The Simple Wasserstein Barycenter Problem

Henry Wolkowicz

Dept. Comb. and Opt., University of Waterloo, Canada

Workshop on Recent Advances in Optimization October 11 - 12, 2023, Fields Institute, Stewart Library

work with: **A. Alfakih**, Univ. of Windsor; **L. Jung** and **W.M. Moursi**, Univ. of Waterloo.

"Nothing takes place in the world whose meaning is not that of some maximum or minimum." Leonhard Euler

Problem

Problem (simplified Wasserstein barycenter problem)

- given k sets consisting of n points each; select exactly one point from each set to
- minimize sum of distances to barycenter of k chosen pts.

Figure: k=3=n: wheel of wheels; k odd; duality gaps; multiple opts

simplified Wasserstein barycenter problem

- problem is NP-hard.
- exploit Euclidean Distance Matrix structure; apply facial reduction to a doubly nonnegative relaxation;
- EMPHASIZE: obtain natural splitting for applying symmetric alternating direction method of multipliers, sADMM
- Empirics on random problems are surprisingly successful; find provable exact solution from upper/lower bounds
- examples with special symmetric structure result in duality gaps.

Open Question

• Surprisingly, we generally solve these NP-hard random problems to optimality, i.e., we find the exact optimal barycenter and optimal choice of points in each set and this yields a zero duality gap.

e.g., time for random problems k = n = 25 O(10 sec). In contrast, MATLAB-CVX with Gurobi: 2,348,18000 secs for n = k = 5,7,8, resp.

• We can find problems with positive duality gaps by generating problems with multiple solutions using special structure, e.g. symmetry.

• QUESTION: What is the key to characterizing problems with positive duality gaps? Is this related to rigidity of graph or uniqueness of optimal solutions?

Notation I

- S∈ Sⁿ space of n × n symmetric matrices with trace S = ⟨S, T⟩ inner prodcut;
 diag (S) ∈ ℝⁿ is diagonal of S;
 adjoint is diag *(v) = Diag (v) ∈ Sⁿ.
- $\mathbb{S}_{+}^{n} \subset \mathcal{S}^{n}$, $X \succeq 0$, positive semidefinite cone; $\mathbb{S}_{++}^{n}, X \succ 0$, positive definite matrices
- $\mathcal{N}^n n \times n$ nonnegative matrices;
- DNN $= \mathbb{S}^n_+ \cap \mathcal{N}^n$, doubly nonnegative cone
- e vector of ones

Notation II

• given points $p_i \in \mathbb{R}^d$, let $P^T = \begin{bmatrix} p_1 & p_2 & \dots & p_t \end{bmatrix} \in \mathbb{R}^{dt}$; Wlog points span \mathbb{R}^d and are centered:

$$P^T e = 0, e$$
 vector of ones.

$$(P^T \mapsto P^T - ve^T, v := \frac{1}{n}P^T e)$$

• corresponding: Euclidean distance matrix, EDM, $D_{ij} = ||p_i - p_j||^2$ and Gram matrix, $G = PP^T$; and by Schoenberg [3] the Lindenstrauss operator, $\mathcal{K}(G)$ relates D, G:

$$D = \mathcal{K}(G) = \operatorname{diag}(G)e^{T} + e\operatorname{diag}(G)^{T} - 2G.$$

$D = \mathcal{K}(G) = \operatorname{diag}(G)e^{T} + e\operatorname{diag}(G)^{T} - 2G$

 Moreover, K (Lindenstrauss operator): one-one and onto between centered subspace, Sⁿ_C and hollow subspace, Sⁿ_H

$$\mathcal{K}: \mathcal{S}^n_{\mathcal{C}} \leftrightarrow \mathcal{S}^n_{\mathcal{H}}$$

$$\begin{split} \mathcal{S}_{C}^{n} &= \{ X \in \mathcal{S}^{n} \ : \ Xe = 0 \}, \quad \mathcal{S}_{H}^{n} = \{ X \in \mathcal{S}^{n} \ : \ \text{diag} \ X = 0 \}. \end{split}$$
(Note centering $\mathcal{P}^{T}e = 0 \implies G \in \mathcal{S}_{C}^{n}$.)

Main Problem; Wasserstein Barycenter

- given sets $S_1, ..., S_k$, each with *n* points in \mathbb{R}^d
- Find optimal barycenter point *y* after choosing exactly one point from each set:

$$\begin{array}{lll} \boldsymbol{p}_{W}^{*} & := & \min_{\substack{\boldsymbol{y} \in \mathbb{R}^{d} \\ \boldsymbol{p}_{i} \in \boldsymbol{S}_{i}}} \sum_{i \in [k]} \|\boldsymbol{p}_{i} - \boldsymbol{y}\|^{2} \\ & = & \min_{\boldsymbol{p}_{i} \in \boldsymbol{S}_{i}} \min_{\boldsymbol{y} \in \mathbb{R}^{d}} \sum_{i \in [k]} \|\boldsymbol{p}_{i} - \boldsymbol{y}\|^{2} \end{array}$$

 $([k] = \{1, 2, \dots, n\}$

Connection to EDM

Lemma (minimal property of standard barycenter)

Suppose that we are given k points $q_i \in \mathbb{R}^d$, i = 1, ..., k. Let $y = \frac{1}{k} \sum_{i=1}^{k} q_i$ denote the barycenter. Then sum of squared distances are minimized: $\sum_{i=1}^{k} ||q_i - y||^2 < \sum_{i=1}^{k} ||q_i - (y + v)||^2, \forall 0 \neq v \in \mathbb{R}^d.$

Proof.

Wlog, assume points are centered at origin, i.e., translate $q_i \rightarrow q_i - y$. Since $ky = \sum_i q_i = 0$, for any $0 \neq v \in \mathbb{R}^d$,

$$\sum_{i=1}^{k} \|q_i\|^2 < \sum_{i=1}^{k} \|q_i\|^2 + k \|v\|^2 = \sum_{i=1}^{k} \|q_i - v\|^2$$

Proposition

Consider the main problem that consists in finding the optimal barycenter *y* of the optimal points p_i , $y = \frac{1}{k} \sum_{i \in [k]} p_i$. This is equivalent to finding exactly one point in each set that minimizes the sum of squared distances:

(WIQP)
$$2kp_W^* = p^* := \min_{p_1 \in S_1, ..., p_k \in S_k} \sum_{i,j \in [k]} \|p_i - p_j\|^2.$$

Equivalent Sum of Squared Differences

$$(WIQP)$$
 $2kp_W^* = p^* := \min_{p_1 \in S_1, ..., p_k \in S_k} \sum_{i,j \in [k]} \|p_i - p_j\|^2.$

Proof.

Let $p_i, i \in [k]$ be optimal; let y be barycenter. Wlog, translate $p_j \leftarrow p_j - y, \forall j, y = 0$. Therefore, redefine P with points $p_i, i \in [k]$ in rows of P, and centered, i.e., $P^T e = 0, PP^T e = Ge = 0$. Now $\sum_{i,j \in [k]} ||p_i - p_j||^2 = e^T De$ $= e^T (\text{diag}(G)e^T + e\text{diag}(G)^T - 2G) e$ $= 2k \text{ trace } G \quad (Ge = 0)$ $= 2k \sum_{i \in [k]} ||p_i||^2$ $= 2kp_W^*$, from previous lemma.

Reformulation Using EDM

x binary; $A = I \otimes e$

$$x := [v_1^T, ..., v_k^T]^T \in \mathbb{R}^{nk}, \quad A := \mathsf{blkdiag}[e^T, ..., e^T] \in \mathbb{R}^{k imes nk}$$

Ax = e pick exactly one point from each set

BCQP binary-constrained quadratic problem; $D \in EDM$

$$(BCQP) \qquad \begin{array}{ll} p^* = & \min & x^T D x = \operatorname{trace} D x x^T = \langle D, x x^T \rangle \\ & \text{s.t.} & A x = e \\ & x \in \{0, 1\}^{kn} \end{array}$$

Note EDMs are nsd on e^{\perp} ; constraints imply $x^{T}e$ is constant

therefore projected Hessian is nsd, i.e., minimizing a concave function, NP-HARD problem. AND constraints are totally unimodular.

A lifting to matrix space

use vector $\begin{pmatrix} 1 \\ x \end{pmatrix}$ and lift to rank-1 matrix $Y_x := \begin{pmatrix} 1 \\ x \end{pmatrix} \begin{pmatrix} 1 \\ x \end{pmatrix}'$, and then relax the nonconvex rank-1 constraint. During the relaxation stage, we impose the constraints that we have on *x*, such as the $\{0, 1\} : x_i^2 - x_i = 0$, constraints on *x* represented as:

$$\operatorname{arrow}(Y_x) = e_0 \quad (0 - \operatorname{th} \operatorname{unit} \operatorname{vector});$$

 $\operatorname{arrow} : \mathbb{S}^{n+1}_+ o \mathbb{R}^{n+1}_+ : \begin{bmatrix} s_0 & s^T \\ s & \bar{S} \end{bmatrix} \mapsto \begin{pmatrix} s_0 \\ \operatorname{diag}(\bar{S}) - s \end{pmatrix}.$

The binary constraint on vector x is equivalent to the arrow constraint on lifted matrix Y_x if rank-one holds.

SDP reformulation via facial reduction

$$\hat{D} := \begin{bmatrix} 0 & 0 \\ 0 & D \end{bmatrix} \in \mathbb{S}^{kn+1}; \ \mathcal{K} := \begin{bmatrix} -e^T \\ A^T \end{bmatrix} \begin{bmatrix} -e^T \\ A^T \end{bmatrix}^T \in \mathbb{S}^{kn+1}_+$$

Reformulate objective/constraint

objective function of BCQP: $\langle D, xx^T \rangle = \langle \hat{D}, Y_x \rangle$ For linear equality constraint, $K, Y_x \succeq 0$,

$$Ax = e \iff \begin{bmatrix} 1 \\ x \end{bmatrix}^T \begin{bmatrix} -e^T \\ A^T \end{bmatrix} = 0$$

$$\iff Y_x K := \begin{bmatrix} 1 \\ x \end{bmatrix} \begin{bmatrix} 1 \\ x \end{bmatrix}^T \begin{bmatrix} -e^T \\ A^T \end{bmatrix} \begin{bmatrix} -e^T \\ A^T \end{bmatrix}^T = 0$$

$$\iff \qquad \langle Y_x, K \rangle = 0$$

$$\iff \qquad KY_x = 0, \text{ i.e: Range}(Y_x) \subseteq \text{Null}(K).$$

The last step follows since both $K, Y_x \succeq 0$.

KY = 0 both $K, Y \succeq 0$

If we choose V so that Range(V) = Null(K), then we can *facially reduce* the problem using the substitution

$$\left\{ \boldsymbol{Y} \leftarrow \boldsymbol{V} \boldsymbol{R} \boldsymbol{V}^{T} \right\} \trianglelefteq \mathbb{S}^{kn+1}_{+}, \quad \boldsymbol{R} \in \mathbb{S}^{nk+1-k}_{+}$$

This makes the constraint KY = 0 redundant. Therefore, the SDP reformulation is

$$p^* = \min_{Y \in \mathbb{S}^{nk+1}} \quad \langle \hat{D}, Y \rangle$$

arrow $(Y) = e_0$
rank $(Y) = 1$
 $KY = 0$ discard after FR
 $Y \succeq 0$

If $Y \leftarrow VRV^T$, then we can discard KY = 0 constraint.

Simple Structure of V

same diagonal upper-triangular blocks

PROP: fixes zeros/shoots holes in certain entries of matrix

Let x be feasible for BCQP. Then

$$[A^{T}A - I] \circ xx^{T} = 0$$
 (Hadamard product),

and $A^T A - I \ge 0$, $xx^T \ge 0$. Define the gangster indices

$$\boldsymbol{\mathcal{J}} := \left\{ \boldsymbol{i}\boldsymbol{j} : \left(\boldsymbol{A}^{\mathsf{T}}\boldsymbol{A} - \boldsymbol{I}\right)_{\boldsymbol{i}\boldsymbol{j}} > \boldsymbol{0} \right\}.$$

The gangster constraint on feasible Y is $Y_{00} = 1$ and

$$\mathcal{J}(Y) = Y_{\mathcal{J}} = \mathbf{0} \in \mathbb{R}^{|\mathcal{J}|}.$$

Proof

$A = I_k \otimes e$ (Kronecker)

Diag
$$(\text{diag}(A^T A)) = I_{kn}$$

 $Ax = e \iff A^T Ax = A^T e = \text{diag}(A^T A)$
 $\iff A^T Ax - Ix = A^T e - Ix$
 $= \text{diag}(A^T A) - \text{Diag}[\text{diag}(A^T A)]x$
 $\iff (A^T A - I)x = \text{diag}(A^T A) \circ (e - x) = e - x$
 $\iff (A^T A - I)xx^T = (e - x)x^T = ex^T - xx^T$
 $\iff \text{trace}[(A^T A - I)xx^T] = \text{trace}[ex^T - xx^T]$
 $= \sum_{i=1}^{nk} x_i - x_i^2 = 0$
 $\iff (A^T A - I) \circ xx^T = 0.$
The final conclusion now follows from the poppositivities in the

The final conclusion now follows from the nonnegativities in the Hadamard product. ■

complete gangster index: $\hat{\mathcal{J}} := \{(0,0)\} \cup \mathcal{J}$

gangster indices *J* are nonzeros of (hollow) block diagonal matrix $A^T A - I$, i.e., the set of off-diagonal indices of the *n*-by-*n* diagonal blocks of the bottom right of Y_x .

SDP relaxation becomes

$$p^* = \min_{Y \in \mathbb{S}^{nk+1}} \quad \langle \hat{D}, Y \rangle$$

arrow $(Y) = e_0$
$$\mathcal{G}_{\hat{\mathcal{I}}}(Y) = e_0$$

$$KY = 0$$

$$Y \succeq 0$$

where by abuse of notation, $\mathcal{G}_{\hat{\mathcal{I}}}(Y)\cong Y_{\hat{\mathcal{I}}}$

Doubly nonnegative (DNN) relaxation with FR

natural splitting use FR: $Y = VRV^T, V^TV = I$

variables $R \in \mathbb{S}^{nk+1-k}_+$, $Y \in \mathbb{S}^{nk+1}_+$; use facial vector *V* with orthonormal columns; constraint KY = 0 is discarded.

$x_i \in \{0, 1\}$

Lifting for feasible Y implies $0 \le Y \le 1$.

Trace constraint

Lemma (redundant trace constraint)

$$KY = 0$$
, arrow $(Y) = e_0$, $V^T V = I$

$$\implies k+1 =$$
trace $(Y) =$ trace $VRV^T =$ trace (R)

Proof.

$$K := \begin{bmatrix} -e^{T} \\ A^{T} \end{bmatrix} \begin{bmatrix} -e^{T} \\ A^{T} \end{bmatrix}^{T} \implies \operatorname{Null}(K) = \operatorname{Null}\left(\begin{bmatrix} -e^{T} \\ A^{T} \end{bmatrix}^{T} \right) \implies$$

$$0 = KY \iff 0 = \begin{bmatrix} -1 & e^{T} & \dots & 0^{T} \\ \dots & \dots & \dots & \dots \\ -1 & 0^{T} & \dots & e^{T} \end{bmatrix} \begin{bmatrix} Y_{0,0} & \dots & Y_{0,nk} \\ \dots & \dots & \dots \\ Y_{nk,0} & \dots & Y_{nk,nk} \end{bmatrix},$$
implies trace(Y) = Y_{0,0} + $\sum_{j=1}^{k} \sum_{i=1}^{n} Y_{jn+i,0} = 1 + k.$

The DNN Relaxation

polyhedral set constraints

$$\mathcal{Y} := \{ Y \in \mathbb{S}^{nk+1} : \mathcal{G}_{\hat{\mathcal{J}}}(Y) = Y_{\hat{\mathcal{J}}} = e_0, \mathsf{arrow}(Y) = e_0, 0 \le Y \le 1 \}$$

cone set constraints

$$\mathcal{R} := \{ R \in \mathbb{S}^{nk+1-k}_+ : \operatorname{trace}(R) = k+1 \}.$$

DNN Relaxation

$$(\text{DNN}) \qquad \begin{array}{ll} \min_{R,Y} & \langle \hat{D}, Y \rangle \\ \text{s.t.} & Y = VRV^T \\ & Y \in \mathcal{Y} \\ & R \in \mathcal{R} \end{array}$$

Optimality conditions; a Constraint Qualification holds

first-order optimality conditions for DNN

primal-dual pair (Y, R, Z) is optimal if, and only if,

Optimality conditions using projections

primal-dual pair (R, Y, Z) is optimal for DNN

$$\begin{array}{l} & \longleftrightarrow \\ R &= \mathcal{P}_{\mathcal{R}}(R + V^{T}ZV) \\ Y &= \mathcal{P}_{\mathcal{Y}}(Y - \hat{D} - Z) \\ Y &= VRV^{T} \end{array}$$

(modified/symmetric) ADMM or PRSM algorithm

two "names"

symmetric alternating directions method of multipliers Peaceman-Rachford splitting method (if on dual)

augmented Lagrangian for DNN; parameter $\beta > 0$

$$\begin{split} \mathcal{L}_{\beta}(Y,R,Z) \\ &:= \langle \hat{D}, Y \rangle + \langle Z, Y - VRV^{T} \rangle + \frac{\beta}{2} \|Y - VRV^{T}\|_{F}^{2} \\ &+ \iota_{\mathcal{Y}}Y + \iota_{\mathcal{R}}R, \\ \end{split} \\ \text{where } \iota_{\mathcal{S}}(\cdot) \text{ is indicator function for set } \mathcal{S}. \end{split}$$

Update using augmented Lagrangian

we update the primal variables R, Y with intermediate (two) updates of dual multipliers

$$\begin{array}{rcl} R_{k+1} &=& \arg\min_{R \in \mathbb{S}^{nk+1-k}} \mathcal{L}_{\beta}(R,Y_{k},Z_{k}) \\ Z_{k+\frac{1}{2}} &=& Z^{k} + \beta(Y_{k} - VR_{k+1}V^{T}) \\ Y_{k+1} &=& \arg\min_{Y \in \mathbb{S}^{nk+1}} \mathcal{L}_{\beta}(R_{k+1},Y,Z_{k+\frac{1}{2}}) \\ Z_{k+1} &=& Z_{k+\frac{1}{2}} + \beta(Y_{k+1} - VR_{k+1}V^{T}). \end{array}$$

R update using spectral decomp. of M

$$\begin{aligned} R - \text{update} &= \operatorname{argmin}_{R \in \mathbb{S}^{nk+1-k}} \mathcal{L}_{\beta}(R, Y^{k}, Z^{k}) \\ &= \operatorname{argmin}_{R \in \mathcal{R}} \| Y^{k} - VRV^{T} + \frac{1}{\beta}Z_{k} \|_{F}^{2} \\ & \text{by completing the square} \\ &= \operatorname{argmin}_{R \in \mathcal{R}} \| V^{T}Y_{k}V - R + \frac{1}{\beta}V^{T}Z_{k}V \|_{F}^{2} \\ & \text{since } V^{T}V = I \\ &= \operatorname{argmin}_{R \in \mathcal{R}} \| R - V^{T}(Y_{k} + \frac{1}{\beta}Z_{k})V \|_{F}^{2} \\ &= \mathcal{P}_{\mathcal{R}} \left(V^{T}(Y^{k} + \frac{1}{\beta}Z^{k})V \right) \\ &=: \mathcal{P}_{\mathcal{R}}(M); \ M = U\text{Diag}(d)U^{T} \\ &= U\text{Diag}\left[\mathcal{P}_{\Delta_{k+1}}(d)\right]U^{T} \end{aligned}$$

where $\mathcal{P}_{\Delta_{k+1}}$ denotes the projection onto the simplex $\Delta_{k+1} := \{x \in \mathbb{R}^n_+ : \langle e, x \rangle = 1 + k\}.$

Y with polyhedral constraints

$$\begin{array}{lll} \mathsf{Y}-\mathsf{update} &=& \arg\min_{Y\in\mathbb{S}^{nk+1}}\mathcal{L}_{\beta}(R_{k+1},Y,Z_{k+\frac{1}{2}})\\ &=& \arg\min_{Y\in\mathcal{Y}}\|Y-[VR_{k+1}V^{T}-\frac{1}{\beta}(\hat{D}+Z_{k+\frac{1}{2}})]\|_{F}^{2}\\ &\quad \text{by completing the square}\\ &=& \mathcal{P}_{\mathcal{Y}}\left(VR_{k+1}V^{T}-\frac{1}{\beta}(\hat{D}+Z_{k+\frac{1}{2}})\right)\\ &=& \mathcal{P}_{arrowbox}\left(\mathcal{G}_{\hat{\mathcal{J}}}[VR_{k+1}V^{T}-\frac{1}{\beta}(\hat{D}+Z_{k+\frac{1}{2}})]\right) \end{array}$$

where $\mathcal{G}_{\hat{\mathcal{J}}}$ is the gangster constraint and $\mathcal{P}_{arrowbox}$ projects onto the polyhedral set $\{Y \in \mathbb{S}^{nk+1} : Y_{ij} \in [0, 1], \operatorname{arrow}(Y) = e_0\}$.

Dual updates

Lagrange multipliers are essence of optimization

correct choice of Lagrange multiplier Z yields an unconstrained problem; important in obtaining strong lower bounds to prove optimality; (redundant) constraints on dual multipliers can be useful to speed up algorithm

Lemma (arrow projection)

Let
$$Z_A := \{ Z \in \mathbb{S}^{nk+1} : (Z + \hat{D})_{i,i} = 0, (Z + \hat{D})_{0,i} = 0, (Z + \hat{D})_{i,0} = 0, i = 1, ..., nk \}$$
.
Let (Y^*, R^*, Z^*) be an optimal primal-dual pair for the DNN.
Then, $Z^* \in Z_A$.

Proof.

The proof of this fact uses the dual Y feasibility condition and a reformulation of the Y-feasible set. The details are in [2, Thm 2.14] and [1]. \Box

project the dual variable onto \mathcal{Z}_A , i.e:

•
$$Z^{k+\frac{1}{2}} := Z^k + \beta \mathcal{P}_{\mathcal{Z}_A}(Y^k - VR^{k+1}V^T);$$

•
$$Z^{k+1} := Z^{k+\frac{1}{2}} + \beta \mathcal{P}_{\mathcal{Z}_A}(Y^{k+1} - VR^{k+1}V^T).$$

Algorithm (adaptive β)

rPRSM

• Initialization: $Y^{0} = 0 \in S^{nk+1}, Z^{0} = P_{Z_{A}}(0), \beta = \max(\lfloor \frac{nk+1}{k} \rfloor, 1)$ • WHILE: termination criteria are not met • $R^{k+1} = U \text{Diag}[P_{\Delta_{k+1}}(d)]U^{T}$ where $U \text{Diag}(d)U^{T} = eig(V^{T}(Y^{k} + \frac{1}{\beta}Z^{k})V)$ • $Z^{k+\frac{1}{2}} = Z^{k} + \beta P_{Z_{A}}(Y^{k} - VR^{k+1}V^{T})$ • $Y^{k+1} = P_{box}[G_{\mathcal{I}}(VR^{k+1}V^{T} - \frac{1}{\beta}(\hat{D} + Z^{k+\frac{1}{2}}))]$ • $Z^{k+1} = Z^{k+\frac{1}{2}} + \beta P_{Z_{A}}(Y^{k+1} - VR^{k+1}V^{T})$

ENDWHILE

Proving optimality; early stopping conditions

Lagrangian dual function to DNN model is

$$g(Z) = \min_{R \in \mathcal{R}, Y \in \mathcal{Y}} \langle \hat{D}, Y \rangle + \langle Z, Y - VRV^T \rangle$$

= $\min_{Y \in \mathcal{Y}, R \in \mathcal{R}} \langle \hat{D} + Z, Y \rangle - \langle Z, VRV^T \rangle$
= $\min_{Y \in \mathcal{Y}} \langle \hat{D} + Z, Y \rangle + \min_{R \in \mathcal{R}} (-\langle V^T ZV, R \rangle)$
= $\min_{Y \in \mathcal{Y}} \langle \hat{D} + Z, Y \rangle - \max_{R \in \mathcal{R}} \langle V^T ZV, R \rangle$

$$= \min_{\boldsymbol{Y} \in \mathcal{Y}} \langle \hat{\boldsymbol{D}} + \boldsymbol{Z}, \boldsymbol{Y} \rangle - \max_{\|\boldsymbol{v}\|^2 = (k+1)} \boldsymbol{v}^T \boldsymbol{V}^T \boldsymbol{Z} \boldsymbol{V} \boldsymbol{v}$$

$$= \min_{Y \in \mathcal{Y}} \langle \hat{D} + Z, Y \rangle - (k+1)\lambda_{max}(V^T Z V).$$

rounding with 0-column

Y(1 : end, 0 and compute its nearest feasible solution to BCQP (an LSAP). It is equivalent to signal only the maximum weight index for each consecutive block of length*n*. The proof is in [1, section 3.2.2].

alternatively, use dominant eigenvector of Y

compute its nearest feasible solution to BCQP. It is again equivalent to signal only the maximum weight index for each consecutive block of length *n*.

Specifications			Time (s)		Relative duality gap	
d	n	k	sADMM	Mosek	sADMM	Mosek
2	7	5	2.33e-01	3.66e-01	9.80e-08	2.41e-09
2	8	6	3.90e-01	6.94e-01	2.76e-10	5.91e-11
2	9	7	3.53e-01	1.30e+00	6.59e-07	1.55e-11
2	10	8	3.75e-01	3.92e+00	4.82e-08	4.96e-12
2	11	9	4.63e-01	1.30e+01	1.92e-09	2.21e-12
2	12	10	5.41e-01	3.09e+01	9.32e-10	8.41e-10
2	13	11	7.22e-01	7.31e+01	1.83e-08	2.94e-11

Scalability for large size

d	п	k	Time(s)	KKT residual	Relative duality gap
3	3	3	2.36e-02	2.20e-07	7.52e-15
4	4	4	1.38e-01	3.10e-08	9.95e-17
5	5	5	1.80e-01	7.02e-09	3.42e-16
6	6	6	3.06e-01	1.89e-08	9.09e-15
7	7	7	4.79e-01	1.19e-06	1.65e-14
8	8	8	3.16e-01	1.51e-06	5.83e-15
9	9	9	5.11e-01	1.43e-07	1.42e-14
10	10	10	5.46e-01	1.51e-07	1.46e-14
11	11	11	2.71e-01	7.38e-09	3.01e-14
12	12	12	1.01e+00	2.34e-08	2.02e-14
13	13	13	1.48e+00	4.76e-09	1.64e-14
14	14	14	2.98e+00	1.21e-06	2.75e-14
15	15	15	1.54e+00	9.83e-08	1.10e-14
16	16	16	1.27e+00	6.76e-08	1.70e-14
17	17	17	1.80e+00	1.36e-08	2.46e-14
18	18	18	2.44e+00	2.93e-06	3.17e-15
19	19	19	3.19e+00	9.19e-10	1.15e-14
20	20	20	5.53e+00	1.56e-09	4.15e-15
21	21	21	6.25e+00	1.53e-08	3.86e-14
22	22	22	1.38e+01	2.67e-06	1.32e-14
23	23	23	1.35e+01	4.16e-09	1.42e-14
24	24	24	1.64e+01	8.28e-07	3.56e-14
25	25	25	2.72e+01	1.73e-09	8.10e-16

wheel of wheels; k odd; duality gaps; multiple opts

k even unique opt

- the Simplified Wasserstein Barycenter problem, a NP-hard computational problem
- formulated as a binary constrained quadratic program
- applied doubly nonnegative relaxations and solved using facial reduction and symmetric alternating dirtection method of multipliers (sADMM) algorithm
- compute tight lower and upper bounds
- empirical results suggest: efficiency and accuracy and ability to exactly solve the NP-hard problem
- for input data with multiple optimal solutions, the algorithm has difficulty breaking ties and we get duality gaps
- QUESTION: What is the key to characterizing problems with positive duality gaps? Is this related to rigidity of graph or uniqueness of optimal solutions?

F. Burkowski, H. Im, and H. Wolkowicz. A Peaceman-Rachford splitting method for the protein side-chain positioning problem. Technical report, University of Waterloo, Waterloo, Ontario, 2022. arxiv.org/abs/2009.01450,21.

N. Graham, H. Hu, H. Im, X. Li, and H. Wolkowicz. A restricted dual Peaceman-Rachford splitting method for a strengthened DNN relaxation for QAP. *INFORMS J. Comput.*, 34(4):2125–2143, 2022.

I.J. Schoenberg.

Metric spaces and positive definite functions. *Trans. Amer. Math. Soc.*, 44(3):522–536, 1938.

The Simple Wasserstein Barycenter Problem

Henry Wolkowicz

Dept. Comb. and Opt., University of Waterloo, Canada

Workshop on Recent Advances in Optimization October 11 - 12, 2023, Fields Institute, Stewart Library

work with:

A. Alfakih, Univ. of Windsor;
 L. Jung and W.M. Moursi, Univ. of Waterloo.

"Nothing takes place in the world whose meaning is not that of some maximum or minimum."

Leonhard Euler