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“Nothing takes place in the world whose meaning is not that of
some maximum or minimum.”

Leonhard Euler
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Problem

Problem (simplified Wasserstein barycenter problem)
• given k sets consisting of n points each; select exactly one
point from each set to
• minimize sum of distances to barycenter of k chosen pts.

Figure: k=3=n: wheel of wheels; k odd; duality gaps; multiple opts
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Outline

simplified Wasserstein barycenter problem
problem is NP-hard.
exploit Euclidean Distance Matrix structure;
apply facial reduction to a doubly nonnegative relaxation;
EMPHASIZE: obtain natural splitting for applying
symmetric alternating direction method of multipliers,
sADMM

Empirics on random problems are surprisingly successful;
find provable exact solution from upper/lower bounds
examples with special symmetric structure result in duality
gaps.
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Open Question

• Surprisingly, we generally solve these NP-hard random
problems to optimality, i.e., we find the exact optimal barycenter
and optimal choice of points in each set and this yields a zero
duality gap.
e.g., time for random problems k = n = 25 O(10sec).
In contrast, MATLAB-CVX with Gurobi: 2,348,18000 secs for
n = k = 5,7,8, resp.

•We can find problems with positive duality gaps by generating
problems with multiple solutions using special structure, e.g.
symmetry.

• QUESTION: What is the key to characterizing problems with
positive duality gaps? Is this related to rigidity of graph or
uniqueness of optimal solutions?
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Notation I

S ∈ Sn space of n × n symmetric matrices with
traceS = ⟨S,T ⟩ inner prodcut;
diag (S) ∈ Rn is diagonal of S;
adjoint is diag ∗(v) = Diag (v) ∈ Sn .
Sn
+ ⊂ Sn , X ⪰ 0, positive semidefinite cone;

Sn
++,X ≻ 0, positive definite matrices
N n n × n nonnegative matrices;
DNN = Sn

+ ∩N n, doubly nonnegative cone
e vector of ones

5



Notation II

given points pi ∈ Rd , let PT =
[
p1 p2 . . . pt

]
∈ Rdt ;

Wlog points span Rd and are centered:

PT e = 0, e vector of ones.

(PT 7→ PT − veT , v := 1
n PT e)

corresponding: Euclidean distance matrix, EDM,
Dij = ∥pi − pj∥2 and
Gram matrix, G = PPT ; and by Schoenberg [3]
the Lindenstrauss operator, K(G) relates D,G:

D = K(G) = diag (G)eT + ediag (G)T − 2G.
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Notation III

D = K(G) = diag (G)eT + ediag (G)T − 2G

Moreover, K (Lindenstrauss operator): one-one and onto
between centered subspace, Sn

C and hollow subspace, Sn
H

K : Sn
C ↔ S

n
H

Sn
C = {X ∈ Sn : Xe = 0}, Sn

H = {X ∈ Sn : diag X = 0}.

(Note centering PT e = 0 =⇒ G ∈ Sn
C .)
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Simplified Wasserstein Barycenters and EDMs

Main Problem; Wasserstein Barycenter

• given sets S1, ...,Sk , each with n points in Rd

• Find optimal barycenter point y after choosing exactly one
point from each set:

p∗
W := min y∈Rd

pi∈Si

∑
i∈[k ] ∥pi − y∥2

= minpi∈Si miny∈Rd
∑

i∈[k ] ∥pi − y∥2

([k ] = {1,2, . . . ,n}

8



Connection to EDM

Lemma (minimal property of standard barycenter)

Suppose that we are given k points qi ∈ Rd , i = 1, . . . k. Let
y = 1

k
∑k

i=1 qi denote the barycenter. Then sum of squared
distances are minimized:∑k

i=1 ∥qi − y∥2<
∑k

i=1 ∥qi − (y + v)∥2, ∀0 ̸= v ∈ Rd .

Proof.
Wlog, assume points are centered at origin, i.e., translate
qi → qi − y . Since ky =

∑
i qi = 0, for any 0 ̸= v ∈ Rd ,

k∑
i=1

∥qi∥2 <

k∑
i=1

∥qi∥2 + k∥v∥2 =
k∑

i=1

∥qi − v∥2.

9



Equivalent Problem

Proposition
Consider the main problem that consists in finding the optimal
barycenter y of the optimal points pi , y = 1

k
∑

i∈[k ] pi . This is
equivalent to finding exactly one point in each set that
minimizes the sum of squared distances:

(WIQP) 2kp∗
W = p∗ := min

p1∈S1,...,pk∈Sk

∑
i,j∈[k ]

∥∥pi − pj
∥∥2.
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Equivalent Sum of Squared Differences

(WIQP) 2kp∗
W = p∗ := minp1∈S1,...,pk∈Sk

∑
i,j∈[k ]

∥∥pi − pj
∥∥2.

Proof.
Let pi , i ∈ [k ] be optimal; let y be barycenter. Wlog, translate
pj ← pj − y ,∀j , y = 0. Therefore, redefine P with points
pi , i ∈ [k ] in rows of P, and centered,
i.e., PT e = 0,PPT e = Ge = 0. Now∑

i,j∈[k ]
∥∥pi − pj

∥∥2 = eT De
= eT (diag (G)eT + ediag (G)T − 2G

)
e

= 2k traceG (Ge = 0)
= 2k

∑
i∈[k ] ∥pi∥2

= 2kp∗
W , from previous lemma.
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Reformulation Using EDM

x binary; A = I ⊗ e

x := [vT
1 , ..., vT

k ]T ∈ Rnk , A := blkdiag[eT , ...,eT ] ∈ Rk×nk .

Ax = e pick exactly one point from each set

BCQP binary-constrained quadratic problem; D ∈ EDM

(BCQP)
p∗ = min xT Dx = traceDxxT = ⟨D, xxT ⟩

s.t. Ax = e
x ∈ {0,1}kn

Note EDMs are nsd on e⊥; constraints imply xT e is constant
therefore projected Hessian is nsd, i.e., minimizing a concave
function, NP-HARD problem. AND constraints are totally
unimodular.

12



Semidefinite, SDP, Relaxation of BCQP

A lifting to matrix space

use vector
(

1
x

)
and lift to rank-1 matrix Yx :=

(
1
x

)(
1
x

)T

,

and then relax the nonconvex rank-1 constraint. During the
relaxation stage, we impose the constraints that we have on x ,
such as the {0,1} : x2

i − xi = 0, constraints on x represented
as:

arrow(Yx) = e0 (0− th unit vector);

arrow : Sn+1
+ → Rn+1

+ :

[
s0 sT

s S̄

]
7→
(

s0
diag (S̄)− s

)
.

The binary constraint on vector x is equivalent to the arrow
constraint on lifted matrix Yx if rank-one holds.
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SDP reformulation via facial reduction

D̂ :=

[
0 0
0 D

]
∈ Skn+1; K :=

[
−eT

AT

] [
−eT

AT

]T

∈ Skn+1
+

Reformulate objective/constraint

objective function of BCQP: ⟨D, xxT ⟩ = ⟨D̂,Yx⟩
For linear equality constraint, K ,Yx ⪰ 0,

Ax = e ⇐⇒
[
1
x

]T [−eT

AT

]
= 0

⇐⇒ YxK :=

[
1
x

] [
1
x

]T [−eT

AT

] [
−eT

AT

]T

= 0

⇐⇒ ⟨Yx ,K ⟩ = 0
⇐⇒ KYx = 0, i.e: Range(Yx) ⊆ Null(K ).

The last step follows since both K ,Yx ⪰ 0.
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Facial Reduction

KY = 0 both K ,Y ⪰ 0
If we choose V so that Range(V ) = Null(K ), then we can
facially reduce the problem using the substitution{

Y ← VRV T
}
⊴ Skn+1

+ , R ∈ Snk+1−k
+ .

This makes the constraint KY = 0 redundant.
Therefore, the SDP reformulation is

(SDP )

p∗ = minY∈Snk+1 ⟨D̂,Y ⟩
arrow(Y ) = e0
rank (Y ) = 1
KY = 0 discard after FR
Y ⪰ 0

If Y ← VRV T , then we can discard KY = 0 constraint.
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Simple Structure of V

same diagonal upper-triangular blocks

0 100 200 300 400 500 600

nz = 8726

0

100

200

300

400

500

600

Figure: V matrix for k=20, n=20
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(powerful) Gangster constraint

PROP: fixes zeros/shoots holes in certain entries of matrix
Let x be feasible for BCQP. Then

[AT A− I] ◦ xxT = 0 (Hadamard product),

and AT A− I ≥ 0, xxT ≥ 0. Define the gangster indices

J :=

{
ij :
(

AT A− I
)

ij
> 0

}
.

The gangster constraint on feasible Y is Y00 = 1 and

J (Y ) = YJ = 0 ∈ R|J |.
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Proof

A = Ik ⊗ e (Kronecker)

Diag (diag (AT A)) = Ikn
Ax = e ⇐⇒ AT Ax = AT e = diag (AT A)

⇐⇒ AT Ax − Ix = AT e − Ix
= diag (AT A)− Diag [diag (AT A)]x

⇐⇒ (AT A− I)x = diag (AT A) ◦ (e − x) = e − x
⇐⇒ (AT A− I)xxT = (e − x)xT = exT − xxT

⇐⇒ trace[(AT A− I)xxT ] = trace[exT − xxT ]

=
∑nk

i=1 xi − x2
i = 0

⇐⇒ (AT A− I) ◦ xxT = 0.
The final conclusion now follows from the nonnegativities in the
Hadamard product.
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Update SDP relaxation

complete gangster index: Ĵ := {(0,0)} ∪ J
gangster indices J are nonzeros of (hollow) block diagonal
matrix AT A− I, i.e., the set of off-diagonal indices of the n-by-n
diagonal blocks of the bottom right of Yx .

SDP relaxation becomes

p∗ = minY∈Snk+1 ⟨D̂,Y ⟩
arrow(Y ) = e0
GĴ(Y ) = e0
KY = 0
Y ⪰ 0

where by abuse of notation, GĴ(Y ) ∼= YĴ
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Doubly nonnegative (DNN ) relaxation with FR

natural splitting use FR: Y = VRV T ,V T V = I

variables R ∈ Snk+1−k
+ , Y ∈ Snk+1

+ ;
use facial vector V with orthonormal columns;
constraint KY = 0 is discarded.

xi ∈ {0,1}
Lifting for feasible Y implies 0 ≤ Y ≤ 1.
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Trace constraint

Lemma (redundant trace constraint)

KY = 0, arrow(Y ) = e0,V T V = I

=⇒ k + 1 = trace(Y ) = traceVRV T = trace(R)

Proof.

K :=

[
−eT

AT

] [
−eT

AT

]T

=⇒ Null(K ) = Null

([
−eT

AT

]T
)

=⇒

0 = KY ⇐⇒ 0 =

−1 eT ... 0T

... ... ... ...

−1 0T ... eT

 Y0,0 ... Y0,nk
... ... ...

Ynk ,0 ... Ynk ,nk

 ,

implies trace(Y ) = Y0,0 +
∑k

j=1
∑n

i=1 Yjn+i,0 = 1 + k .
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The DNN Relaxation

polyhedral set constraints

Y := {Y ∈ Snk+1 : GĴ(Y ) = YĴ = e0, arrow(Y ) = e0,0 ≤ Y ≤ 1}

cone set constraints

R := {R ∈ Snk+1−k
+ : trace(R) = k + 1}.

DNN Relaxation

(DNN )

minR,Y ⟨D̂,Y ⟩
s.t. Y = VRV T

Y ∈ Y
R ∈ R
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Optimality conditions; a Constraint Qualification holds

first-order optimality conditions for DNN

primal-dual pair (Y ,R,Z ) is optimal if, and only if,

Y = VRV T , R ∈ R, Y ∈ Y (primal feasibility)
0 ∈ −V T ZV +NR(R) (dual R feasibility)
0 ∈ D̂ + Z +NY(Y ) (dual Y feasibility)

Optimality conditions using projections

primal-dual pair (R,Y ,Z ) is optimal for DNN

⇐⇒

R = PR(R + V T ZV )

Y = PY(Y − D̂ − Z )
Y = VRV T
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(modified/symmetric) ADMM or PRSM algorithm

two “names”
symmetric alternating directions method of multipliers
Peaceman-Rachford splitting method (if on dual)

augmented Lagrangian for DNN; parameter β > 0

Lβ(Y ,R,Z )

:= ⟨D̂,Y ⟩+ ⟨Z ,Y − VRV T ⟩+ β
2∥Y − VRV T∥2F

+ιYY + ιRR,
where ιS(·) is indicator function for set S.

24



Updates

Update using augmented Lagrangian

we update the primal variables R,Y with intermediate (two)
updates of dual multipliers

Rk+1 = argminR∈Snk+1−k Lβ(R,Yk ,Zk )
Zk+ 1

2
= Z k + β(Yk − VRk+1V T )

Yk+1 = argminY∈Snk+1 Lβ(Rk+1,Y ,Zk+ 1
2
)

Zk+1 = Zk+ 1
2
+ β(Yk+1 − VRk+1V T ).
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Primal updates for R (explicit)

R update using spectral decomp. of M

R − update = argminR∈Snk+1−k Lβ(R,Y k ,Z k )

= argminR∈R ∥Y k − VRV T + 1
βZk∥2F

by completing the square
= argminR∈R ∥V T YkV − R + 1

βV T ZkV∥2F
since V T V = I

= argminR∈R ∥R − V T (Yk + 1
βZk )V∥2F

= PR
(

V T (Y k + 1
βZ k )V

)
=: PR(M); M = UDiag (d)UT

= UDiag [P∆k+1(d)]U
T

where P∆k+1 denotes the projection onto the simplex
∆k+1 := {x ∈ Rn

+ : ⟨e, x⟩ = 1 + k}.
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Primal update for Y (explicit)

Y with polyhedral constraints

Y−update = argminY∈Snk+1 Lβ(Rk+1,Y ,Zk+ 1
2
)

= argminY∈Y ∥Y − [VRk+1V T − 1
β (D̂ + Zk+ 1

2
)]∥2F

by completing the square
= PY

(
VRk+1V T − 1

β (D̂ + Zk+ 1
2
)
)

= Parrowbox

(
GĴ [VRk+1V T − 1

β (D̂ + Zk+ 1
2
)]
)

where GĴ is the gangster constraint and Parrowbox projects onto
the polyhedral set {Y ∈ Snk+1 : Yij ∈ [0,1], arrow(Y ) = e0}.
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Dual updates

Lagrange multipliers are essence of optimization

correct choice of Lagrange multiplier Z yields an unconstrained
problem; important in obtaining strong lower bounds to prove
optimality; (redundant) constraints on dual multipliers can be
useful to speed up algorithm

Lemma (arrow projection)

Let ZA :=
{

Z ∈ Snk+1 : (Z + D̂)i,i = 0,

(Z + D̂)0,i = 0, (Z + D̂)i,0 = 0, i = 1, ...,nk
}
.

Let (Y ∗,R∗,Z ∗) be an optimal primal-dual pair for the DNN.
Then, Z ∗ ∈ ZA.

Proof.
The proof of this fact uses the dual Y feasibility condition and a
reformulation of the Y -feasible set. The details are in [2, Thm
2.14] and [1].
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Modified dual variable update

project the dual variable onto ZA, i.e:

Z k+ 1
2 := Z k + βPZA(Y

k − VRk+1V T );

Z k+1 := Z k+ 1
2 + βPZA(Y

k+1 − VRk+1V T ).
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Algorithm (adaptive β)

rPRSM
Initialization:
Y 0 = 0 ∈ Snk+1,Z 0 = PZA(0), β = max(⌊nk+1

k ⌋,1)
WHILE: termination criteria are not met

Rk+1 = UDiag [P∆k+1(d)]U
T where

UDiag (d)UT = eig(V T (Y k + 1
βZ k )V )

Z k+ 1
2 = Z k + βPZA(Y

k − VRk+1V T )

Y k+1 = Pbox [GĴ(VRk+1V T − 1
β (D̂ + Z k+ 1

2 ))]

Z k+1 = Z k+ 1
2 + βPZA(Y

k+1 − VRk+1V T )

ENDWHILE
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Lower bounds

Proving optimality; early stopping conditions

Lagrangian dual function to DNN model is

g(Z ) = minR∈R,Y∈Y⟨D̂,Y ⟩+ ⟨Z ,Y − VRV T ⟩
= minY∈Y,R∈R⟨D̂ + Z ,Y ⟩ − ⟨Z ,VRV T ⟩
= minY∈Y⟨D̂ + Z ,Y ⟩+minR∈R(−⟨V T ZV ,R⟩)
= minY∈Y⟨D̂ + Z ,Y ⟩ −maxR∈R⟨V T ZV ,R⟩
= minY∈Y⟨D̂ + Z ,Y ⟩ −max∥v∥2=(k+1) vT V T ZVv
= minY∈Y⟨D̂ + Z ,Y ⟩ − (k + 1)λmax(V T ZV ).
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Upper bounds

rounding with 0-column

Y (1 : end ,0 and compute its nearest feasible solution to BCQP
(an LSAP). It is equivalent to signal only the maximum weight
index for each consecutive block of length n. The proof is
in [1, section 3.2.2].

alternatively, use dominant eigenvector of Y

compute its nearest feasible solution to BCQP. It is again
equivalent to signal only the maximum weight index for each
consecutive block of length n.
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Random data

Specifications Time (s) Relative duality gap
d n k sADMM Mosek sADMM Mosek
2 7 5 2.33e-01 3.66e-01 9.80e-08 2.41e-09
2 8 6 3.90e-01 6.94e-01 2.76e-10 5.91e-11
2 9 7 3.53e-01 1.30e+00 6.59e-07 1.55e-11
2 10 8 3.75e-01 3.92e+00 4.82e-08 4.96e-12
2 11 9 4.63e-01 1.30e+01 1.92e-09 2.21e-12
2 12 10 5.41e-01 3.09e+01 9.32e-10 8.41e-10
2 13 11 7.22e-01 7.31e+01 1.83e-08 2.94e-11
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Scalability for large size

d n k Time(s) KKT residual Relative duality gap
3 3 3 2.36e-02 2.20e-07 7.52e-15
4 4 4 1.38e-01 3.10e-08 9.95e-17
5 5 5 1.80e-01 7.02e-09 3.42e-16
6 6 6 3.06e-01 1.89e-08 9.09e-15
7 7 7 4.79e-01 1.19e-06 1.65e-14
8 8 8 3.16e-01 1.51e-06 5.83e-15
9 9 9 5.11e-01 1.43e-07 1.42e-14

10 10 10 5.46e-01 1.51e-07 1.46e-14
11 11 11 2.71e-01 7.38e-09 3.01e-14
12 12 12 1.01e+00 2.34e-08 2.02e-14
13 13 13 1.48e+00 4.76e-09 1.64e-14
14 14 14 2.98e+00 1.21e-06 2.75e-14
15 15 15 1.54e+00 9.83e-08 1.10e-14
16 16 16 1.27e+00 6.76e-08 1.70e-14
17 17 17 1.80e+00 1.36e-08 2.46e-14
18 18 18 2.44e+00 2.93e-06 3.17e-15
19 19 19 3.19e+00 9.19e-10 1.15e-14
20 20 20 5.53e+00 1.56e-09 4.15e-15
21 21 21 6.25e+00 1.53e-08 3.86e-14
22 22 22 1.38e+01 2.67e-06 1.32e-14
23 23 23 1.35e+01 4.16e-09 1.42e-14
24 24 24 1.64e+01 8.28e-07 3.56e-14
25 25 25 2.72e+01 1.73e-09 8.10e-16
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wheel of wheels; k odd; duality gaps; multiple opts

Figure: k=3=n
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k even unique opt

Figure: k=3=n
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Conclusion

• the Simplified Wasserstein Barycenter problem, a NP-hard
computational problem
• formulated as a binary constrained quadratic program
• applied doubly nonnegative relaxations and solved using
facial reduction and symmetric alternating dirtection method of
multipliers (sADMM) algorithm
• compute tight lower and upper bounds
• empirical results suggest: efficiency and accuracy and ability
to exactly solve the NP-hard problem
• for input data with multiple optimal solutions, the algorithm
has difficulty breaking ties and we get duality gaps
• • QUESTION: What is the key to characterizing problems with
positive duality gaps? Is this related to rigidity of graph or
uniqueness of optimal solutions?
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