $x^* \in P$ to a given point $v \in \mathbb{R}^n$

uniquely attained optimum (projection of v onto P)

optimum:
$$x^*(v) = \operatorname{argmin}_{x \in P} \frac{1}{2} ||x - v||^2$$

optimal value: $p^*(v) = \frac{1}{2} ||x^*(v) - v||^2$

Nonsmooth Newton Method

We apply a

(regularized/scaled) nonsmooth Newton method to a special form of the optimality conditions based on a Moreau decomposition.

31

Background

- The special Moreau decomposition for the optimality conditions comes from work in infinite dimensional Hilbert space e.g., [11,12,27,9], where the projection is actually differentiable, and typically P is the intersection of a cone and a linear manifold of finite co-dimension (finite # constraints).
- parametrized quadratic problem to solve finite dimensional linear programs [35] applied in our work here below. (In this finite dimensional case differentiability was lost.)
- infinite dimensional applications appear in the theory of partially finite programs in [6,7] Further references in [34,22,2].

Semismoothness

- differentiability is lost in finite dimensional; this led to application of semismoothness [28, 30, 29].
- More recently: applications for nearest Euclidean distance matrices and nearest doubly stochastic in [1,20].
- The optimum x*(v) is often called the projection onto the polyhedral set and is known to be unique. Differentiability properties are nontrivial as discussed in e.g., [19]. A characterization of differentiability in terms of normal cones is given in [16]. Further results and connections to semismoothness is in e.g., [19, 18]. A survey presentation is at [33].

Basic Theory

Projection onto a Polyhedral Set

$$x^*(v):= \begin{array}{ll} \mathop{\sf argmin}_x & \frac{1}{2}\|x-v\|^2 \\ \text{s.t.} & Ax=b\in\mathbb{R}^m \\ x\in\mathbb{R}^n_+, \end{array}$$

optimal value: $p^*(v) = \frac{1}{2} ||x^*(v) - v||^2$,

Assumptions: A full row rank; feasible set nonempty

Optimality Conditions

Theorem ($F : \mathbb{R}^m \to \mathbb{R}^m$; find root y^* ; Newton)

The optimum $x^*(v)$ exists and is unique. Let

(*)
$$F(y) := A(v + A^T y)_+ - b$$
, $f(y) := \frac{1}{2} ||F(y)||^2$

Then $\overline{F(y)} = 0$ has a root y^* , $\overline{F(y^*)} = 0 \iff y \in \operatorname{argmin} f(y^*)$

$$x^*(v) = (v + A^T y^*)_+$$
, for any root $F(y^*) = 0$.

Moreover, strong duality holds and the dual problem is

$$p^{*}(v) = d^{*}(v)$$

$$:= \max_{z \geq 0, y} \phi(y, z) \quad (= \min_{x} L(x, y, z))$$

$$:= -\frac{1}{2} ||z - A^{T}y||^{2} + y^{T}(Av - b) - z^{T}v.$$

AND

At each iteration, we get a provable/calculable lower bound

$$\max_{z>0, y} \phi(y, z) = -\frac{1}{2} ||z - A^T y||^2 + y^T (Ay - b) - z^T y$$

Proof of Optimality Conditions

Proof.

$$L(x, y, z) = \frac{1}{2} ||x - v||^2 + y^T (b - Ax) - z^T x;$$

$$\nabla_x L(x, y, z) = x - v - A^T y - z;$$
stationarity: $0 = \nabla_x L(x, y, z) \implies x = (v + A^T y) + z$

$$\implies L(x, y, z) = -\frac{1}{2} ||z + A^T y||^2 + y^T (b - Av) - z^T v.$$

KKT optimality conditions

Proof continued...

(cont... Solve opt. cond.

$$\begin{bmatrix} x - v - A^T y - z \\ Ax - b \\ z^T x \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \quad X, Z \in \mathbb{R}^n_+, y \in \mathbb{R}^m.$$

Moreau Decomposition:

$$v + A^{T}y = x - z = x + (-z), x^{T}z = 0$$

 $x = (v + A^{T}y)_{+}; z = -(v + A^{T}y)_{-}$

$$F: \mathbb{R}^m \to \mathbb{R}^m;$$
 $F(y) = A(v + A^T y)_+ - b = 0, y \in \mathbb{R}^m$

Apply Newton at current y_c ; Newton direction Δy

$$F'(y_c)\Delta y = -F(y_c);$$
 $y_p = y_c + \Delta y$

Compare Interior Point Methods

Block Elimination on Perturbed KKT Conditions

$$\begin{bmatrix} r_{o} \\ r_{o} \\ r_{c} \end{bmatrix} := \begin{bmatrix} x - v - A^{T}y - z \\ Ax - b \\ Zx - \mu e \end{bmatrix}, \quad X, Z \in \mathbb{R}_{+}^{n}, y \in \mathbb{R}^{m}.$$

$$F'_{\mu}\Delta s = \begin{bmatrix} \frac{\Delta x}{A\Delta x - b} - \Delta z \\ A\Delta x - b \\ X\Delta z + Z\Delta x \end{bmatrix} \begin{bmatrix} \Delta x \\ \Delta y \\ \Delta z \end{bmatrix} = -\begin{bmatrix} r_{o} \\ r_{o} \\ r_{o} \end{bmatrix}, \quad x, z \in \mathbb{R}^{n}_{+}, y \in \mathbb{R}^{m}.$$

Normal Equations Reduction to Δy

Currently, normal equations are not considered efficient. But the Newton equation was a percursor and appears to be efficient?

$$F: \mathbb{R}^m \to \mathbb{R}^m;$$
 $F(y) = A(v + A^T y)_+ - b = 0, y \in \mathbb{R}^m$

$$F'(y_c)\Delta y = -F(y_c);$$
 $y_p = y_c + \Delta y$

Nonlinear Least Squares, Generalized Jacobians

minimize squared residual $f(y) = \frac{1}{2} ||F(y)||^2$

differentiable case $\{i: (v + A^T y)_i = 0\} = \emptyset$:

$\nabla f(y) = (F'(y))^* F(y)$

Definition ((local) Lipschitz Continuity)

Let $\Omega \subseteq \mathbb{R}^n$. A function $F: \Omega \to \mathbb{R}^n$ is *Lipschitz continuous* on Ω if there exists K > 0 such that

$$|F(y)-F(z)| \leq K||y-z||, \forall y,z \in \Omega.$$

F is *locally Lipschitz continuous* on Ω if for each $x \in \Omega$ there exists a neighbourhood U of x such that F is Lipschitz continuous on U.

Generalized Jacobian

Rademacher's Theorem [31, 17]

 $F:\Omega\to\mathbb{R}^n$ locally Lipschitz on Ω implies that it is Frechét differentiable almost everywhere on Ω .

Definition (Clarke [13] Generalized Jacobian)

Suppose that $F: \mathbb{R}^m \to \mathbb{R}^m$ be locally Lipschitz. Let D_F be the set of points such that F is differentiable. Let F'(y) be the usual Jacobian matrix at $y \in D_F$. The *generalized Jacobian of F at y*, $\partial F(y)$ is

$$\partial F(y) = \operatorname{conv} \left\{ \lim_{\substack{y_i \to y \ y_i \in D_F}} F'(y_i) \right\}.$$

In addition, $\partial F(y)$ is nonsingular if every $V \in \partial F(y)$ is nonsingular.

Case: Differentiable and F'(y) invertible

Newton Direction; Newton Equation

$$(F'(y))^*(F'(y))\Delta y = -(F'(y))^*F(y) \iff F'(y)\Delta y = -F(y).$$

$$\Delta y = -\left((F'(y))^* (F'(y)) \right)^{-1} (F'(y))^* F(y) = -(F'(y))^{\dagger} F(y)$$

directional derivative: $\Delta y^T \nabla f(y) = \dots$

$$-[(F'(y))^*F(y)]^T ((F'(y))^*(F'(y)))^{-1} [(F'(y))^*F(y)]$$
< 0

Levenberg-Marquardt, LM, Regularization Method

We now see that we maintain a descent direction.

Lemma (for handling singularity in $(F'(y))^*(F'(y))$)

LM direction is always a descent direction.

Proof.

$$(J \cong F'(y))$$

$$(J^*J + \lambda I)\Delta y = -J^*F.$$

$$\Delta y = -\left(J^TJ + \lambda I\right)^{-1}(J^TF).$$

Therefore, the directional derivative is

$$\Delta y^T \nabla f(y) = -\left(\left(J^T J + \lambda I \right)^{-1} \left(J^T F \right) \right)^T \left(J^T F \right)$$

= $-\left(J^T F \right)^T \left(\left(J^T J + \lambda I \right)^{-1} \right) \left(J^T F \right)$
< 0.

Max. Rank Generalized Jacobian

Cols chosen \cong pos. variables of w

$$Aw_+ = A(\mathcal{P}_{\mathcal{N}}w) = (A\mathcal{P}_{\mathcal{N}})w_+ = \sum_{w_i > 0} A(:,i)w_i$$

Index Set of Columns

Note:
$$v + A^T y \ge 0 \implies F'(\Delta y) = AIA^T \Delta y = AA^T \Delta y$$

$$\mathcal{U}(y) := \left\{ u \in \mathbb{R}^n \mid u_i \in \begin{cases} 1 & \text{if } (v + A^T y)_i > 0 \\ [0, 1] & \text{if } (v + A^T y)_i = 0 \\ 0 & \text{if } (v + A^T y)_i < 0 \end{cases} \right\}$$

generalized Jacobian at y; after convex hull

$$\partial F(y) = \{A \operatorname{Diag}(u) A^T | u \in \mathcal{U}(y)\}\$$

(max-rank: choose $u_i = 1$ when possible)

Semismooth Newton Method solving F(y) = 0

Solve
$$(V_k + \lambda I)d_{Newton} = -F(y^k)$$
, with $V_k \in \partial F(y^k), \lambda > 0, c \in (0, 1)$ $y^{k+1} = y^k + d_{Newton}$; (or avging $y^{k+1} = (1-c)y^k + cd_{Newton}$)

Max-rank Jacobian

$$\begin{array}{ll} AMA^T & := & A\text{Diag}(u)A^T \\ & = & \sum_{i \in \mathcal{I}_+} A_{:i}A_{:i}^T + \sum_{i \in \mathcal{I}_0} \alpha_i A_{:i}A_{:i}^T, \ \alpha_i \in [0, 1], \forall i \in \mathcal{I}_0 \end{array}$$

maximum (resp. minimum) rank for AMA:

$$\alpha_i = 1, \forall i \in \mathcal{I}_0 \ (\alpha_i = 0, \forall i \in \mathcal{I}_0, \text{ resp.})$$

Vertices and Polar Cones

Choosing the optima for the tests; (nondegenerate) vertex

In our tests we can decide on the characteristics of the optimal solution using the properties of (degenerate) vertices.

Recall: x optimal iff $x - v \in \mathcal{F}(x)^+$

Lemma (vertex and polar cone)

$$y \in \mathbb{R}^m, x(y) = (v + A^T y)_+ \in \mathcal{F}$$
. Then:
 $x(y)$ vertex \iff $A_{\mathcal{I}_+}$ nonsingular
 \iff corresp. gen. Jac. nonsingular.
 $x = x(y) \in \mathcal{F} \implies$
 $\mathcal{F}(x)^+ = \{w : w = A^T u + z, u \in \mathbb{R}^m, z \in \mathbb{R}^n_+, x^T z = 0\}$

Proof of Lemma

Proof.

wlog $A = [A_{\mathcal{I}_+} \ A_{\mathcal{I}_0}]$ implies active set is $\begin{bmatrix} A_{\mathcal{I}_+} & A_{\mathcal{I}_0} \\ 0 & I \end{bmatrix} x = \begin{pmatrix} b \\ 0 \end{pmatrix}$;

This has unique solution x(y) iff $A_{\mathcal{I}_+}$ is nonsingular. gradient of objective satisfies

$$x - v = A^T y + \sum_{j \in \mathcal{I}_0} z_j e_j.$$

Optimality conditions yield polar cone at a vertex.

degeneracy of optimal solutions

Let $x \in \operatorname{bdry} \mathcal{F}$;

x is optimal iff $x - v \in \mathcal{F}(x)^+$, i.e., we can choose v with

 $v = x - A^T u + z, z \ge 0, z^T x = 0.$

and

$$x^*(v)$$
 is differentiable at $v \iff (x^*(v) - v) \in ri(\mathcal{F} - x^*(v))^+$

Best Approx.; Nonsmooth Algor.

Algorithm 1 Best Approx. of *v* in *P*; Exact Newton

Require:
$$v \in \mathbb{R}^{n}, y_{0} \in \mathbb{R}^{m}, (A \in \mathbb{R}^{m \times n}, \operatorname{rank}(A) = m), \varepsilon > 0$$
, maxiter

1: **Output.** Primal-dual opt: $x_{k+1}, (y_{k+1}, z_{k+1})$

2: **Initialization.** $k \leftarrow 0, x_{0} \leftarrow (v + A^{T}y_{0})_{+}, z_{0} \leftarrow (x_{0} - (v + A^{T}y_{0}))_{+}, F_{0} = Ax_{0} - b$, stopcrit $\leftarrow \|F_{0}\|/(1 + \|b\|)$

3: **while** ((stopcrit $> \varepsilon$) & $(k \le \text{maxiter})$) **do**

4: $\lambda = \min(1e^{-3}, \text{ stopcrit})$

5: $\overline{V} = (V_{k} + \lambda I_{m})$

6: solve pos. def. $\overline{V}d = -F_{k}$ for Newton direction d

7: **updates**

8: $y_{k+1} \leftarrow y_{k} + d$

9: $x_{k+1} \leftarrow (v + A^{T}y_{k+1})_{+}$

10: $z_{k+1} \leftarrow (x_{k+1} - (v + A^{T}y_{k}))_{+}$

11: $F_{k+1} \leftarrow Ax_{k+1} - b$ (residual)

12: stopcrit $\leftarrow \|F_{k+1}\|/(1 + \|b\|)$

13: $k \leftarrow k + 1$

14: **end while**

(HLWB)

Algorithm 2 Extended HLWB algorithm

```
Require: v \in \mathbb{R}^n, (A \in \mathbb{R}^{m \times n}, \operatorname{rank}(A) = m), \varepsilon > 0, maxiter \in \mathcal{N}.
1: Output. x_{k+1}
2: Initialization. k \leftarrow 0, msweeps \leftarrow 0 x_0 \leftarrow max(v, 0), y_0 \leftarrow x_0, i_0 = 1
                       stopcrit \leftarrow ||Ay_0 - b||/(1 + ||b||) (= ||F_0||/(1 + ||b||))
3: while ((stopcrit > \varepsilon) & (k \le \text{maxiter})) do
4:
          if 1 < i(k) < m then
               y_k = x_k + \frac{b_{i_k} - \langle a_{i_k}, x^k \rangle}{\|a_i\|^2} a_{i_k}
5:
6:
7:
8:
9:
          else
                V_{\nu} = \max(0, \chi_{\nu})
          end if
          updates
10:
             \sigma_k = \frac{1}{k+1} (change to \sigma_k = \frac{1}{m \text{sweeps}+1}??)
            x^{k+1} \leftarrow \sigma_k v + (1 - \sigma_k) v^k
11:
12:
             stopcrit \leftarrow ||Av_0 - b||/(1 + ||b||)
13:
            k \leftarrow k + 1
14:
             if k \mod (m+1) == 0 then
15:
                   msweeps = msweeps + 1
16:
17:
             end if
             i_k = k \pmod{m} + 1
18: end while
```

Numerical Tests BAP; varying sizes *m*, *n*

Table: n = 3000, % density=.81; varying m = 100, 600, 1100, 1600

2.13e-03 1.98e-02 1.89e+01 3.22e+00 8.04e-01 2.55e-16 2.41e-15 2.29e-04 4.12e-17 -8.43e-16 8.35e-02 3.03e-01 1.94e+02 4.28e+00 1.27e+00 5.10e-16 5.10e-18 2.19e-04 5.12e-17 -1.53e-16 7.02e-01 1.29e+00 4.16e+02 6.18e+00 2.53e+00 5.20e-16 8.71e-16 2.08e-04 3.80e-17 9.05e-17	I			Time (s)		Rel. Resids.						
8.35e-02 3.03e-01 1.94e+02 4.28e+00 1.27e+00 5.10e-16 5.10e-18 2.19e-04 5.12e-17 -1.53e-16 7.02e-01 1.29e+00 4.16e+02 6.18e+00 2.53e+00 5.20e-16 8.71e-16 2.08e-04 3.80e-17 9.05e-17	ĺ	Exact	Inexact	HLWB	LSQ	QPPAL	Exact	Inexact	HLWB	LSQ	QPPAL	
7.02e-01 1.29e+00 4.16e+02 6.18e+00 2.53e+00 5.20e-16 8.71e-16 2.08e-04 3.80e-17 9.05e-17	Ī	2.13e-03	1.98e-02	1.89e+01	3.22e+00	8.04e-01	2.55e-16	2.41e-15	2.29e-04	4.12e-17	-8.43e-16	
110-111 11-1111 11-11111 11-111111 11-111111	I	8.35e-02	3.03e-01	1.94e+02	4.28e+00	1.27e+00	5.10e-16	5.10e-18	2.19e-04	5.12e-17	-1.53e-16	
1.40e+00 3.59e+00 6.57e+02 7.65e+00 5.13e+00 9.84e-18 1.11e-15 2.27e-04 3.82e-17 -8.61e-17	Ī	7.02e-01	1.29e+00	4.16e+02	6.18e+00	2.53e+00	5.20e-16	8.71e-16	2.08e-04	3.80e-17	9.05e-17	
	Ī	1.40e+00	3.59e+00	6.57e+02	7.65e+00	5.13e+00	9.84e-18	1.11e-15	2.27e-04	3.82e-17	-8.61e-17	

Table: m = 200, % density=.81, varying n = 3000, 3500, 4000, 4500, 5000

		Time (s)			Rel. Resids.							
Exact	Inexact	HLWB	LSQ	QPPAL	Exact	Inexact	HLWB	LSQ	QPPAL			
3.12e-03	3.69e-02	4.45e+01	3.50e+00	8.66e-01	8.64e-18	7.39e-17	2.56e-04	6.52e-16	5.89e-17			
3.08e-03	4.05e-02	5.17e+01	4.93e+00	1.00e+00	9.07e-18	1.26e-17	2.78e-04	1.23e-15	2.15e-17			
3.24e-03	3.70e-02	5.82e+01	7.31e+00	1.09e+00	1.46e-16	8.91e-16	2.80e-04	3.21e-16	-9.18e-18			
3.99e-03	4.17e-02	6.58e+01	1.01e+01	1.18e+00	1.80e-15	2.05e-16	3.13e-04	4.61e-17	1.71e-16			
3.93e-03	3.42e-02	7.30e+01	1.45e+01	1.26e+00	4.09e-17	1.80e-15	3.16e-04	5.27e-17	-6.28e-17			

Numerical Tests BAP varying density

Table: m = 300, n = 1000, Varying % density=1, 6, 1.1, 1.6

1			Time (s)					Rel. Resids.		
ı	Exact	Inexact	HLWB	LSQ	QPPAL	Exact	Inexact	HLWB	LSQ	QPPAL
1	5.65e-03	5.69e-02	1.67e+01	3.02e-01	5.32e-01	7.48e-16	7.27e-16	1.54e-04	3.33e-17	-8.29e-17
1	4.80e-02	2.52e-01	4.58e+01	3.15e-01	1.22e+00	3.44e-17	1.18e-16	1.51e-04	2.04e-15	-1.43e-17
1	6.18e-02	2.49e-01	5.41e+01	3.07e-01	2.10e+00	5.65e-17	1.54e-17	1.44e-04	1.09e-16	1.09e-16
]	7.79e-02	2.60e-01	5.34e+01	3.03e-01	2.11e+01	6.92e-17	7.98e-17	1.61e-04	4.19e-16	-2.88e-16

Performance Profiles BAP

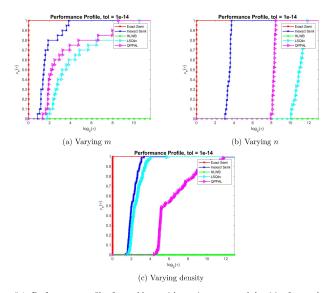


Figure 5.1: Performance profiles for problems with varying m, n, and densities for nondegenerate vertex solutions

Applications: Solving (maximization) Large Scale LP

primal (maximization) LP in standard form

$$(\mathsf{PLP}) \qquad \begin{array}{ccc} p_{\mathsf{LP}}^* := & \mathsf{max} & c^\mathsf{T} x \\ & \mathsf{s.t.} & \mathsf{A} x = b \in \mathbb{R}^m \\ & x \in \mathbb{R}^n_+. \end{array}$$

dual LP

(DLP)
$$d_{LP}^* := \min_{\boldsymbol{b}^T \boldsymbol{y}} \boldsymbol{b}^T \boldsymbol{y}$$
$$s.t. \quad \boldsymbol{A}^T \boldsymbol{y} - \boldsymbol{z} = \boldsymbol{c} \in \mathbb{R}^n$$
$$\boldsymbol{z} \in \mathbb{R}^n_+.$$
(2)

Assumptions: full rank; finite optimal value

A full row rank;

$$ho_{ ext{LP}}^* \in \mathbb{R}$$
 (so $ho_{ ext{LP}}^* = extstyle{d}_{ ext{LP}}^* \in \mathbb{R}$ and both attained)

Geometric Algorithm

solution can be found from the limit as $R \uparrow \infty$ of the projection of the vector $v_R = Rc \in \mathbb{R}^n$ onto the feasible set.

Lemma ([23, 24, 25, 35])

Let the given LP data be A, b, c with finite optimal value p_{LP}^* .

For each R > 0 define

$$x(R) := \underset{s.t.}{\operatorname{argmin}_{x}} \frac{1}{2} \|x - Rc\|^{2}$$

 $s.t. \quad Ax = b \in \mathbb{R}^{m}$
 $x \in \mathbb{R}^{n}_{+}$

Then x^* is the minimum norm solution of (PLP) if, and only if, there exists $\bar{R} > 0$ such that

$$R \geq \bar{R} \implies x^* \in \operatorname{argmin} \left\{ \frac{1}{2} \|x - Rc\|^2 : Ax = b, x \in \mathbb{R}_+^n
ight\}.$$

We use the estimate
$$R = \min \left\{ 50, \frac{\sqrt{mn}\|b\|}{1+\|c\|} \right\}$$

Avoid numerical/roundoff from large numbers

Corollary (scaling $\frac{1}{R}b$)

A, b, c, R, x(R) as in Lemma. Then

$$\frac{1}{R}x(R) = w(R) := \underset{s.t.}{\operatorname{argmin}_{w}} \quad \frac{1}{2}\|w - c\|^{2}$$

$$s.t. \quad Aw = \frac{1}{R}b \in \mathbb{R}^{m}$$

$$w \in \mathbb{R}^{n}_{+}.$$

Proof.

From

$$||x - Rc||^2 = R^2 \left\| \frac{1}{R}x - c \right\|^2 = R^2 ||w - c||^2, x = Rw,$$

we substitute for x and obtain $A(Rw) = b \iff Aw = \frac{1}{R}b$. The result follows from the observation that argmin does not change after discarding the constant R^2 .

Warm Start; Stepping Stone External Path Following

consider scaled problem with:

$$x(R) = Rw(R)$$
.

Recall the optimality conditions for w = w(R):

$$\begin{bmatrix} w - c - A^T y - z \\ Aw - \frac{1}{R}b \\ z^T w \end{bmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}, \quad w, z \in \mathbb{R}^n_+, y \in \mathbb{R}^m.$$

We conclude that

$$\lim_{R\to\infty}\mathcal{P}_{\mathsf{Range}(A^T)}w(R)=0,\ \lim_{R\to\infty}Rw(R)=x^*,\ \text{the optimum of the LP}.$$

The optimality conditions are now

$$w = c + A^{T}y + z, b = ARw = AR(c + A^{T}y)_{+}, \quad w^{T}z = 0, x, z \ge 0.$$

Warm Start from current R: find new R_n , y_n

Theorem

Suppose triple
$$(w, y, z)$$
 optimal for scaled problem; let $\mathcal{N} = \mathcal{N}(z) = \{i : z_i > 0\}, \quad \mathcal{B} = \mathcal{B}(w) = \{1 : n\} \backslash \mathcal{N};$ $b_{\mathcal{B}} = A_{\mathcal{B}}^T \left(A_{\mathcal{B}} A_{\mathcal{B}}^T\right)^\dagger b, \quad b_{\mathcal{N}} = A_{\mathcal{N}}^T \left(A_{\mathcal{B}} A_{\mathcal{B}}^T\right)^\dagger b;$ $e = \begin{pmatrix} (b_{\mathcal{B}} - Rw_{\mathcal{B}}) \\ -(b_{\mathcal{N}} + Rz_{\mathcal{N}}) \end{pmatrix}, \quad f = \begin{pmatrix} Rb_{\mathcal{B}} \\ -Rb_{\mathcal{N}} \end{pmatrix}.$ Then max. value R without changing basis is

 $R_n = \min\{f_i/e_i : e_i > 0, f_i > 0, i = 1, ... |\mathcal{B}|\}.$ Moreover, $R_n = \infty$ implies optimal solution found.

$R_n < \infty \implies$ corresponding changes are:

$$\begin{split} \Delta y_{\rho} &= \left(A_{\mathcal{B}} A_{\mathcal{B}}^{T}\right)^{\dagger} b; \, \Delta y = \left(\frac{R - R_{n}}{R R_{n}}\right) \Delta y_{\rho}. \\ \Delta w_{\mathcal{B}} &= A_{\mathcal{B}}^{T} \left(\frac{R - R_{n}}{R R_{n}}\right) \Delta y_{\rho} \\ \Delta z_{N} &= -A_{\mathcal{N}}^{T} \left(\frac{R - R_{n}}{R R_{n}}\right) \Delta y_{\rho} \end{split}$$

LP Numerical Tests

Specifications				Time (s)							Rel. Resids.					
m	n	% density	RNNM	Linprog DS	Linprog IPM	MOSEK DS	MOSEK IPM	SNIPAL	RNNM	Linprog DS	Linprog IPM	MOSEK DS	MOSEK IPM	SNIPAL		
2e+03	5e+03	1.0e-01	7.93e-02	3.59e-02	4.74e-02	1.32e-01	1.65e-01	4.47e-01	3.38e-17	3.38e-17	4.88e-09	1.31e-16	1.53e-16	3.63e-03		
2e+03	1e+04	1.0e-01	9.84e-02	4.98e-02	7.64e-02	1.52e-01	1.93e-01	5.86e-01	2.82e-17	2.82e-17	1.60e-04	1.31e-16	2.89e-16	3.30e-03		
2e+03	1e+05	1.0e-01	1.69e-01	4.00e-01	7.56e-01	5.37e-01	6.45e-01	2.51e+00	1.48e-17	1.48e-17	1.72e-05	8.84e-17	3.68e-16	1.54e-03		
5e+03	1e+04	1.0e-01	9.72e+01	2.09e-01	1.41e+01	4.29e-01	2.67e + 00	5.75e+00	5.55e-17	5.55e-17	5.02e-07	1.67e-14	3.20e-16	3.94e-03		
5e+03	1e+05	1.0e-01	7.76e+01	7.34e-01	1.43e+02	1.09e+00	7.95e+00	1.36e+01	2.36e-17	2.36e-17	6.38e-05	3.13e-16	3.91e-15	1.82e-03		
5e+03	5e+05	1.0e-01	2.31e+02	7.04e+00	6.56e+02	7.02e+00	1.56e+01	3.01e+01	1.52e-17	1.52e-17	3.73e-05	3.92e-16	3.56e-16	1.13e-03		
2e+04	1e+05	1.0e-02	6.16e-01	9.55e-01	5.73e+00	1.06e+00	2.51e+00	4.50e+00	1.36e-17	1.36e-17	4.33e-07	1.99e-06	1.28e-16	3.58e-03		
2e+04	5e+05	1.0e-02	6.68e-01	4.50e+00	3.77e+01	5.68e+00	9.29e+00	1.69e+01	8.48e-18	8.48e-18	8.83e-07	1.36e-06	1.15e-15	1.47e-03		
2e+04	1e+06	1.0e-02	1.52e+00	9.37e+00	6.52e+01	1.18e+01	1.58e+01	2.99e+01	7.08e-18	7.08e-18	6.27e-06	1.76e-06	4.20e-16	1.20e-03		
1e+05	1e+07	1.0e-03	5.76e+00	1.14e+01	6.24e+00	9.47e+01	9.72e+01	2.33e+02	1.39e-18	1.39e-18	1.39e-18	1.76e-17	1.76e-17	1.04e-03		

Table 5.4: LP application results averaged on 5 randomly generated problems per row

Performance Profile LP

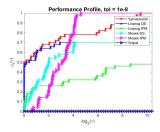


Figure 5.2: Performance Profiles for LP application wrt all problems

Conclusion for BAP and LP Algorithm

- efficient, robust algorithm for projection of a point onto a polyhedral set.
- One of may applications is to solving large scale LPs; we get a finite converging stepping stone exterior path following algorithm (mixture of simplex/interior-point)

References I

S. Al-Homidan and H. Wolkowicz.

Approximate and exact completion problems for Euclidean distance matrices using semidefinite programming. *Linear Algebra Appl.*, 406:109–141, 2005.

L.E. Andersson and T. Elfving.

Best constrained approximation in Hilbert space and interpolation by cubic splines subject to obstacles.

SIAM J. Sci. Comput., 16(5):1209–1232, 1995.

H.H. Bauschke.

The approximation of fixed points of compositions of nonexpansive mappings in Hilbert space. Journal of Mathematical Analysis and Applications, 202:150–159, 1996.

References II

D. Bertsimas and J. Tsitsiklis. Introduction to Linear Optimization. Athena Scientific, Belmont, MA, 1997.

R.G. Bland.

New finite pivoting rules for the simplex method. *Math. Oper. Res.*, 2(2):103–107, 1977.

- J.M. Borwein and A.S. Lewis.
 Partially finite convex programming, part I, duality theory. *Math. Program.*, 57:15–48, 1992.
- J.M. Borwein and A.S. Lewis.

 Partially finite convex programming, part II, explicit lattice models.

 Math. Program., 57:49–84, 1992.

References III

- J.M. Borwein and H. Wolkowicz.

 Regularizing the abstract convex program. *J. Math. Anal. Appl.*, 83(2):495–530, 1981.
- J.M. Borwein and H. Wolkowicz.
 A simple constraint qualification in infinite-dimensional programming.

 Math. Programming, 35(1):83–96, 1986.
- A. Charnes.
 Optimality and degeneracy in linear programming. *Econometrica*, 20:160–170, 1952.
- C.K. Chui, F. Deutsch, and J.D. Ward. Constrained best approximation in Hilbert space. Constr. Approx., 6(1):35–64, 1990.

References IV

F.H. Clarke.

- C.K. Chui, F. Deutsch, and J.D. Ward. Constrained best approximation in Hilbert space. II. J. Approx. Theory, 71(2):213–238, 1992.
 - Optimization and Nonsmooth Analysis.
 Canadian Math. Soc. Series of Monographs and Advanced
 Texts. John Wiley & Sons, 1983.
- G.B. Dantzig, A. Orden, and P. Wolfe.

 The generalized simplex method for minimizing a linear form under linear inequality restraints.

 Pacific J. Math., 5:183–195, 1955.
- D. Drusvyatskiy and H. Wolkowicz.
 The many faces of degeneracy in conic optimization.

 Foundations and Trends® in Optimization, 3(2):77–170, 2017.

References V

F. Facchinei and J.-S. Pang.

Finite-dimensional variational inequalities and complementarity problems, volume 1. Springer, 2003.

H. Federer.

Geometric measure theory.

Die Grundlehren der mathematischen Wissenschaften. Band 153. Springer-Verlag New York Inc., New York, 1969.

M. Goh and F. Meng.

On the semismoothness of projection mappings and maximum eigenvalue functions.

J. Global Optim., 35(4):653–673, 2006.

References VI

Unsolved Problems: At What Points is the Projection Mapping Differentiable?

Amer. Math. Monthly, 89(7):456–458, 1982.

H. Hu, H. Im, X. Li, and H. Wolkowicz.

A semismooth Newton-type method for the nearest doubly stochastic matrix problem.

Math. Oper. Res., 2023 to appear. arxiv.org/abs/2107.09631, 35 pages.

H. Im and H. Wolkowicz.

A strengthened Barvinok-Pataki bound on SDP rank.

Oper. Res. Lett., 49(6):837-841, 2021.

References VII

C. Li and X.Q. Jin.

Nonlinearly constrained best approximation in Hilbert spaces: the strong chip and the basic constraint qualification.

SIAM J. Optim., 13(1):228–239, 2002.

O.L. Mangasarian.
Iterative solution of linear programs.

SIAM J. Numer. Anal., 18(4):606–614, 1981.

O.L. Mangasarian.

Normal solutions of linear programs.

Number 22, pages 206–216. 1984. Mathematical programming at Oberwolfach, II (Oberwolfach, 1983).

References VIII

O.L. Mangasarian.

A Newton method for linear programming.

J. Optim. Theory Appl., 121(1):1–18, 2004.

N. Megiddo.

A note on degeneracy in linear programming.

Math. Programming, 35(3):365-367, 1986.

C.A. Micchelli, P.W. Smith, J. Swetits, and J.D. Ward. Constrained *I_p* approximation. *Journal of Constructive Approximation*, 1:93–102, 1985.

R. Mifflin.

Semismooth and semi-convex functions in constrained optimization.

SIAM J. Cont. Optim., 15:959-972, 1977.

References IX

H. Qi and D. Sun.

A quadratically convergent Newton method for computing the nearest correlation matrix.

SIAM J. Matrix Anal. Appl., 28(2):360-385, 2006.

L. Qi and J. Sun.

A nonsmooth version of Newton's method. *Mathematical programming*, 58(1-3):353–367, 1993.

- H. Rademacher.
 Uber partielle und totale differenzierbarkeit i.

 Math. Ann., 89:340–359, 1919.
- D. M. Ryan and M. R. Osborne. On the solution of highly degenerate linear programmes. *Math. Program.*, 41:385–392, 1988.

References X

E. Sarabi.

A characterization of continuous differentiability of proximal mappings of composite functions.

```
URL: https:
//www.math.uwaterloo.ca/~hwolkowi/
F22MOMworkshop.d/FslidesSarabi.pdf, 10 2022.
24th Midwest Optimization Meeting, MOM24.
```


I. Singer.

Best approximation in normed linear spaces by elements of linear subspaces.

Die Grundlehren der mathematischen Wissenschaften, Band 171. Publishing House of the Academy of the Socialist Republic of Romania, Bucharest; Springer-Verlag, New York-Berlin, 1970.

Translated from the Romanian by Radu Georgescu.

References XI

P.W. Smith and H. Wolkowicz.

A nonlinear equation for linear programming.

Math. Programming, 34(2):235–238, 1986.

S. Sremac. Error bounds and singularity degree in semidefinite programming.

PhD thesis, University of Waterloo, 2019.

J.F. Sturm. Error bounds for linear matrix inequalities. SIAM J. Optim., 10(4):1228–1248 (electronic), 2000.

P. Wolfe.
A technique for resolving degenera

A technique for resolving degeneracy in linear programming.

SIAM Journal, 11:205–211, 1963.

Thanks for your attention!

Regularized Nonsmooth Newton Algorithms for Best Approximation with Applications to Large Scale LP

Prof. Henry Wolkowicz hwolkowicz@uwaterloo.ca

Monday 11:15AM, April 10, 2023, in M103

at: