Strong Duality and Stability in Conic Convex Optimization

Henry Wolkowicz University of Waterloo

Tuesday, Feb. 14, 2023 Seminar Topics Course CO769

Outline

- Notation and Preliminaries
 - SDP Duality Gap Example
- Programs Regularization for Cone Programs
 - Facial Reduction; the Minimal Face
 - Regularization Using Ramana's Dual for SDP
- 3 Towards a Better regularization
 - A Stable Auxiliary Problem
 - The SDP Case
- 4 Numerical Tests
- 5 Strict Complementarity and Nonzero Duality Gaps
 - Strict Complementarity Partitions and Nonzero Gaps
- 6 Concluding Remarks and Ongoing Work
 - Near Failure of Slater's CQ/Distance to Infeasibility

Regularization for Cone Programs Towards a Better regularization Numerical Tests Strict Complementarity and Nonzero Duality Gaps Concluding Remarks and Ongoing Work

Cone Optimization

SDP Duality Gap Example

Primal-Dual Pair of Optimization Problems in Conic Form

$$\begin{array}{ll} \textit{(finite)} & v_{\mathcal{P}} = \sup_{y} \{ \langle b, y \rangle \ : \ \mathcal{A}^{*}y \preceq_{\mathcal{K}} c \}, & (\mathcal{P}) \\ & v_{\mathcal{D}} = \inf_{x} \{ \langle c, x \rangle \ : \ \mathcal{A}x = b, \ x \succeq_{\mathcal{K}^{*}} 0 \}. & (\mathcal{D}) \end{array}$$

where

A - an onto linear transformation; adjoint is A*
K - a proper convex cone with dual/polar cone K* = {x : ⟨x, z⟩ ≥ 0, ∀z ∈ K}.
z' ≺_K z''(z' ≺_K z'') - partial order, z'' − z' ∈ K(∈ intK)

Regularization for Cone Programs Towards a Better regularization Numerical Tests Strict Complementarity and Nonzero Duality Gaps Concluding Remarks and Ongoing Work

Cone Optimization

SDP Duality Gap Example

Primal-Dual Pair of Optimization Problems in Conic Form

(finite)
$$v_P = \sup_{v} \{ \langle b, y \rangle : \mathcal{A}^* y \preceq_{\mathcal{K}} c \},$$
 (\mathcal{P})

$$v_D = \inf_x \{ \langle c, x \rangle : \mathcal{A}x = b, x \succeq_{K^*} 0 \}.$$

 (\mathcal{D})

where

- A an onto linear transformation; adjoint is A*
- *K* a proper convex cone with dual/polar cone $K^* = \{x : \langle x, z \rangle \ge 0, \forall z \in K\}.$
- $z' \preceq_{\kappa} z''(z' \prec_{\kappa} z'')$ partial order, $z'' z' \in K(\in intK)$

Regularization for Cone Programs Towards a Better regularization Numerical Tests Strict Complementarity and Nonzero Duality Gaps

Concluding Remarks and Ongoing Work

SDP Duality Gap Example

Semidefinite Programming, SDP

SDP

$$\mathbf{v}_{\mathbf{P}} = \sup_{\mathbf{v}} \{ \langle \boldsymbol{b}, \boldsymbol{y} \rangle : \mathcal{A}^* \boldsymbol{y} \preceq_{\mathcal{K}} \boldsymbol{c} \}, \qquad (\mathcal{P})$$

$$v_D = \inf_{x} \{ \langle c, x \rangle : \mathcal{A}x = b, \ x \succeq_{\mathcal{K}^*} 0 \}.$$
 (D)

For SDP, $\mathcal{A} : \mathbb{S}^n \to \mathbb{R}^m$, $b \in \mathbb{R}^m$, $c \in \mathbb{S}^n$, and $\mathcal{K} = \mathcal{K}^* = \mathbb{S}^n_+ := \{X \in \mathbb{S}^n : X \text{ is PSD}\}.$

Regularization for Cone Programs Towards a Better regularization Numerical Tests Strict Complementarity and Nonzero Duality Gaps Concluding Remarks and Ongoing Work

Faces of Cones

SDP Duality Gap Example

Face

A convex cone F is a face of K, denoted $F \trianglelefteq K$, if

$$x, y \in K$$
 and $x + y \in F \implies x, y \in F$.

If $F \trianglelefteq K$ and $F \neq K$, write $F \lhd K$.

Conjugate Face

If $F \leq K$, the conjugate face (or complementary face) of F is

$$F^{c} := F^{\perp} \cap K^{*} \trianglelefteq K^{*}.$$

If $x \in \operatorname{ri}(F)$, then $F^c = \{x\}^{\perp} \cap K^*$.

Numerical Tests

Strict Complementarity and Nonzero Duality Gaps Concluding Remarks and Ongoing Work

Minimal Face (Minimal Cone)

SDP Duality Gap Example

Feasible set of (\mathcal{P})

Let
$$\mathcal{F}_{\mathcal{P}} := \{ y : c - \mathcal{A}^* y \succeq_{\mathcal{K}} 0 \}$$

Minimal Face

Assuming that \mathcal{F}_P is nonempty, the minimal face (or minimal cone) of (\mathcal{P}) is

$\mathcal{E}_{\mathcal{P}} := \bigcap \{ F \trianglelefteq K : c - \mathcal{A}^*(\mathcal{F}_{\mathcal{P}}) \subset F \}.$

i.e., the minimal face that contains all the feasible slacks.

SDP Duality Gap Example

Minimal Face (Minimal Cone)

Feasible set of (\mathcal{P})

Let
$$\mathcal{F}_{\mathcal{P}} := \{ y : c - \mathcal{A}^* y \succeq_{\mathcal{K}} 0 \}$$

Minimal Face

Assuming that \mathcal{F}_P is nonempty, the minimal face (or minimal cone) of (\mathcal{P}) is

$$f_{\mathcal{P}} := \bigcap \{ \mathcal{F} \trianglelefteq \mathcal{K} : \mathcal{C} - \mathcal{A}^*(\mathcal{F}_{\mathcal{P}}) \subset \mathcal{F} \}.$$

i.e., the minimal face that contains all the feasible slacks.

SDP Duality Gap Example

SDP Example from Ramana, 1995

Primal SDP

$$0 = v_P = \sup_{y} \left\{ y_2 : \begin{pmatrix} y_2 & 0 & 0 \\ 0 & y_1 & y_2 \\ 0 & y_2 & 0 \end{pmatrix} \preceq \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \right\}$$
$$y^* = \begin{pmatrix} y_1^* & 0 \end{pmatrix}^T, \quad y_1^* \le 0, \quad Z^* = c - \mathcal{A}^* y^* = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -y_1^* & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

Slater's CQ fails for primal

Regularization for Cone Programs Towards a Better regularization Numerical Tests Strict Complementarity and Nonzero Duality Gaps Concluding Remarks and Ongoing Work

Dual of SDP Example

Dual Program

 $1 = v_D = \inf_X \{X_{11} : X_{22} = 0, X_{11} + 2X_{23} = 1, X \succeq 0\}$

$$X^* = \begin{pmatrix} 1 & 0 & X_{13} \\ 0 & 0 & 0 \\ X_{13} & 0 & X_{33} \end{pmatrix}, \quad X_{33} \ge (X_{13}^2)$$

Slater's CQ for (primal) dual & complementarity fails

duality gap $v_D - v_P = 1 - 0 = 1$, trace $X^*Z^* = \text{trace} \begin{pmatrix} 1 & 0 & X_{13} \\ 0 & 0 & 0 \\ X_{13} & 0 & X_{33} \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & -y_1^* & 0 \\ 0 & 0 & 0 \end{pmatrix} = 1 > 0$

SDP Duality Gap Example

SDP Duality Gap Example

Minimal Face for Ramana Example

Feasible Set/Minimal Face

$$\mathcal{F}_{\boldsymbol{P}}=\{\boldsymbol{y}\in\mathbb{R}^2: y_1\leq 0,\ y_2=0\}$$

$$\begin{aligned} f_{\mathcal{P}} &= & \bigcap \{ F \trianglelefteq K : c - \mathcal{A}^*(\mathcal{F}_{\mathcal{P}}) \subset F \} \\ &= & \begin{pmatrix} \mathbb{S}^2_+ & 0 \\ 0 & 0 \end{pmatrix} \\ &\triangleleft & \mathbb{S}^3_+ \end{aligned}$$

Slater CQ and Minimal Face

If (\mathcal{P}) is feasible, then

 $c - \mathcal{A}^* y \not\succ_K 0 \ \forall y \ ($ Slater's CQ fails for $(\mathcal{P}) \) \iff f_P \lhd K$

Regularization of (\mathcal{P})

Facial Reduction; the Minimal Face Regularization Using Ramana's Dual for SDP

Borwein-W (1981)

If v_P is finite, then (\mathcal{P}) is equivalent to regularized (\mathcal{P})

$$\mathbf{V_{RP}} = \sup_{\mathbf{y}} \{ \langle \mathbf{b}, \mathbf{y} \rangle : \mathcal{A}^* \mathbf{y} \preceq_{\mathbf{f_P}} \mathbf{c} \}.$$

(RP)

Lagrangian Dual DRP Satisfies Strong Duality:

$$\mathbf{V}_{\mathbf{P}} = \mathbf{V}_{\mathbf{R}\mathbf{P}} = \mathbf{V}_{\mathbf{D}\mathbf{R}\mathbf{P}} = \inf_{x} \{ \langle c, x \rangle : \mathcal{A}x = b, x \succeq_{f_{\mathbf{P}}^{*}} 0 \} \quad (\mathsf{D}\mathsf{R}\mathsf{P})$$

and *v_{DRP}* is <u>attained</u>

Facial Reduction; the Minimal Face Regularization Using Ramana's Dual for SDP

Implementation Problems with Regularization

Difficulties

Borwein and W. also gave an algorithm to compute f_P . But Difficulties:

- The algorithm requires the solution of several (homogeneous) cone programs (constraints are:
 Ax = 0, ⟨c, x⟩ = 0, 0 ≠ x ≽_K 0)
- If Slater's CQ fails for (D), then it also fails for each of these cone programs.

Facial Reduction; the Minimal Face Regularization Using Ramana's Dual for SDP

Ramana's Strong Dual for SDP

Ramana '95: Extended Lagrange-Slater dual (ELSD) for (\mathcal{P})

Construction of this dual takes advantage of the well understood facial structure of \mathbb{S}_{+}^{n} .

Advantages:

- **O** ELSD is explicit in terms of original data (A, b, c)
- 2 ELSD is poly. size (# vrbles is (kn^2) , $k \le \min\{m, n\}$)

Disdvantages:

- Slater's CQ may fail for ELSD and its Lagrangian dual.
- ELSD can potentially be very large.

Our Goals:

A Stable Auxiliary Problem The SDP Case

Equivalence in the case of SDP

Ramana, Tunçel, and W. '97: Ramana's ELSD is equivalent to (DRP) (dual of regularized primal of Borwein and W.) (Both approaches may require solution of potentially large SDPs that need not satisfy Slater's CQ.)

Goals: Derive an Algorithm that Satisfies

- recognizes if Slater's CQ holds and if (P)–(D) has a zero duality gap
- Size of any intermediate cone program solved does not exceed that of (P) or (D)
- intermediate cone programs to be solved are well behaved

Our Goals:

A Stable Auxiliary Problem The SDP Case

Equivalence in the case of SDP

Ramana, Tunçel, and W. '97: Ramana's ELSD is equivalent to (DRP) (dual of regularized primal of Borwein and W.) (Both approaches may require solution of potentially large SDPs that need not satisfy Slater's CQ.)

Goals: Derive an Algorithm that Satisfies

- recognizes if Slater's CQ holds and if (P)–(D) has a zero duality gap
- Size of any intermediate cone program solved does not exceed that of (P) or (D)
- intermediate cone programs to be solved are well behaved

A Stable Auxiliary Problem The SDP Case

Theorem of the Alternative for Slater's CQ

THEOREM

Suppose that (\mathcal{P}) is feasible. Then exactly one of the following two systems is consistent:

(1) Ax = 0, $\langle c, x \rangle = 0$, and $0 \neq x \succeq_{K^*} 0$ (2) $A^*y \prec_K c$ (Slater's CQ holds for (\mathcal{P}))

Difficult?

In theory, we can solve $\min\{0 : x \text{ satisfies (1)}\}$ to determine if Slater's CQ fails for (\mathcal{P}) . But this problem need not satisfy the generalized Slater CQ. So how can we solve (1)?

A Stable Auxiliary Problem The SDP Case

Theorem of the Alternative for Slater's CQ

THEOREM

Suppose that (\mathcal{P}) is feasible. Then exactly one of the following two systems is consistent:

(1) Ax = 0, $\langle c, x \rangle = 0$, and $0 \neq x \succeq_{K^*} 0$ (2) $A^*y \prec_K c$ (Slater's CQ holds for (\mathcal{P}))

Difficult?

In theory, we can solve $\min\{0 : x \text{ satisfies (1)}\}$ to determine if Slater's CQ fails for (\mathcal{P}). But this problem need not satisfy the generalized Slater CQ. So how can we solve (1)?

Strict Complementarity and Nonzero Duality Gaps Concluding Remarks and Ongoing Work A Stable Auxiliary Problem The SDP Case

 (\mathcal{A})

Stable Theorem of the Alternative

Stable Auxiliary Problem

Let $e \in int(K) \cap int(K^*)$; define $\mathcal{A}_c x := \begin{pmatrix} \mathcal{A}x \\ \langle c, x \rangle \end{pmatrix}$ $\alpha^* := \left\{ \inf_{x,\alpha} \alpha : \mathcal{A}_c x = 0, x + \alpha e \succeq_{K^*} 0, \langle e, x \rangle \le 1 \right\}$

Properties/Advantages

- size of (\mathcal{A}) essentially that of (\mathcal{D})
- A strictly feasible primal-dual point is easily found.
- Apply primal-dual IPM; assume a barrier for *K** such that the central path defined by it converges to a point in the relative interior of the optimal face; follow central path closely at end of algorithm.

Slater's Condition and the Auxiliary problem

Solution to (\mathcal{A}) yields info on (\mathcal{P}) – (\mathcal{D})

Theorem: The *x* component of the central path for (A) converges to a point in $ri(face(G_P))$, where

$$G_{\mathcal{P}} := \{x : Ax = 0, \langle c, x \rangle = 0, x \succeq_{\mathcal{K}^*} 0\}.$$

Moreover, since $f_P \subset \{x^*\}^{\perp} \cap K = [face(G_P)]^c \trianglelefteq K$, one of the following holds:

• $\alpha^* = 0$ and $x^* = 0$, so Slater's CQ holds for (\mathcal{P}), or

3 $\alpha^* = 0$ and $0 \neq x^* \succeq_{K^*} 0$, so $f_P \subset \{x^*\}^{\perp} \cap K \triangleleft K$, or

 α* < 0 and x* ≻_{K*} 0, so the generalized Slater CQ holds for (D).

Our Algorithm

A Stable Auxiliary Problem The SDP Case

Input: A, b, c, K, and $\varepsilon > 0$

Compute an optimal α^* and $x^* \in ri(face(G_P))$ from (\mathcal{A}) using a primal-dual IPM.

While $||x^*|| > \varepsilon$

If $\alpha^* < 0$, then $x^* \succ_{K^*} 0$, $f_P = \{0\}$. Hence optimal y for (\mathcal{P}) satisfies $A^*y = c$; exit algorithm. Else

- $y \in \mathcal{F}_P$ implies $c \mathcal{A}^* y \in [\operatorname{face}(G_P)]^c \lhd K$, get reduced primal with cone $K' = [\operatorname{face}(G_P)]^c$.
- 8 Replace (update) primal by reduced primal.

End

Conclusion of Algorithm

A Stable Auxiliary Problem The SDP Case

Finish

Finally, solve reduced primal problem for which Slater's CQ holds.

(This provides a certificate of optimality.)

 \rightarrow For cones such as $\mathbb{S}^n_+,$ auxiliary problems get progressively smaller.

A Stable Auxiliary Problem The SDP Case

The (Conjugate) Faces, $\mathcal{F} \leq \mathbb{S}^n_+$ are of the Form

$$\mathcal{F} = (P \quad Q) \begin{pmatrix} \mathbb{S}_{+}^{r} & 0\\ 0 & 0 \end{pmatrix} (P \quad Q)^{T} = P \mathbb{S}_{+}^{r} P^{T}$$
$$\mathcal{F}^{c} = (P \quad Q) \begin{pmatrix} 0 & 0\\ 0 & \mathbb{S}_{+}^{n-r} \end{pmatrix} (P \quad Q)^{T} = Q \mathbb{S}_{+}^{n-r} Q^{T}$$

where matrix $(P \ Q)$ is orthogonal.

The Minimal Face *f*_P Using the Auxiliary Problem

With $x^* \in ri(G_P)$ from Auxiliary Problem

$$\begin{aligned} x^* &= \begin{pmatrix} P & Q \end{pmatrix} \begin{pmatrix} D & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} P & Q \end{pmatrix}^T, \\ \text{face}(G_P) &= \text{face}(x^*) = \begin{pmatrix} P & Q \end{pmatrix} \begin{pmatrix} \mathbb{S}_+^r & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} P & Q \end{pmatrix}^T \\ \text{Then: } f_P &\trianglelefteq K' := [\text{face}(G_P)]^c = Q \mathbb{S}_+^{n-r} Q^T. \end{aligned}$$

WLOG: shift c and find linear transformation \mathcal{L}'

$$c' \leftarrow c - \mathcal{A}^* y' \in K' - K'; \quad \mathcal{R}(\mathcal{A}^* \mathcal{L}') \subset K' - K'$$

A Reduced Lower Dimensional Primal Problem

equivalent cone constraints: $\mathcal{A}^* \mathcal{L}' y' \preceq_{\mathcal{K}'} c'$ $Q^T (\mathcal{A}^* \mathcal{L}' y') Q \preceq_{\mathbb{S}^{n-r}} Q^T c' Q$

Numerical Tests

Strict Complementarity and Nonzero Duality Gaps Concluding Remarks and Ongoing Work

Previous SDP with $K = \mathbb{S}^3_+$ and a Duality Gap of 1

SeDuMi 1.1 Results

 $\begin{array}{l} y^{*} = \begin{pmatrix} -0.321 \times 10^{6} & 0.372 \end{pmatrix}^{T} \\ s^{*} = \begin{pmatrix} 0.628 \times 10^{5} & 0 & 0 \\ 0 & -0.321 \times 10^{6} & -0.372 \\ 0 & -0.372 & 0 \end{pmatrix}; \\ \mbox{desired accuracy (10^{-6}) achieved but!!} \\ \langle c, x^{*} \rangle - \langle b, y^{*} \rangle \approx -0.12! \mbox{ and } s^{*} \mbox{ is not pos. semidef.} \end{array}$

After One Step of the Reduction

Our code yields correct primal solution:

$$y^* = \begin{pmatrix} -1.50 \\ 0 \end{pmatrix}, \quad s^* = \begin{pmatrix} 1.00 & 0 & 0 \\ 0 & 1.50 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

Numerical Tests

Strict Complementarity and Nonzero Duality Gaps Concluding Remarks and Ongoing Work

Higher Dimensional Numerical Experiments

SDP with $m = n \ge 3$, $b = e_2$, c = 0

$$\mathcal{A}^* y = \begin{pmatrix} y_1 & y_2 & y_3 & \cdots & y_{n-1} & y_n \\ y_2 & y_3 & & & & \\ \vdots & & & \ddots & & \\ y_{n-1} & & & & y_n & \\ y_n & & & & & 0 \end{pmatrix}$$

SeDuMi/Our Algorithm

SeDuMi gives incorrect primal/dual solution; duality gap of -1; our algorithm gives correct solution $\mathcal{F}_P = \{y \in \mathbb{R}^n : y_1 \leq 0, y_2 = \cdots = y_n = 0\}$ min. face $f_P = \{Z \in \mathbb{S}^n_+ : Z_{11} \geq 0, Z_{ij} = 0 \ \forall (i,j) \neq (1,1)\},$ and (\mathcal{D}) is infeasible.

Strict Complementarity and Nonzero Duality Gaps

Concluding Remarks and Ongoing Work

Strict Complementarity Partitions and Nonzero Gaps

$(\mathcal{P})-(\mathcal{D})$ in Symmetric Subspace Form

Symmetric Subspace Form

Let: $\bar{s} := c$; $A\bar{x} = b$; $\mathcal{L} = \text{Nullspace}(\mathcal{A})$. Then:

Recession Cone Feasibility Problems for (\mathcal{P}') and (\mathcal{D}'):

 $e \in int(K) \cap int(K^*)$; and $(0 \neq x^*, 0 = \alpha^*)$ soln to aux. prob.

 $\mathcal{S} := \{ s \in \mathcal{L}^{\perp} \cap K : \langle e, s \rangle = 1 \}, \qquad (\mathsf{PRF})$ $x^* / \langle e, x^* \rangle \in \mathcal{X} := \{ x \in \mathcal{L} \cap K^* : \langle e, x \rangle = 1 \}. \qquad (\mathsf{DRF})$

Strict Complementarity and Nonzero Duality Gaps Concluding Remarks and Ongoing Work

Complementarity Partition

Strict Complementarity Partitions and Nonzero Gaps

(PRF) (DRF)

Symmetric Subspace Form

$$\mathcal{S} := \{ \boldsymbol{s} \in \mathcal{L}^{\perp} \cap \boldsymbol{K} : \langle \boldsymbol{e}, \boldsymbol{s} \rangle = 1 \}, \quad \mathcal{L}^{\perp} = \mathcal{R}(\mathcal{A}^*)$$

 $\mathcal{X} := \{ \boldsymbol{x} \in \mathcal{L} \cap \boldsymbol{K}^* : \langle \boldsymbol{e}, \boldsymbol{x} \rangle = 1 \} \quad \mathcal{L} = \mathcal{N}(\mathcal{A})$

Complementarity Partition for given $\mathcal{F} \leq K$:

(𝒯, 𝒯) is a complementarity partition if face(𝔅) ⊂ 𝒯 and face(𝔅) ⊂ 𝒯^c;
it is a strict complementarity partition if also [face(𝔅)]^c = face(𝔅) (equiv. [face(𝔅)]^c ∩ [face(𝔅)]^c = {0});
it is proper if 𝔅 and 𝔅 are both nonempty.

Strict Complementarity and Nonzero Duality Gaps Concluding Remarks and Ongoing Work Strict Complementarity Partitions and Nonzero Gaps

Strict Complementarity and Nonzero Gaps

Theorem: Let K be a proper cone

(1) If (PRF)–(DRF) has a proper complementarity partition but not a strict complementarity partition, then there exists \bar{s} and \bar{x} such that (\mathcal{P})–(\mathcal{D}) with data ($\mathcal{L}, K, \bar{s}, \bar{x}$) has a finite nonzero duality gap.

(Partial Converse)

(2) If (a) $(\mathcal{P})-(\mathcal{D})$ with data $(\mathcal{L}, K, \bar{s}, \bar{x})$ has a finite nonzero duality gap with both optimal values attained, and (b) all feasible solutions of (\mathcal{P}) and (\mathcal{D}) are optimal, then (PRF)–(DRF) has a proper complementarity partition but not a strict complementarity partition.

Strict Complementarity and Nonzero Duality Gaps Concluding Remarks and Ongoing Work Strict Complementarity Partitions and Nonzero Gaps

Generating SDP Instances with nonzero gaps

$K = \mathbb{S}^n_+$ Instance

Choose positive integers n, p, d with n > p + d. Let $e = I_n \in int(K) \cap int(K^*)$.

Choose subspace \mathcal{L} and Orthogonal Matrix Q

$$face(\mathcal{L}^{\perp} \cap K) = Q \begin{pmatrix} 0 & & \\ &$$

Choose a nonzero $U \in \mathbb{S}^{n-p-d}_+$

$$\begin{split} \bar{\mathbf{s}} &:= \bar{\mathbf{x}} := \mathbf{Q} \begin{pmatrix} \mathbf{0} & \mathbf{U} \\ & \mathbf{0} \end{pmatrix} \mathbf{Q}^{\mathsf{T}}. \\ \text{duality gap is } \langle \mathbf{\bar{s}}, \mathbf{\bar{x}} \rangle = \| \mathbf{U} \|_{F}^{2} > \mathbf{0}. \end{split}$$

Conclusion

Near Failure of Slater's CQ/Distance to Infeasibility

Summary:

- presented a stable algorithm to solve (feasible) conic problems for which Slater's CQ fails;
- algorithm requires the solution of problems whose size is the same as that of the original dual; In special cases such as SDP and SOCP, these problems become progressively smaller;
- Failure of strict complementarity for the associated recession problems is closely related to the existence of instances having a finite nonzero duality gap; provides a means of generating instances for testing.

Work in Progress

Near Failure of Slater's CQ/Distance to Infeasibility

Future:

- We intend to refine our code and test it on larger SDPs having a finite nonzero duality gap.
- Perform backward error analysis to study how rounding errors and errors in computing approximate solutions to the auxiliary problems affects the number of iterations of our algorithm.
- In particular, we want to reduce the problem when Slater's condition almost fails.

Near Failure of Slater's CQ/Distance to Infeasibility

Auxiliary Problem for Distance to Infeasibility

Perturbed Auxiliary Problem

let Q denote the second order cone, SOC; relax the equality constraints $A_c x = 0$ to SOC constraint $||A_c x||_2 \le \delta$.

$$\begin{array}{rcl}
 & \mathcal{V}_{\mathcal{P}}^{aux} := & \inf_{x,\delta} & \delta \\ & \text{s.t.} & \begin{pmatrix} \delta \\ \mathcal{A}_{c}x \end{pmatrix} \succeq_{\mathcal{Q}} 0 \\ & \langle x, e \rangle = 1 \\ & x \succ_{K^{*}} 0. \end{array}$$

Similar nice properties; and, near failure of Slater's CQ is identified.