Linear Programming:

Part (i): Strict Feasibility and Degeneracy (Pg 2) Part (ii): Exterior Point Path Following Algorithm (Pg 70)

Combinatorics Waterioo Prof. Henry Wolkowicz
\& Optimization hwolkowicz@uwaterloo.ca Tues. Mar. 28, 2023

LP Part (i): Strict Feasibility and Degeneracy

Henry Wolkowicz

Dept. Comb. and Opt., University of Waterloo, Canada
Tues. Mar. 28, 2023
joint work with: Jiyoung Im, Univ. of Waterloo

Motivation/Main Results

Background

- Currently: simplex and interior point methods are most popular algorithms for solving linear programs, LPs.
- Unlike general conic programs, (finite) LPs do not require strict feasibility for strong duality. Hence strict feasibility is often less emphasized.

We show that lack of strict feasibility:

(1) causes numerical difficulties in both simplex and interior point methods.
(2) and \Longrightarrow all basic feasible solutions, BFS, are degenerate

We present

an extension of Phase-I of simplex method for preprocessing for strict feasibility

Background and Notation

Feasible LPs; standard form (with FINITE opt. value)

$$
\begin{array}{ll}
(\mathcal{P}) \quad \text { (finite) } p^{*}=\min _{x} & c^{T} x \\
& \text { s.t. } \\
& A x=b \in \mathbb{R}^{m} \\
& x \in \mathbb{R}_{+}^{n}
\end{array}
$$

assume wlog $\operatorname{rank}(A)=m$;
with feasible set: $\quad \mathcal{F}=\left\{x \in \mathbb{R}^{n}: A x=b, x \geq 0\right\}$

Dual LP

$$
\begin{aligned}
(\mathcal{D}) \quad p^{*}=d^{*}=\max & b^{T} y \\
\text { s.t. } & A^{T} y \leq c \in \mathbb{R}^{n} \\
& y \in \mathbb{R}^{m}
\end{aligned}
$$

(equivalently $A^{T} y+s=c, s \geq 0$ slack)

History: Kantorovich; Dantzig, Karmarkar

Kantorovich '39, USSR, WWII

- transportation models and optimal solutions (algorithm)
- helped NKVD with transportation problems

Dantzig '47, USA, SIMPLEX METHOD

- following duality/game-theory by Von Neumann
- Hotelling: "but the world is nonlinear"
- Von Neumann: "if you have a linear model, you can now solve it"
- SIAM survey 1970 's: 70% of ALL world computer time is spent on the simplex method

Karmarkar '84, Interior Point Revolution

- Lustig-Marsten-Shanno OB1 code '90; large went

$$
\text { from: }(m=1 e 3 \times n=1 e 4) \text { to }(m=1 e 5 \times n=1 e 7)
$$

- to modern day: $(m=1 e 6 \times n=1 e 10)$

Strict Feasibility, Slater, Mangasarian-Fromovitz CQ

Feasible LPs; standard form (with FINITE opt. value)

$$
\begin{aligned}
(\mathcal{P}) \quad \text { (finite) } p^{*}=\min & c^{T} x \\
& \text { s.t. } \\
& A x=b \in \mathbb{R}^{m} \\
& x \in \mathbb{R}_{+}^{n}
\end{aligned}
$$

there exists \hat{x} with $A \hat{x}=b, \hat{x}>0$
(MFCQ)

Dual LP

$$
\begin{aligned}
(\mathcal{D}) \quad p^{*}=d^{*}= & \max \\
\text { s.t. } & b^{T} y \\
& A^{T} y \leq c \in \mathbb{R}^{n} \\
& y \in \mathbb{R}^{m}
\end{aligned}
$$

there exists \hat{y} with $A^{T} \hat{y}<c$
(Slater CQ)

Stability: MFCQ/Slater

stability wrt RHS perturbations
\Longleftrightarrow compact set of dual variables

Basic (Feasible/Degenerate) Solutions

Definition (basic (feasible) solution)

- Given: $x \in \mathbb{R}^{n}, A x=b$ and $\mathcal{B} \subset\{1, \ldots, n\}$, $|\mathcal{B}|=m$; let $\mathcal{N}=\{1 \ldots n\} \backslash B$. Then x is a basic solution if $A(:, \mathcal{B})$ is nonsingular and $x_{i}=0, \forall i \in \mathcal{N}$
- x is a basic feasible solution, BFS, if in addition $x \geq 0$. It is degenerate, if $\exists i \in \mathcal{B}, x_{i}=0$

Equivalently, if $A x=b, x \geq 0$ (feasible):

x is basic if there exists
$\mathcal{N} \subset\{1, \ldots, n\},|\mathcal{N}|=n-m, x_{i}=0, \forall i \in \mathcal{N}$;
and the corresponding matrix of active constraints

$$
\left[\begin{array}{c}
A \\
I_{\mathcal{N}}
\end{array}\right] \text { is nonsingular. }
$$

It is degenerate if there are redundant active constraints.

Two Kinds of Degeneracy

Definition (Degenerate BFS)

$x \mathrm{BFS}$ is $\quad\left\{\begin{array}{l}\text { nondegenerate, } \\ \text { if } x_{i}>0, \forall i \in \mathcal{B},\end{array}\right.$ degenerate, otherwise

Definition (variable fixed at 0)

Let $i_{0} \in \mathcal{I}=\{1, \ldots, n\} . x_{i_{0}}$ is fixed at 0 if $x_{i_{0}}=0, \forall x \in \mathcal{F}$. Let

$$
\mathcal{I}^{=}=\left\{i \in \mathcal{I}: x_{i} \text { is fixed at } 0\right\}, \mathcal{I}^{<}=\mathcal{I} \backslash \mathcal{I}^{=}
$$

\bar{x} a degenerate BFS with basis \mathcal{B} is of type:
(1) if: $i \in \mathcal{B}, \bar{x}_{i}=0 \Longrightarrow i \in \mathcal{I}^{<}$
(2) if: there exists $i \in \mathcal{B} \cap \mathcal{I}^{=}$

Below we see that: if Type 2 exists, then ALL BFS are of Type 2.

Facial Reduction, FR, for LPs that fail Strict Feasibility

Two Steps

- obtain an equivalent problem with strict feasibility;
- recover full-row rank for the constraint matrix (always needed for MFCQ)

Definition (Face of a convex set K)

A convex set $F \subseteq K \subseteq \mathbb{R}^{n}$ is a face of K, denoted $F \unlhd K$, if

$$
y, z \in K, x=\frac{1}{2}(y+z) \in F \Longrightarrow y, z \in F
$$

The minimal face for F, face (F), is the intersection of all faces of K containing C.

faces of \mathbb{R}_{+}^{n}, nonnegative orthant

for fixed indices $\hat{\mathcal{I}} \subseteq\{1, \ldots, n\}$

$$
F=\left\{x \in \mathbb{R}_{+}^{n}: x_{i}=0, \forall i \in \hat{\mathcal{I}}\right\}
$$

Facial Reduction; Basics

Theorem (DW: [12, Theorem 3.1.3] Theorem of the Alternative)

For the feasible system \mathcal{F} of the LP, exactly one of the following statements holds:
(1) There exists $x \in \mathbb{R}_{++}^{n}$ with $A x=b$, i.e., strict feasibility holds;
(2) There exists $y \in \mathbb{R}^{m}$ such that

$$
(*) \quad 0 \neq z:=A^{T} y \in \mathbb{R}_{+}^{m}, \quad \text { and }\langle b, y\rangle=0
$$

exposing vector $z \in \mathbb{R}_{+}^{n}$

(*) is equivalent to:
exposing vector $0 \neq z \geq 0$ exists for the minimal face containing the feasible set, i.e.,
$x \in \mathcal{F}$

$$
\begin{aligned}
& \Longleftrightarrow \quad A x=b, x \geq 0 \\
& \Longrightarrow \quad\langle z, x\rangle=\left\langle A^{T} y, x\right\rangle=\langle y, A x\rangle=\langle y, b\rangle=0
\end{aligned}
$$

Facial Reduction two steps; Outline

suppose strict feasibility fails; i.e., get

(1) Thm of Alternative implies: $\exists 0 \lesseqgtr z=A^{T} y \in \mathbb{R}^{m}$:

$$
\begin{aligned}
x \in \mathcal{F} \Longrightarrow & 0 \leq\langle x, z\rangle=\left\langle x, A^{T} y\right\rangle=\langle A x, y\rangle=\langle b, y\rangle=0 \\
\Longrightarrow & 0=x \circ z \\
\Longleftrightarrow & 0=x_{j} z_{j}=0, \forall j \\
& \text { yields complementary unit vectors } e_{k}
\end{aligned}
$$

cardinality of support of $z: s_{z}=\left|\left\{i: z_{i}>0\right\}\right|$
(2) $z=\sum_{j=1}^{s_{z}} z_{t_{j}} e_{t_{j}}, t_{j}$ nondecreasing order
$x=\sum_{j=1}^{n-s_{z}} x_{s_{j}} e_{s_{j}}, s_{j}$ nondecreasing order.
$V=\left[\begin{array}{llll}e_{s_{1}} & e_{s_{2}} & \cdots & e_{s_{n-s_{z}}}\end{array}\right] \in \mathbb{R}^{n \times\left(n-s_{z}\right)}, \quad V z=0$.
(3) $\mathcal{F}=\left\{x \in \mathbb{R}_{+}^{n}: A x=b\right\}=\left\{x=V v \in \mathbb{R}^{n}: A V v=b, v \in \mathbb{R}_{+}^{n-s_{z}}\right\}$
(4) Recover full row rank: $A \leftarrow P_{\bar{m}} A V, b \leftarrow P_{\bar{m}} b$

Facial Reduction, FR; Two Steps

matrix $V \in \mathbb{R}^{n \times\left(n-s_{z}\right)}$,
Every facial reduction step yields at least one redundant constraint, BW: [7],IW: [18, Lemma 2.7],S: [31, Section 3.5].

Lemma (step 2: redundant constraint)

Consider the facially reduced feasible set

$$
\mathcal{F}_{r}=\left\{v: A V v=b, v \in \mathbb{R}_{+}^{n-s_{z}}\right\} .
$$

Then at least one linear constraint of the LP is redundant.

Proof.

Let: $0 \neq z=A^{T} y \geq 0$ exposing vector; V corresponding facial range vector; Then:

$$
0=V^{T} z=V^{T} A^{T} y=(A V)^{T} y=\sum_{i=1}^{m} y_{i}\left((A V)^{T}\right)_{i}
$$

Since $0 \neq y \in \mathbb{R}^{m}$, the rows of $A V$ are linearly dependent.

Summary FR

Result of full two step FR: strict feas.; full rank

$$
\begin{aligned}
\mathcal{F}= & \left\{x \in \mathbb{R}_{+}^{n}: A x=b\right\} \\
= & \left\{x=V v \in \mathbb{R}^{n}: \bar{A} v:=\left(P_{\bar{m}} A V\right) v=\left(P_{\bar{m}} b\right)=: \bar{b},\right. \\
& \left.v \in \mathbb{R}_{+}^{n-s_{z}}\right\}
\end{aligned}
$$

- after substit: $\min \left(V^{T} c\right)^{T} v$ s.t. $\bar{A} v=\bar{v}, v \in \mathbb{R}_{+}^{n-s_{z}}$
- $\exists \hat{v}>0, \bar{A} \hat{v}=\bar{b} \quad$ (MFCQ)
- full rank $\bar{A}=P_{\bar{m}} A V: P_{\bar{m}}: \mathbb{R}^{m} \rightarrow \mathbb{R}^{\bar{m}}, \bar{m}=\operatorname{rank}(A V)<m$. $P_{\bar{m}}$ is projection that chooses the linearly independent rows of $A V$.
- BOTH \# variables, \# constraints are strictly reduced.

This emphasizes the ILL-CONDITIONING of problems where strict feasibility fails, i.e., Implicit singularity is eliminated using FR.

Two-Step Facial Reduction; $A x=b, x \geq 0$

Facial Reduction, FR

a journey to reformulate a problem until strict feasibility is met

Two-Step Facial Reduction; $A x=b, x \geq 0$

Facial Reduction, FR

a journey to reformulate a problem until strict feasibility is met

Solve the auxiliary system:
Find $y \in \mathbb{R}^{m}$ s.t. $A^{T} y \in \mathbb{R}_{+}^{n} \backslash\{0\}$,
$\langle b, y\rangle=0$
Set $V=I\left(:, \operatorname{supp}\left(A^{T} y\right)^{c}\right)$
$x \leftarrow V v$
$\mathcal{F} \leftarrow\{v \geq 0:(A V) v=b\}$

Two-Step Facial Reduction; $A x=b, x \geq 0$

Facial Reduction, FR

a journey to reformulate a problem until strict feasibility is met

[STEP 2]

[STEP 1]
Solve the auxiliary system:
Find $y \in \mathbb{R}^{m}$ s.t. $A^{T} y \in \mathbb{R}_{+}^{n} \backslash\{0\}$,

$$
\langle b, y\rangle=0
$$

Set $V=I\left(:, \operatorname{supp}\left(A^{T} y\right)^{c}\right)$
$x \leftarrow V v$
$\mathcal{F} \leftarrow\{v \geq 0:(A V) v=b\}$

Any nontrivial FR

discovery of redundant equalities
Use $P_{\bar{m}}$ to discard redundancies
$\mathcal{F} \leftarrow\left\{v \geq 0: P_{\bar{m}} A V(v)=\right.$ $\left.P_{\bar{m}} b\right\}$

Two-Step Facial Reduction; $A x=b, x \geq 0$

Facial Reduction, FR

a journey to reformulate a problem until strict feasibility is met

[STEP 2]

[STEP 1]
Solve the auxiliary system:
Find $y \in \mathbb{R}^{m}$ s.t. $A^{T} y \in \mathbb{R}_{+}^{n} \backslash\{0\}$,

$$
\langle b, y\rangle=0
$$

Set $V=I\left(:, \operatorname{supp}\left(A^{T} y\right)^{C}\right)$
$x \leftarrow V v$
$\mathcal{F} \leftarrow\{v \geq 0:(A V) v=b\}$

Any nontrivial FR

discovery of redundant equalities
Use $P_{\bar{m}}$ to discard redundancies
$\mathcal{F} \leftarrow\left\{v \geq 0: P_{\bar{m}} A V(v)=\right.$ $\left.P_{\bar{m}} b\right\}$

Example

Consider \mathcal{F} with the data

$$
A=\left[\begin{array}{ccccc}
1 & 1 & 3 & 5 & 2 \\
0 & 1 & 2 & -2 & 2
\end{array}\right] \text { and } b=\binom{1}{1} .
$$

Set $y=\binom{1}{-1} \Longrightarrow A^{T} y=\left(\begin{array}{lllll}1 & 0 & 1 & 7 & 0\end{array}\right)^{T} \geq 0$ and $\langle b, y\rangle=0$.

$$
V=\left[\begin{array}{ll}
0 & 0 \\
1 & 0 \\
0 & 0 \\
0 & 0 \\
0 & 1
\end{array}\right], \quad x \leftarrow V v=\left(\begin{array}{c}
0 \\
v_{1} \\
0 \\
0 \\
v_{2}
\end{array}\right), \quad A x=b \leftarrow A V v=b \equiv\left[\begin{array}{ll}
1 & 2 \\
1 & 2
\end{array}\right] v=\binom{1}{1}
$$

(*) Side note
There are exactly six feasible bases in \mathcal{F}; (BFS all degenerate).

Example

Consider \mathcal{F} with the data

$$
A=\left[\begin{array}{ccccc}
1 & 1 & 3 & 5 & 2 \\
0 & 1 & 2 & -2 & 2
\end{array}\right] \text { and } b=\binom{1}{1} .
$$

Set $y=\binom{1}{-1} \Longrightarrow A^{T} y=\left(\begin{array}{lllll}1 & 0 & 1 & 7 & 0\end{array}\right)^{T} \geq 0$ and $\langle b, y\rangle=0$.
$V=\left[\begin{array}{ll}0 & 0 \\ 1 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 1\end{array}\right], \quad x \leftarrow V v=\left(\begin{array}{c}0 \\ v_{1} \\ 0 \\ 0 \\ v_{2}\end{array}\right), \quad A x=b \leftarrow A V v=b \equiv\left[\begin{array}{ll}1 & 2 \\ 1 & 2\end{array}\right] v=\binom{1}{1}$
(*) Side note
There are exactly six feasible bases in \mathcal{F}; (BFS all degenerate).

- $\mathcal{B} \in\{\{1,2\},\{2,3\},\{2,4\}\}$ is $x=\left(\begin{array}{lllll}0 & 1 & 0 & 0 & 0\end{array}\right)^{T}$;
- $\mathcal{B} \in\{\{1,5\},\{3,5\},\{4,5\}\}$ is $x=\left(\begin{array}{lllll}0 & 0 & 0 & 0 & \frac{1}{2}\end{array}\right)^{T}$.

Detect Redundancy

Lemma ($A V$ is rank deficient)

Consider the facially reduced feasible set

$$
\mathcal{F}_{r}=\left\{v: A V v=b, v \in \mathbb{R}_{+}^{n-s_{z}}\right\} .
$$

Then at least one linear equality of $A V v=b$ is redundant.
(proof) Let $z=A^{\top} y$ be the exposing vector, V be a facial range vector induced by z. Then

$$
0=V^{T} z=V^{T} A^{T} y=(A V)^{T} y .
$$

Found a nontrival row combination of $A V$, i.e., detected redundancy

Definition (implicit problem singularity)

The implicit problem singularity (ips) = The number of implicit redundant equalities of \mathcal{F}

Detect Redundancy

Lemma ($A V$ is rank deficient)

Consider the facially reduced feasible set

$$
\mathcal{F}_{r}=\left\{v: A V v=b, v \in \mathbb{R}_{+}^{n-s_{z}}\right\} .
$$

Then at least one linear equality of $A V v=b$ is redundant.
(proof) Let $z=A^{T} y$ be the exposing vector, V be a facial range vector induced by z. Then

$$
0=V^{T} z=V^{T} A^{T} y=(A V)^{T} y
$$

Found a nontrival row combination of $A V$, i.e., detected redundancy

Definition (implicit problem singularity)
 The implicit problem singularity (ips) = The number of implicit redundant equalities of \mathcal{F}

Detect Redundancy

Lemma ($A V$ is rank deficient)

Consider the facially reduced feasible set

$$
\mathcal{F}_{r}=\left\{v: A V v=b, v \in \mathbb{R}_{+}^{n-s_{z}}\right\} .
$$

Then at least one linear equality of $A V v=b$ is redundant.
(proof) Let $z=A^{T} y$ be the exposing vector, V be a facial range vector induced by z. Then

$$
0=V^{T} z=V^{T} A^{T} y=(A V)^{T} y
$$

Found a nontrival row combination of $A V$, i.e., detected redundancy

Definition (implicit problem singularity)

The implicit problem singularity (ips) = The number of implicit redundant equalities of \mathcal{F}

Singularity Degree $s d(\mathcal{F})$, Sturm '20 [32]

Definition $(d=s d(\mathcal{F})=\min \mid F R$ steps $\mid)$

Definition (Hölder regularity)

the pair of closed, convex subsets A, B is γ-Hölder regular if $\forall U$ compact, $\exists c>0$ with:
$\operatorname{dist}(x, A \cap B) \leq c \cdot\left(\operatorname{dist}^{\gamma}(x, A)+\operatorname{dist}^{\gamma}(x, B)\right) \quad$ for all $x \in U$.

Sturm [32] error bound Theorem for SDP, $\mathcal{F}=\mathcal{L} \cap \mathbb{S}_{+}^{n}$

$\left(\mathcal{L}, \mathbb{S}_{+}^{n}\right)$ is $\frac{1}{2^{d}}$-Hölder regular. $\quad(\mathcal{L}$ linear manifold)

- for LPs, FR in one iteration using maximal exposing vector,
i.e., $\quad d=\mathbf{s d}(\mathcal{F}) \leq 1$
- FR for LPs does not alter sparsity pattern of A. (only involves discarding columns of A; rows of A, b)

A Theoretical Result on degenerate BFS \leftrightarrow MFCQ

Theorem

${ }^{\text {a }}$ Suppose that strict feasibility of \mathcal{F} fails. Then every basic feasible solution, BFS, $x \in \mathcal{F}$ with basis \mathcal{B} has $\mathcal{B} \cap \mathcal{I}^{=} \neq \emptyset$ and thus is degenerate.
${ }^{\text {a }}$ Contrapositive found in Bertsimas-Tsitsiklis book [4, Exer. 2.19].

Proof.

- $\mathcal{F}=\left\{x \in \mathbb{R}^{n}: A V v=b, v \in \mathbb{R}_{+}^{n-s_{z}}\right\}$, facial range vctr V
- wlog $V=\left[\begin{array}{c}I_{r} \\ 0\end{array}\right]$ and $r=n-s_{z}$;
- recall by redundant constraint lemma: rank $A V<m$
- implies rank $A(:,\{1, \ldots, r\})<m$
- BFS implies rank $A(:, \mathcal{B})=m$; implies $\exists i \in \mathcal{B}, i>r$
- implies $\exists i \in \mathcal{B} \cap \mathcal{I}^{=}, x_{i}=0$ (degeneracy)

Corollary, Stability, Converse

Corollary (contrapositive motivates phase I part 2)

If there exists a nondegenerate basic feasible solution, then there exists a strictly feasible point in \mathcal{F}.

Stability from above corollary

Recall: strict feasibility (and full rank, MFCQ) is equivalent to stability wrt RHS perturbations.

Example (converse fails; all BFS degenerate \nRightarrow MFCQ fails)
$A=\left[\begin{array}{ccccc}1 & 0 & 2 & 0 & -2 \\ 1 & -3 & 2 & 1 & -2\end{array}\right] ; b=\binom{1}{1}, \quad 0<x=\frac{1}{10}\left(\begin{array}{lllll}1 & 1 & 5.5 & 3 & 1\end{array}\right)^{T}$
4 deg. feas. bases: $\mathcal{B}=\left\{\{1,2\},\{1,4\}: x=(1,0,0,0,0)^{T}\right.$

$$
\mathcal{B}=\{2,3\},\{3,4\}: x=(0,0,1 / 2,0,0)^{T}
$$

(Also, the linear assignment problem is highly degenerate but has a strictly feasible point (average).)

Empirics for FR Preprocessing

We want to

- improve conditioning, number of iterations

interior point methods

- Condition number of normal equation system
- stopping criteria

$$
\mathrm{KKT}=\left(\frac{\left\|A x^{*}-b\right\|}{1+\|b\|}, \frac{\left\|A^{T} y^{*}+s^{*}-c\right\|}{1+\|c\|}, \frac{\left\langle x^{*}, s^{*}\right\rangle}{n}\right) .
$$

simplex methods (NETLIB data set)

- percentage of degenerate iterations

Interior Point Methods

Optimality Conditions at current $(x>0, y, s>0), \mu>0$

$$
X=\operatorname{Diag}(x), S=\operatorname{Diag}(s)
$$

$$
\begin{array}{rll}
A^{T} \Delta y+\Delta s-c & =0 & \\
\text { dual feasibility } \\
A \Delta x-b & =0 & \\
\text { primal feasibility } \\
S \Delta x+X \Delta s & =\mu e & \text { complementary slackness }
\end{array}
$$

After block elimination, solve normal equations for Δy

- Use Δs in eqn 1 to eliminate Δs in eqn 3.
- Solve for Δx in eqn 3 and eliminate it in eqn 2.
- We get the normal equations

$$
A S^{-1} X A^{T} \Delta y=R H S
$$

- Backsolve for $\Delta x, \Delta s$ to get the Newton direction.

Numerical Experiments with Interior Point Methods

condition numbers of normal matrix; x^{*}, s^{*} near optimal

$$
\begin{equation*}
\kappa\left(A D^{*} A^{T}\right), \text { where } D^{*}=\operatorname{Diag}\left(x^{*}\right) \operatorname{Diag}\left(s^{*}\right)^{-1} \tag{1}
\end{equation*}
$$

three families of instances
(1) $\left.\mathcal{P}_{(A, b, c)}\right)$ do not have strictly feasible points;
(2) $\left(\overline{\mathcal{P}}_{(A, \bar{b}, c)}\right)$ have strictly feasible points;
(3) $\left(\mathcal{P}_{\left(A_{F R}, b_{F R}, C_{F R}\right)}\right)$ facially reduced instances of $\left(\mathcal{P}_{(A, b, c)}\right)$.

Condition Numbers of Normal Matrix Near Optimum

Figure: Performance profile on $\kappa\left(A D A^{T}\right)$ with(out) strict feasibility near optimum; various solvers

Empirics on Stopping Criteria

test the average performance of 10 instances of size $(n, m, r)=(3000,500,2000)$

$$
\mathrm{KKT}=\left(\frac{\left\|A x^{*}-b\right\|}{1+\|b\|}, \frac{\left\|A^{T} y^{*}+s^{*}-c\right\|}{1+\|c\|}, \frac{\left\langle x^{*}, s^{*}\right\rangle}{n}\right)
$$

		Non-Facially Reduced System	Facially Reduced System
linprog	$\begin{aligned} & \text { KKT } \\ & \text { iter } \\ & \text { time } \end{aligned}$	(9.58e-16, 1.80e-12, 5.17e-09)	(5.78e-16, 1.51e-15, 5.57e-08)
		23.30	17.60
		1.10	0.76
SDPT3	$\begin{aligned} & \text { KKT } \\ & \text { iter } \\ & \text { time } \end{aligned}$	(1.51e-10, 1.49e-12, 4.67e-03)	(8.54e-12, 3.75e-16, 4.19e-06)
		25.40	19.80
		0.82	0.53
MOSEK	$\begin{aligned} & \text { KKT } \\ & \text { iter } \\ & \text { tim } \end{aligned}$	(8.40e-09, 7.54e-16, -5.16e-06)	(5.16e-09, 3.81e-16, -2.03e-08)
		35.90	10.10
		0.58	0.31

Table: Average of KKT conditions, iterations and time of (non)-facially reduced problems

Numerical Experiments with (Dual) Simplex Method

Empirics on the Number of Degenerate Iterations

- MOSEK (values in the table) reports percentage of degenerate iterations i.e,, 'DEGITER(\%)' is ratio of degenerate iterations. (smaller value is better).
- $r=|\operatorname{supp}(s)|$; smaller value $(r / n) \%$ means entries of s are identically $0 ; 100 \%$ means strict feasibility holds.
- note significant decrease in 'DEGITER(\%)'.

		$(r / n) \%$				
		60%	70%	80%	90%	100%
(n, m)	$(1000,250)$	36.62	10.18	0.01	0.02	0.00
	$(2000,500)$	39.72	18.28	0.07	0.15	0.01
	$(3000,750)$	25.99	10.66	0.32	0.75	0.02
	$(4000,1000)$	29.78	18.25	0.25	0.53	0.02

Table: Average of ratio of degenerate iterations DEGITER(\%)

Phase I(b): Towards Strict Feasibility

- \bar{x}, \mathcal{B} degenerate BFS/basis; Wlog basic variables located first \bar{x} as are degenerate variables. Solve (using basis from phase I simplex method)

$$
p_{1}^{*}=\max \left\{x_{1}: A x=b, x \geq 0\right\}
$$

(1) Suppose that $p_{1}^{*}>0$. Then, the the variable x_{1} is not an identically 0 variable, i.e., $1 \notin \mathcal{I}_{0}$.
(2) Suppose that $p_{1}^{*}=0$. Then, the variable x_{1} is an identically 0 variable, i.e., $1 \in \mathcal{I}_{0}$. Let \mathcal{B}^{*} be an optimal basis. Then we have an exposing vector

$$
y^{*}=A\left(:, \mathcal{B}^{*}\right)^{T} e_{1},\left\langle b, y^{*}\right\rangle=0 \text { and } A^{T} y^{*} \geq e_{1}
$$

- Add up certificates: $y^{\circ}=\sum_{j} y^{j}$ to get exposing vector

$$
A^{T} y^{\circ}=\sum_{j} A^{T} y^{j} \geq 0, A^{T} y^{\circ} \neq 0,\left\langle b, y^{\circ}\right\rangle=\sum_{j}\left\langle b, y^{j}\right\rangle=0 .
$$

Conclusion

- loss of strict feasibility has many applications recent survey Drusvyatskiy-W. [12].
- though not needed theoretically in LP, loss of MFCQ results in stability/numerical issues.
- In the paper we introduced new concept: Implicit Singularity Degree, maximum number of FR steps, and presented an algorithm, phase I (b), that regularizes an LP, for strict feasibility holding.

Regularized Nonsmooth Newton Algorithms for Best Approximation with Applications

Combinatorics Waterioo
\& Oftimization
Prof. Henry Wolkowicz hwolkowicz@uwaterloo.ca

Tues. Mar. 28, 10:00-11:20 EST, 2023
joint work with: Yair Censor (Univ. of Haifa); Walaa Moursi and Tyler Weames (Univ. of Waterloo)

Motivation/Main Results

Main Problem/Best Approximation

Given $v \in \mathbb{R}^{n}$ and $P \subset \mathbb{R}^{n}$ a polyhedral set, find the nearest point to v from the set P

Nonsmooth Algorithms

- Application of Moreau Decomposition/elegant equation
- present regularized nonsmooth method; singular Jacobian
- compare computational performance to classical projection methods (e.g., HLWB projection method)

Applications

solving large scale linear programs; triangles from branch and bound methods; generalized constrained linear least squares.

Notation

best approximation problem to polyhedral set $P \subset \mathbb{R}^{n}$
find the nearest point $x^{*} \in P$ to a given point $v \in \mathbb{R}^{n}$
uniquely attained optimum (projection of v onto P)

$$
\text { optimum: } x^{*}(v)=\operatorname{argmin}_{x \in P} \frac{1}{2}\|x-v\|^{2}
$$

optimal value: $p^{*}(v)=\frac{1}{2}\left\|x^{*}(v)-v\right\|^{2}$

Nonsmooth Newton Method

We apply a
(regularized/scaled) nonsmooth Newton method to a special form of the optimality conditions based on a Moreau decomposition.

Background

- The special Moreau decomposition for the optimality conditions comes from work in infinite dimensional Hilbert space e.g., $[9,10,23,8]$, where the projection is actually differentiable, and typically P is the intersection of a cone and a linear manifold of finite co-dimension (finite \# constraints).
- parametrized quadratic problem to solve finite dimensional linear programs [30] applied in our work here below. (In this finite dimensional case differentiability was lost.)
- infinite dimensional applications appear in the theory of partially finite programs in [5,6] Further references in $[29,19,2]$.

Semismoothness

- differentiability is lost in finite dimensional; this led to application of semismoothness [24,26,25].
- More recently: applications for nearest Euclidean distance matrices and nearest doubly stochastic in [1,17].
- The optimum $x^{*}(v)$ is often called the projection onto the polyhedral set and is known to be unique. Differentiability properties are nontrivial as discussed in e.g., [16]. A characterization of differentiability in terms of normal cones is given in [13]. Further results and connections to semismoothness is in e.g., [16, 15]. A survey presentation is at [28].

Basic Theory

Projection onto a Polyhedral Set

$$
\begin{array}{cl}
x^{*}(v):=\operatorname{argmin}_{x} & \frac{1}{2}\|x-v\|^{2} \\
\text { s.t. } & A x=b \in \mathbb{R}^{m} \\
& x \in \mathbb{R}_{+}^{n},
\end{array}
$$

(P)

$$
\text { optimal value: } p^{*}(v)=\frac{1}{2}\left\|x^{*}(v)-v\right\|^{2}
$$

Assumptions: A full row rank; feasible set nonempty

Optimality Conditions

Theorem ($F: \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$; find root y; Newton)
The optimum $x^{*}(v)$ exists and is unique. Let
(*) $\quad F(y):=A\left(v+A^{T} y\right)_{+}-b, \quad f(y):=\frac{1}{2}\|F(y)\|^{2}$
Then $F(y)=0$ has a root $y^{*}, F\left(y^{*}\right)=0 \Longleftrightarrow y \in \operatorname{argmin} f\left(y^{*}\right)$

$$
x^{*}(v)=\left(v+A^{T} y^{*}\right)_{+}, \text {for any root } F\left(y^{*}\right)=0
$$

Moreover, strong duality holds and the dual problem is

$$
\begin{aligned}
p^{*}(v) & =d^{*}(v) \\
& :=\max _{z \geq 0, y} \phi(y, z) \quad\left(=\min _{x} L(x, y, z)\right) \\
& :=-\frac{1}{2}\left\|z-A^{T} y\right\|^{2}+y^{T}(A v-b)-z^{T} v .
\end{aligned}
$$

AND

At each iteration, we get a provable/calculable lower bound

$$
\max _{z \geq 0, y} \phi(y, z)=-\frac{1}{2}\left\|z-A^{T} y\right\|^{2}+y^{T}(A v-b)-z^{T} v
$$

Proof of Optimality Conditions

Proof.

$L(x, y, z)=\frac{1}{2}\|x-v\|^{2}+y^{T}(b-A x)-z^{T} x ;$
$\nabla_{x} L(x, y, z)=x-v-A^{T} y-z ;$
stationarity: $0=\nabla_{x} L(x, y, z) \Longrightarrow x=\left(v+A^{T} y\right)+z$
$\Longrightarrow L(x, y, z)=-\frac{1}{2}\left\|z+A^{T} y\right\|^{2}+y^{T}(b-A v)-z^{T} v$.
KKT optimality conditions

$$
\begin{array}{lll}
\frac{\partial}{\partial x} L(x, y, z)=x-v-A^{T} y-z=0 & \text { (dual feasibility) } \\
\frac{\partial}{\partial y} L(x, y, z)=A x-b & =0 & \text { (primal feasibility) } \\
\frac{\partial}{\partial z} L(x, y, z) \cong x \in\left(\mathbb{R}_{+}^{n}-z\right)^{+} & & \text {(compl. slackness, } \\
& z^{\top} x=0 \text { or } \\
& & z \circ x=0 \text {) }
\end{array}
$$

Proof continued...

(cont... Solve opt. cond.

$$
\left[\begin{array}{c}
x-v-A^{T} y-z \\
A x x^{T} b^{2} \\
z^{T} x
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right], \quad x, z \in \mathbb{R}_{+}^{n}, y \in \mathbb{R}^{m} .
$$

Moreau Decomposition:

$$
\begin{aligned}
& v+A^{T} y=x-z=x+(-z), x^{T} z=0 \\
& x=\left(v+A^{T} y\right)_{+} ; z=-\left(v+A^{T} y\right)_{-}
\end{aligned}
$$

$$
F: \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}
$$

$$
F(y)=A\left(v+A^{T} y\right)_{+}-b=0, y \in \mathbb{R}^{m}
$$

Apply Newton at current $y_{c} ;$ Newton direction Δy

$$
F^{\prime}\left(y_{c}\right) \Delta y=-F\left(y_{c}\right) ; \quad y_{p}=y_{c}+\Delta y
$$

Compare Interior Point Methods

Block Elimination on Perturbed KKT Conditions

$$
\begin{gathered}
{\left[\begin{array}{c}
r_{r} \\
r_{p} \\
r_{c}
\end{array}\right]:=\left[\begin{array}{c}
x-v-A^{\top} y-z \\
A x-b \\
Z x-\mu e
\end{array}\right], x, z \in \mathbb{R}_{+}^{n}, y \in \mathbb{R}^{m} .} \\
F_{\mu}^{\prime} \Delta s=\left[\begin{array}{c}
\Delta x-A^{\top} \Delta y-\Delta z \\
A \Delta x-b \\
x \Delta z+z \Delta x
\end{array}\right]\left[\begin{array}{c}
\Delta x \\
\Delta y \\
\Delta z
\end{array}\right]=-\left[\begin{array}{c}
r_{r} \\
r_{p} \\
r_{c}
\end{array}\right], x, z \in \mathbb{R}_{+}^{n}, y \in \mathbb{R}^{m} .
\end{gathered}
$$

Normal Equations Reduction to Δy
Currently, normal equations are not considered efficient. But the Newton equation was a percursor and appears to be efficient?

$$
F: \mathbb{R}^{m} \rightarrow \mathbb{R}^{m} ; \quad F(y)=A\left(v+A^{T} y\right)_{+}-b=0, y \in \mathbb{R}^{m}
$$

$F^{\prime}\left(y_{c}\right) \Delta y=-F\left(y_{c}\right) ; \quad y_{p}=y_{c}+\Delta y$

Nonlinear Least Squares, Generalized Jacobians

minimize squared residual $f(y)=\frac{1}{2}\|F(y)\|^{2}$
differentiable case $\left\{i:\left(v+A^{T} y\right)_{i}=0\right\}=\emptyset:$
$\nabla f(y)=\left(F^{\prime}(y)\right)^{*} F(y)$

Definition ((local) Lipschitz Continuity)

Let $\Omega \subseteq \mathbb{R}^{n}$. A function $F: \Omega \rightarrow \mathbb{R}^{n}$ is Lipschitz continuous on Ω if there exists $K>0$ such that

$$
|F(y)-F(z)| \leq K\|y-z\|, \forall y, z \in \Omega
$$

F is locally Lipschitz continuous on Ω if for each $x \in \Omega$ there exists a neighbourhood U of x such that F is Lipschitz continuous on U.

Generalized Jacobian

Rademacher's Theorem [27, 14]

$F: \Omega \rightarrow \mathbb{R}^{n}$ locally Lipschitz on Ω implies that it is Frechét differentiable almost everywhere on Ω.

Definition (Clarke [11] Generalized Jacobian)

Suppose that $F: \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$ be locally Lipschitz. Let D_{F} be the set of points such that F is differentiable. Let $F^{\prime}(y)$ be the usual Jacobian matrix at $y \in D_{F}$. The generalized Jacobian of F at y, $\partial F(y)$ is

$$
\partial F(y)=\operatorname{conv}\left\{\lim _{\substack{y_{i} \rightarrow y \\ y_{i} \in D_{F}}} F^{\prime}\left(y_{i}\right)\right\} .
$$

In addition, $\partial F(y)$ is nonsingular if every $V \in \partial F(y)$ is nonsingular.

Case: Differentiable and $F^{\prime}(y)$ invertible

Newton Direction; Newton Equation

$$
\begin{aligned}
& \left(F^{\prime}(y)\right)^{*}\left(F^{\prime}(y)\right) \Delta y=-\left(F^{\prime}(y)\right)^{*} F(y) \Longleftrightarrow F^{\prime}(y) \Delta y=-F(y) \\
& \Delta y=-\left(\left(F^{\prime}(y)\right)^{*}\left(F^{\prime}(y)\right)^{-1}\left(F^{\prime}(y)\right)^{*} F(y)=-\left(F^{\prime}(y)\right)^{\dagger} F(y)\right.
\end{aligned}
$$

directional derivative: $\Delta y^{T} \nabla f(y)=\ldots$

$$
\begin{aligned}
& -\left[\left(F^{\prime}(y)\right)^{*} F(y)\right]^{T}\left(\left(F^{\prime}(y)\right)^{*}\left(F^{\prime}(y)\right)\right)^{-1}\left[\left(F^{\prime}(y)\right)^{*} F(y)\right] \\
& <0
\end{aligned}
$$

Levenberg-Marquardt, LM, Regularization Method

We now see that we maintain a descent direction.

Lemma (for handling singularity in $\left(F^{\prime}(y)\right)^{*}\left(F^{\prime}(y)\right)$)

LM direction is always a descent direction.

Proof.

$$
\left(J \cong F^{\prime}(y)\right)
$$

$$
\begin{gathered}
\left(J^{*} J+\lambda I\right) \Delta y=-J^{*} F \\
\Delta y=-\left(J^{\top} J+\lambda I\right)^{-1}\left(J^{\top} F\right)
\end{gathered}
$$

Therefore, the directional derivative is

$$
\begin{aligned}
\Delta y^{T} \nabla f(y) & =-\left(\left(J^{\top} J+\lambda I\right)^{-1}\left(J^{T} F\right)\right)^{T}\left(J^{\top} F\right) \\
& =-\left(J^{T} F\right)^{T}\left(\left(J^{T} J+\lambda I\right)^{-1}\right)\left(J^{T} F\right) \\
& <0
\end{aligned}
$$

Max. Rank Generalized Jacobian

Cols chosen \cong pos. variables of w
$A w_{+}=A\left(\mathcal{P}_{\mathcal{N}} w\right)=\left(A \mathcal{P}_{\mathcal{N}}\right) w_{+}=\sum_{w_{i}>0} A(:, i) w_{i}$

Index Set of Columns

Note: $v+A^{T} y \geq 0 \Longrightarrow F^{\prime}(\Delta y)=A I A^{T} \Delta y=A A^{T} \Delta y$

$$
\mathcal{U}(y):=\left\{u \in \mathbb{R}^{n} \left\lvert\, u_{i} \in\left\{\begin{array}{cc}
1 & \text { if }\left(v+A^{T} y\right)_{i}>0 \\
{[0,1]} & \text { if }\left(v+A^{T} y\right)_{i}=0 \\
0 & \text { if }\left(v+A^{T} y\right)_{i}<0
\end{array}\right.\right.\right.
$$

generalized Jacobian at y; after convex hull
$\partial F(y)=\left\{A \operatorname{Diag}(u) A^{T} \mid u \in \mathcal{U}(y)\right\}$
(max-rank: choose $u_{i}=1$ when possible)

Semismooth Newton Method solving $F(y)=0$

Solve $\left(V_{k}+\lambda I\right) d_{\text {Newton }}=-F\left(y^{k}\right)$, with
$V_{k} \in \partial F\left(y^{k}\right), \lambda>0, c \in(0,1)$
$y^{k+1}=y^{k}+d_{\text {Newton }} ;\left(\right.$ or avging $\left.y^{k+1}=(1-c) y^{k}++c d_{\text {Newton }}\right)$

Max-rank Jacobian

$$
\begin{aligned}
A M A^{T} & :=A \operatorname{Diag}(u) A^{T} \\
& =\sum_{i \in \mathcal{I}_{+}} A_{: i} A_{: i}^{T}+\sum_{i \in \mathcal{I}_{0}} \alpha_{i} A_{: i} A_{: i}^{T}, \alpha_{i} \in[0,1], \forall i \in \mathcal{I}_{0}
\end{aligned}
$$

maximum (resp. minimum) rank for AMA:
$\alpha_{i}=1, \forall i \in \mathcal{I}_{0}\left(\alpha_{i}=0, \forall i \in \mathcal{I}_{0}, r e s p.\right)$

Vertices and Polar Cones

Choosing the optima for the tests; (nondegenerate) vertex
In our tests we can decide on the characteristics of the optimal solution using the properties of (degenerate) vertices.
Recall: x optimal iff $x-v \in \mathcal{F}(x)^{+}$

Lemma (vertex and polar cone)

$y \in \mathbb{R}^{m}, x(y)=\left(v+A^{T} y\right)_{+} \in \mathcal{F}$. Then:
$x(y)$ vertex $\Longleftrightarrow A_{\mathcal{I}_{+}}$nonsingular
\Longleftrightarrow corresp. gen. Jac. nonsingular.
$x=x(y) \in \mathcal{F} \Longrightarrow$
$\mathcal{F}(x)^{+}=\left\{w: w=A^{\top} u+z, u \in \mathbb{R}^{m}, z \in \mathbb{R}_{+}^{n}, x^{\top} z=0\right\}$

Proof of Lemma

Proof.

wlog $A=\left[A_{\mathcal{I}_{+}} A_{\mathcal{I}_{0}}\right]$ implies active set is $\left[\begin{array}{cc}A_{\mathcal{I}_{+}} & A_{\mathcal{I}_{0}} \\ 0 & I\end{array}\right] x=\binom{b}{0}$;
This has unique solution $x(y)$ iff $A_{\mathcal{I}_{+}}$is nonsingular. gradient of objective satisfies

$$
x-v=A^{T} y+\sum_{j \in \mathcal{I}_{0}} z_{j} e_{j} .
$$

Optimality conditions yield polar cone at a vertex.

degeneracy of optimal solutions

Let $x \in \operatorname{bdry} \mathcal{F}$;
x is optimal iff $x-v \in \mathcal{F}(x)^{+}$, i.e., we can choose v with $v=x-A^{T} u+z, z \geq 0, z^{T} x=0$. and
$x^{*}(v)$ is differentiable at $v \Longleftrightarrow\left(x^{*}(v)-v\right) \in \operatorname{ri}\left(\mathcal{F}-x^{*}(v)\right)^{+}$

Best Approx.; Nonsmooth Algor.

Algorithm 1 Best Approx. of v in P; Exact Newton
Require: $v \in \mathbb{R}^{n}, y_{0} \in \mathbb{R}^{m},\left(A \in \mathbb{R}^{m \times n}, \operatorname{rank}(A)=m\right), \varepsilon>0$, maxiter
1: Output. Primal-dual opt: $x_{k+1},\left(y_{k+1}, z_{k+1}\right)$
2: Initialization. $k \leftarrow 0, x_{0} \leftarrow\left(v+A^{T} y_{0}\right)_{+}, z_{0} \leftarrow\left(x_{0}-\left(v+A^{T} y_{0}\right)\right)_{+}$,

$$
F_{0}=A x_{0}-b, \text { stopcrit } \leftarrow\left\|F_{0}\right\| /(1+\|b\|)
$$

3: while ((stopcrit $>\varepsilon) \&(k \leq$ maxiter)) do
4: $\quad \lambda=\min \left(1 e^{-3}\right.$, stopcrit)
5: $\quad \bar{V}=\left(V_{k}+\lambda I_{m}\right)$
6: \quad solve pos. def. $\bar{V} d=-F_{k}$ for Newton direction d
7: updates
8: $\quad y_{k+1} \leftarrow y_{k}+d$
9: $\quad x_{k+1} \leftarrow\left(v+A^{T} y_{k+1}\right)_{+}$
10: $\quad z_{k+1} \leftarrow\left(x_{k+1}-\left(v+A^{T} y_{k}\right)\right)_{+}$
11: $\quad F_{k+1} \leftarrow A x_{k+1}-b$ (residual)
12: \quad stopcrit $\leftarrow\left\|F_{k+1}\right\| /(1+\|b\|)$
13: $k \leftarrow k+1$
14: end while

Halpern-Lions-Wittmann-Bauschke [3]

Algorithm 2 Extended HLWB algorithm

```
Require: v\in\mp@subsup{\mathbb{R}}{}{n},(A\in\mp@subsup{\mathbb{R}}{}{m\timesn},\operatorname{rank}(A)=m),\varepsilon>0, maxiter }\in\mathcal{N}\mathrm{ .
    1: Output. }\mp@subsup{x}{k+1}{
2: Initialization. }k\leftarrow0\mathrm{ , msweeps }\leftarrow0\mp@subsup{x}{0}{}\leftarrow\operatorname{max}(v,0),\mp@subsup{y}{0}{}\leftarrow\mp@subsup{x}{0}{},\mp@subsup{i}{0}{}=
                        stopcrit \leftarrow|A\mp@subsup{y}{0}{}-b|/(1+|b|)(=|F\mp@subsup{F}{0}{}|/(1+|b|))
3: while ((stopcrit > ) & ( }k\leq\mathrm{ maxiter)) do
4: if 1}\leqi(k)\leqm\mathrm{ then
5: }\quad\mp@subsup{y}{k}{}=\mp@subsup{x}{k}{}+\frac{\mp@subsup{b}{\mp@subsup{i}{k}{}}{}-\langle\mp@subsup{a}{i}{},\mp@subsup{x}{}{k}\rangle}{|\mp@subsup{a}{k}{}\mp@subsup{|}{}{2}}\mp@subsup{a}{\mp@subsup{i}{k}{}}{
6: else
7: }\quad\mp@subsup{y}{k}{}=\operatorname{max}(0,\mp@subsup{x}{k}{}
8: end if
9: updates
10:}\quad\mp@subsup{\sigma}{k}{}=\frac{1}{k+1}\mathrm{ (change to }\mp@subsup{\sigma}{k}{}=\frac{1}{msweeps+1}\mathrm{ ??)
11:}\mp@subsup{x}{}{k+1}\leftarrow\mp@subsup{\sigma}{k}{}v+(1-\mp@subsup{\sigma}{k}{})\mp@subsup{y}{}{k
12: stopcrit }\leftarrow|A\mp@subsup{y}{0}{}-b||/(1+|b|
13: }k\leftarrowk+
14: if }k\operatorname{mod}(m+1)==0\mathrm{ then
15: }\quad\mathrm{ msweeps = msweeps +1
16: end if
17:}:\mp@subsup{i}{k}{}=k(\operatorname{mod}m)+
18: end while
```


Numerical Tests varying sizes m, n

Table: Varying $m=100,600,1100,1600$

	Specifications		Exact	Inexact	Time (s) HLWB	LSQ	QPPAL	Exact	Inexact	Rel. Resid HLWB
	n	\% density								
	3000	$8.1 \mathrm{e}-01$	$2.13 \mathrm{e}-03$	1.98e-02	$1.89 \mathrm{e}+01$	$3.22 \mathrm{e}+00$	8.04e-01	2.55e-16	$2.41 \mathrm{e}-15$	2.29e-04
0	3000	$8.1 \mathrm{e}-01$	8.35e-02	$3.03 \mathrm{e}-01$	$1.94 \mathrm{e}+02$	$4.28 \mathrm{e}+00$	$1.27 \mathrm{e}+00$	$5.10 \mathrm{e}-16$	$5.10 \mathrm{e}-18$	$2.19 \mathrm{e}-04$
0	3000	$8.1 \mathrm{e}-01$	7.02e-01	$1.29 \mathrm{e}+00$	$4.16 \mathrm{e}+02$	$6.18 \mathrm{e}+00$	$2.53 \mathrm{e}+00$	5.20e-16	$8.71 \mathrm{e}-16$	$2.08 \mathrm{e}-04$
0	3000	$8.1 \mathrm{e}-01$	$1.40 \mathrm{e}+00$	$3.59 \mathrm{e}+00$	$6.57 \mathrm{e}+02$	$7.65 \mathrm{e}+00$	$5.13 \mathrm{e}+00$	$9.84 \mathrm{e}-18$	1.11e-15	$2.27 \mathrm{e}-0$

Table: varying $n, m=200$

Specifications n		$\%$ density	Exact	Inexact	HLWB	LSQ	QPPAL	Exact	Inexact
Rel. Resids.									
HLWB									

Numerical Tests varying density

Table: Varying problem density, $m=300$

Specifications		Exact	Time (s)			QPPAL	Exact	Inexact	Rel. Resids. HLWB
n	\% density		Inexact	HLWB	LSQ				
1000	$1.0 \mathrm{e}+00$	5.65e-03	$5.69 \mathrm{e}-02$	$1.67 \mathrm{e}+01$	3.02e-01	$5.32 \mathrm{e}-01$	7.48e-16	7.27e-16	$1.54 \mathrm{e}-04$
1000	$6.0 \mathrm{e}+00$	$4.80 \mathrm{e}-02$	2.52e-01	$4.58 \mathrm{e}+01$	$3.15 \mathrm{e}-01$	$1.22 \mathrm{e}+00$	$3.44 \mathrm{e}-17$	$1.18 \mathrm{e}-16$	$1.51 \mathrm{e}-04$
1000	$1.1 \mathrm{e}+01$	$6.18 \mathrm{e}-02$	$2.49 \mathrm{e}-01$	$5.41 \mathrm{e}+01$	$3.07 \mathrm{e}-01$	$2.10 \mathrm{e}+00$	$5.65 \mathrm{e}-17$	$1.54 \mathrm{e}-17$	$1.44 \mathrm{e}-04$
1000	$1.6 \mathrm{e}+01$	$7.79 \mathrm{e}-02$	$2.60 \mathrm{e}-01$	$5.34 \mathrm{e}+01$	$3.03 \mathrm{e}-01$	$2.11 \mathrm{e}+01$	$6.92 \mathrm{e}-17$	$7.98 \mathrm{e}-17$	$1.61 \mathrm{e}-04$

Solving (maximization) Linear Programs

primal (maximization) LP in standard form

$$
\begin{array}{rll}
& p_{L P}^{*}:=\max & c^{\top} x \\
& \text { s.t. } & A x=b \in \mathbb{R}^{m} \\
& x \in \mathbb{R}_{+}^{n} .
\end{array}
$$

dual LP

$$
\begin{array}{rlr}
d_{L P}^{*}:= & \min & b^{T} y \\
& \text { s.t. } & A^{T} y-z=c \in \mathbb{R}^{n} \tag{2}\\
& z \in \mathbb{R}_{+}^{n} .
\end{array}
$$

Assumptions

A full row rank;
$p_{\mathrm{LP}}^{*} \in \mathbb{R}\left(\mathrm{so} p_{\mathrm{LP}}^{*}=d_{\mathrm{LP}}^{*} \in \mathbb{R}\right.$ and both attained $)$

Geometric Algorithm

solution can be found from the limit as $R \uparrow \infty$ of the projection of the vector $v_{R}=R c \in \mathbb{R}^{n}$ onto the feasible set.

Lemma ([20, 21, 22, 30])

Let the given LP data be A, b, c with finite optimal value $p_{L P}^{*}$. For each $R>0$ define

$$
\begin{array}{cl}
x(R):=\operatorname{argmin}_{x} & \frac{1}{2}\|x-R c\|^{2} \\
\text { s.t. } & A x=b \in \mathbb{R}^{m} \\
& x \in \mathbb{R}_{+}^{n} .
\end{array}
$$

Then x^{*} is the minimum norm solution of (PLP) if, and only if, there exists $\bar{R}>0$ such that

$$
R \geq \bar{R} \Longrightarrow x^{*} \in \operatorname{argmin}\left\{\frac{1}{2}\|x-R c\|^{2}: A x=b, x \in \mathbb{R}_{+}^{n}\right\}
$$

Avoid numerical/roundoff from large numbers

Corollary (scaling $\frac{1}{R} b$)

$A, b, c, R, x(R)$ as in Lemma. Then

$$
\begin{array}{cl}
\frac{1}{R} x(R)=w(R):=\operatorname{argmin}_{w} & \frac{1}{2}\|w-c\|^{2} \\
\text { s.t. } & A w=\frac{1}{R} b \in \mathbb{R}^{m} \\
& w \in \mathbb{R}_{+}^{n} .
\end{array}
$$

Proof.

From

$$
\|x-R c\|^{2}=R^{2}\left\|\frac{1}{R} x-c\right\|^{2}=R^{2}\|w-c\|^{2}, x=R w
$$

we substitute for x and obtain $A(R w)=b \Longleftrightarrow A w=\frac{1}{R} b$. The result follows from the observation that argmin does not change after discarding the constant R^{2}.

Conclusion

- efficient, robust algorithm for projection of a point onto a polyhedral set.
- One of may applications is to solving linear programs - a type of exterior path following algorithm.

References I

S. Al-Homidan and H. Wolkowicz.

Approximate and exact completion problems for Euclidean distance matrices using semidefinite programming.
Linear Algebra Appl., 406:109-141, 2005.
圊 L.E. Andersson and T. Elfving.
Best constrained approximation in Hilbert space and interpolation by cubic splines subject to obstacles.
SIAM J. Sci. Comput., 16(5):1209-1232, 1995.
H.H. Bauschke.

The approximation of fixed points of compositions of nonexpansive mappings in Hilbert space.
Journal of Mathematical Analysis and Applications, 202:150-159, 1996.
D. Bertsimas and J. Tsitsiklis. Introduction to Linear Optimization. Athena Scientific, Belmont, MA, 1997.
Ti.M. Borwein and A.S. Lewis.
Partially finite convex programming, part I, duality theory. Math. Program., 57:15-48, 1992.
比 J.M. Borwein and A.S. Lewis.
Partially finite convex programming, part II, explicit lattice models.
Math. Program., 57:49-84, 1992.
围 J.M. Borwein and H. Wolkowicz.
Regularizing the abstract convex program.
J. Math. Anal. Appl., 83(2):495-530, 1981.

References III

围 J．M．Borwein and H．Wolkowicz．
A simple constraint qualification in infinite－dimensional programming．
Math．Programming，35（1）：83－96， 1986.
圊 C．K．Chui，F．Deutsch，and J．D．Ward．
Constrained best approximation in Hilbert space．
Constr．Approx．，6（1）：35－64， 1990.
目 C．K．Chui，F．Deutsch，and J．D．Ward．
Constrained best approximation in Hilbert space．II．
J．Approx．Theory，71（2）：213－238， 1992.
R F．H．Clarke．
Optimization and Nonsmooth Analysis．
Canadian Math．Soc．Series of Monographs and Advanced Texts．John Wiley \＆Sons， 1983.

References IV

冨 D. Drusvyatskiy and H. Wolkowicz.
The many faces of degeneracy in conic optimization.
Foundations and Trends ${ }^{\circledR}$ in Optimization, 3(2):77-170,
2017.
E. F. Facchinei and J.-S. Pang.

Finite-dimensional variational inequalities and complementarity problems, volume 1.
Springer, 2003.
國 H. Federer.
Geometric measure theory.
Die Grundlehren der mathematischen Wissenschaften,
Band 153. Springer-Verlag New York Inc., New York, 1969.

References V

國 M．Goh and F．Meng．
On the semismoothness of projection mappings and maximum eigenvalue functions．
J．Global Optim．，35（4）：653－673， 2006.
图 J．－B．Hiriart－Urruty．
Unsolved Problems：At What Points is the Projection Mapping Differentiable？
Amer．Math．Monthly，89（7）：456－458， 1982.
囯 H．Hu，H．Im，X．Li，and H．Wolkowicz．
A semismooth Newton－type method for the nearest doubly stochastic matrix problem．
Math．Oper．Res．， 2023 to appear．
arxiv．org／abs／2107．09631， 35 pages．

References VI

目 H. Im and H. Wolkowicz.
A strengthened Barvinok-Pataki bound on SDP rank. Oper. Res. Lett., 49(6):837-841, 2021.
(C. Li and X.Q. Jin.
Nonlinearly constrained best approximation in Hilbert spaces: the strong chip and the basic constraint qualification.
SIAM J. Optim., 13(1):228-239, 2002.
E O.L. Mangasarian.
Iterative solution of linear programs.
SIAM J. Numer. Anal., 18(4):606-614, 1981.

References VII

圊 O．L．Mangasarian．
Normal solutions of linear programs．
Number 22，pages 206－216． 1984.
Mathematical programming at Oberwolfach，II
（Oberwolfach，1983）．
囯 O．L．Mangasarian．
A Newton method for linear programming．
J．Optim．Theory Appl．，121（1）：1－18， 2004.
嗇 C．A．Micchelli，P．W．Smith，J．Swetits，and J．D．Ward．
Constrained I_{p} approximation．
Journal of Constructive Approximation，1：93－102， 1985.
R R．Mifflin．
Semismooth and semi－convex functions in constrained optimization．
SIAM J．Cont．Optim．，15：959－972， 1977.

References VIII

國 H. Qi and D. Sun.
A quadratically convergent Newton method for computing the nearest correlation matrix.
SIAM J. Matrix Anal. Appl., 28(2):360-385, 2006.
圊 L. Qi and J. Sun.
A nonsmooth version of Newton's method.
Mathematical programming, 58(1-3):353-367, 1993.
E H. Rademacher.
Uber partielle und totale differenzierbarkeit i.
Math. Ann., 89:340-359, 1919.

References IX

E. E. Sarabi.

A characterization of continuous differentiability of proximal mappings of composite functions.
URL: https:
//www.math.uwaterloo.ca/~hwolkowi/
F22MOMworkshop.d/FslidesSarabi.pdf, 102022.
24th Midwest Optimization Meeting, MOM24.
目 I. Singer.
Best approximation in normed linear spaces by elements of linear subspaces.
Die Grundlehren der mathematischen Wissenschaften,
Band 171. Publishing House of the Academy of the
Socialist Republic of Romania, Bucharest; Springer-Verlag,
New York-Berlin, 1970.
Translated from the Romanian by Radu Georgescu.

References X

(ribl P.W. Smith and H. Wolkowicz.
A nonlinear equation for linear programming.
Math. Programming, 34(2):235-238, 1986.
S. Sremac.

Error bounds and singularity degree in semidefinite programming.
PhD thesis, University of Waterloo, 2019.
围 J.F. Sturm.
Error bounds for linear matrix inequalities.
SIAM J. Optim., 10(4):1228-1248 (electronic), 2000.

Thanks for your attention!

Regularized Nonsmooth Newton Algorithms for Best Approximation with Applications

4

Combinatorics Waterloo \& Optimization

Prof. Henry Wolkowicz hwolkowicz@uwaterloo.ca

Tues. Mar. 28, 10:00-11:20 EST, 2023
joint work with: Yair Censor (Univ. of Haifa); Walaa Moursi and Tyler Weames (Univ. of Waterloo)

