# Hard Combinatorial Problems, Doubly Nonnegative Relaxations, Facial Reduction, and <br> Alternating Direction Method of Multipliers 

Henry Wolkowicz<br>Dept. Comb. and Opt., University of Waterloo, Canada

Wednesday, July 21, 2021, 9:45-10:10 AM, EDT
MS40: SDP Approaches to Combinatorial and Global Optimization - Part II of III SIAM Conference on Optimization, (OP21)

## Collaborators

- Xinxin Li (Jilin University)
- Ting Kei Pong (The Hong Kong Polytechnic University)
- Naomi Graham, Hao Hu, Jiyoung (Haesol) Im, Hao Sun (University of Waterloo)


## Two Main References

- [6] N. Graham, H. Hu, J. Im, X. Li, and H. Wolkowicz, A restricted dual Peaceman-Rachford splitting method for QAP, Tech. report, Waterloo, Ontario, 2020.
- [7] X. Li, T.K. Pong, H. Sun, and H. Wolkowicz, A strictly contractive Peaceman-Rachford splitting method for the doubly nonnegative relaxation of the minimum cut problem, Comput. Optim. Appl. 78 (2021), no. 3, 853-891. MR4221619


## Outline/Background/Motivation

- Solving hard combinatorial/discrete optimization problems requires: efficient upper/lower bounding techniques.
- These problems are often modelled using quadratic objectives and/or quadratic constraints, i.e., QQPs.
- Lagrangian relaxations of QQPs lead to Semidefinite Programming, SDP, and SDP relaxations, e.g., Handbook on SDP [10].
- SDP relaxations are expensive to solve using interior-point approaches. This becomes doubly expensive when cutting planes are added, e.g., using Doubly Nonnegative, DNN, relaxations


## Outline/Background/Motivation II

- Strict feasibility fails for many of the SDP relaxations of these hard combinatorial problems.
(Compare Rademacher Theorem: Loc. Lip. functions are differentiable a.e.)
Facial reduction, FR, e.g., $[2,3,4,5]$ provides a means of regularizing the SDP relaxations.
- FR appears to provide a natural splitting of variables for the application of Alternating Direction Method of Multipliers, ADMM, type methods for large scale problems; and for exploiting structure.
- Classes of Problems:

Min-Cut; Maxcut; and Graph Partitioning;
and QAP,

Hard Combinatorial Problems and Modelling with Quadratic Functions; Importance of Duality

## Instance /Modelling with Quadratic Functions

$$
\begin{array}{cll}
\min & q_{0}(x) & \left(=x^{\top} H x+2 g^{T} x+\alpha\right) \\
\text { s.t. } & A x=b & \text { (linear constraint) } \\
& x \in K \subseteq \mathbb{R}^{N} & (K \text { hard constraints) }
\end{array}
$$

## Hard (Combinatorial) Constraints: e.g.,

- both 0,1 and $\pm 1$ modelled with quadratic const., resp.,

$$
\begin{array}{ccc}
K:=\{0,1\}^{N} & \text { or } & K:=\{ \pm 1\}^{N} \\
q_{i}(x):=x_{i}^{2}-x_{i}=0, \forall i & \text { or } & q_{i}(x):=x_{i}^{2}-1=0, \forall i
\end{array}
$$

- $K$ is partition matrices, $x \in \mathcal{M}_{m}, \quad$ (GP)
- $K$ is permutation matrices, $x \in \Pi_{n}$, (QAP)


## Can Close the Duality Gap by Changing Model

## Example: (Lagrangian) Duality Gap for QP

$$
\begin{aligned}
1=p^{*} & =\max \left\{-x_{1}^{2}+x_{2}^{2}: x_{2}=1\right\} \\
& <\infty=d^{*} \\
& =\inf _{\lambda} \max _{x} L(x, \lambda)=-x_{1}^{2}+x_{2}^{2}-\lambda\left(x_{2}-1\right)
\end{aligned}
$$

## BUT with a Model Change (same problem)

$$
\begin{aligned}
1=p^{*} & =\max \left\{-x_{1}^{2}+x_{2}^{2}:\left(x_{2}-1\right)^{2}=0\right. \\
& =d^{*}=\inf _{\lambda} \max _{x}\left\{-x_{1}^{2}+x_{2}^{2}-\lambda\left(x_{2}-1\right)^{2}\right\}
\end{aligned}
$$

since stationarity and the Lagrangian function value satisfy:

$$
\begin{gathered}
0=2 x_{2}-2 \lambda\left(x_{2}-1\right) \Longrightarrow x_{2}=\frac{\lambda}{\lambda-1} \rightarrow 1 \\
L(x, \lambda)=x_{2}^{2}-\lambda\left(x_{2}-1\right)^{2}=\frac{\lambda^{2}}{(\lambda-1)^{2}}-\lambda \frac{1}{(\lambda-1)^{2}}=\frac{\lambda}{\lambda-1} \rightarrow 1
\end{gathered}
$$

Further Example: Close Duality Gap

- Let $A=\left[\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right], B=\left[\begin{array}{ll}3 & 0 \\ 0 & 4\end{array}\right], \quad X^{*}=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$

$$
\begin{aligned}
10=p^{*}= & \min \\
& \text { s.t. }
\end{aligned} \quad X X^{T}=I, X \in \mathbb{R}^{n \times n} A X B X^{\top}
$$

- $L(X, S)=\operatorname{trace} A X B X^{T}+\operatorname{trace} S\left(X X^{T}-I\right), S \in \mathcal{S}^{n}$ trace $A X B X^{T}=x^{T}(B \otimes A) x, x=\operatorname{vec} X$

$$
\text { Lagrangian dual: } \quad d^{*}=\max _{S \in \mathcal{S}^{n}} \min _{X} L(X, S)
$$

$$
\begin{aligned}
& \qquad 10=p^{*}>9=d^{*}=\begin{array}{ccc}
\max & -\operatorname{trace} S \\
& \text { s.t. } B \otimes A+I \otimes S \succeq 0, \quad S \in \mathcal{S}^{n} \\
\text { where } B \otimes A=\left[\begin{array}{llll}
3 & 0 & 0 & 0 \\
0 & 6 & 0 & 0 \\
0 & 0 & 4 & 0 \\
0 & 0 & 0 & 8
\end{array}\right] \Longrightarrow S_{11} \geq-3, S_{22} \geq-6
\end{array} . \quad .
\end{aligned}
$$

## Change Model; Add Redundant Constraint; Increase Number of Lagrange Dual Multipliers

## Duplicate orthogonality constraint

Add: $X^{\top} X=I$ closes duality gap by exploiting the new Lagrange multipliers in $T \in \mathcal{S}^{n}$

$$
\begin{aligned}
10=p^{*}=10=d^{*}= & \max \text { trace }-S-T \\
& \text { s.t. } \quad B \otimes A+I \otimes S+T \otimes I \succeq 0,
\end{aligned}
$$

## Theorem (Anstreicher, W. '95, [1])

Strong duality holds for

$$
\begin{array}{cl}
\text { min } & \operatorname{trace} A X B X^{T} \\
\text { s.t. } & X X^{T}=I, X^{\top} X=I, X \in \mathbb{R}^{n \times n}
\end{array}
$$

## QP: Obtain Strong Duality in General? <br> A Modelling Issue

$$
H \in \mathcal{S}^{n}, A, m \times n, m<n, K \text { compact }
$$

Theorem (Poljak, Rendl, W. '95, [8])

$$
\begin{aligned}
p^{*} & =\max _{x}\left\{q_{0}(x):=x^{\top} H x+2 g^{\top} x+\alpha: A x=b, x \in K\right\} \\
& =\max _{x}\left\{q_{0}(x):\|A x-b\|^{2}=0, x \in K\right\} \\
& =d^{*}=\min _{\lambda} \phi(\lambda)
\end{aligned}
$$

where the dual functional is:

$$
\phi(\lambda):=\max _{x \in K} L(x, \lambda):=q_{0}(x)-\lambda\|A x-b\|^{2}
$$

## Summary: To strengthen the Lagrangian dual

- linear constraints $A x-b=0$ to quadratic $\|A x-b\|^{2}=0$
- Add redundant constraints


## Model with Quadratics Details; <br> Homogenize, and Lift to Matrix Space

Homogenize using $x_{0} \in \mathbb{R}$ with $x_{0}^{2}-1=0$

$$
\left\{\begin{array}{c}
\min q_{0}\left(x, x_{0}\right)=x^{\top} H x+2 g^{\top} x x_{0}+\alpha x_{0}^{2} \\
A x-b=0 \cong\left\|A x-b x_{0}\right\|_{2}^{2}=0
\end{array}\right.
$$

## Lifting (linearization): $\quad \mathbb{R}^{N+1} \rightarrow \mathbb{S}^{N+1}$

$y=\binom{x_{0}}{x}, Y=y y^{T} \in \mathbb{S}_{+}^{N+1}, \quad$ symmetric, psd, $\quad Y_{00}=1$
obj. fn. $\quad y^{T}\left[\begin{array}{cc}\alpha & g^{T} \\ g & H\end{array}\right] y=\operatorname{trace}\left[\begin{array}{cc}\alpha & g^{T} \\ g & H\end{array}\right] Y, \quad \operatorname{rank}(Y)=1$

## Relaxation to Convex Problem:

Discard the (hard) rank one constraint on $Y$

## Lifting with QQP and FACIAL REDUCTION

## Lifting Linear Equality Constraint

$$
\begin{aligned}
0 & =\left\|A x-b x_{0}\right\|_{2}^{2}=\left\|\left[\begin{array}{ll}
-b & A
\end{array}\right]\binom{x_{0}}{x}\right\|_{2}^{2} \\
& =\binom{x_{0}}{x}^{T}\left[\begin{array}{c}
-b^{T} \\
A^{T}
\end{array}\right]\left[\begin{array}{ll}
-b & A
\end{array}\right]\binom{x_{0}}{x} \\
& =\operatorname{trace}\left[\begin{array}{ll}
\|b\|^{2} & -b^{T} A \\
-A^{T} b & A^{T} A
\end{array}\right] Y=0
\end{aligned}
$$

EXPOSING VECTOR $W \in \mathbb{S}_{+}^{N+1}$, with: spectr. decomp., FR

$$
W:=\left[\begin{array}{cc}
\|b\|^{2} & -b^{T} A \\
-A^{T} b & A^{T} A
\end{array}\right]=\left[\begin{array}{ll}
V & U
\end{array}\right]\left[\begin{array}{ll}
0 & 0 \\
0 & D
\end{array}\right]\left[\begin{array}{ll}
V & U
\end{array}\right]^{T}, D \in \mathbb{S}_{+}^{N+1-r}
$$

$Y$ feasible $\Longrightarrow \quad Y W=0 \quad$ (Strict feasibility (Slater) fails)

$$
\Longrightarrow Y=V R V^{T}, R \in \mathbb{S}_{+}^{r} \quad \text { (facial reduction) }
$$

## Hard Discrete Constraints

## Zero-One; Homogenize with $x_{0}, x_{0}^{2}-1=0$

$$
q_{i}\left(x, x_{0}\right):=x_{i}^{2}-x_{i} x_{0}=0, \forall i
$$

## Lifting (linearization): $\quad \mathbb{R}^{N+1} \rightarrow \mathbb{S}^{N+1}$

$$
y=\binom{x_{0}}{x}, Y=y y^{\top} \in \mathbb{S}_{+}^{N+1}, \quad \text { symmetric, psd, } \quad Y_{00}=1
$$

$$
\text { constr. for }\{0,1\}: \quad \operatorname{arrow}(Y)=e_{0}:=\binom{1}{0} \in \mathbb{R}^{n+1}
$$

$$
\left(\operatorname{diag}(Y)=Y_{i, 0}\right)
$$

## Adjoint: Arrow $\simeq$ arrow*

$\langle\operatorname{Arrow}(v), S\rangle=\langle v, \operatorname{arrow}(S)\rangle, \quad \forall v \in \mathbb{R}^{N+1}, \forall S \in \mathbb{S}^{N+1}$

## Splitting Methods, Facial Reduction, FR

Natural Splitting? $\quad Y \in \mathcal{P}, R \in \mathcal{R} \subseteq \mathbb{S}_{+}^{r} \quad Y=V R V^{\top}$

$$
Y \in \mathcal{P} \subset \mathbb{S}_{+}^{N+1}, \quad R \in \mathcal{R} \subseteq \mathbb{S}_{+}^{r}, \quad r<N+1
$$

Facial reduction generally provides a reduction in dimension and a guarantee that strict feasibility holds.
There is a natural separation of constraints where

$$
Y \in \mathcal{P} \text { polyhedral } \quad R \in \mathcal{R} \text { convex set }
$$

## Adding Redundant Constraints Back

- FR results in many constraints becoming redundant; and these are deleted for e.g., interior-point methoods.
- However, after the splitting, many of the redundant constraints can be added back to the separate split problems to form sets $\mathcal{P}, \mathcal{R}$.


## Instance: Minimum Cut, MC, Problem

## Given: Undirected Graph $G=(\mathcal{V}, \mathcal{E})$

edge set $\mathcal{E}$ and node set $|\mathcal{V}|=n$
$m=\left(m_{1} m_{2} \ldots m_{k}\right)^{T}, \sum_{i=1}^{k} m_{i}=n$; given partition into $k$ sets

## MC Problem:

partition vertex set $\mathcal{V}$ into $k$ subsets with given sizes in $m$ to minimize the cut after removing the $k$-th set; $X$ is the unknown 0,1 partition matrix.

## Applications

re-orderings for sparsity patterns; microchip design and circuit board, floor planning and other layout problems.
( $k=3$, vertex separator problem)

## Quadratic-Quadratic Model/Homogenized

## Include Many Redundant Constraints

$$
\begin{array}{rll}
\operatorname{cut}(m)=\min & \frac{1}{2} \operatorname{trace} A X B X^{T} & \\
\text { s.t. } & X \circ X=x_{0} X & \in\{0,1\} \\
& \left\|X e-x_{0} e\right\|^{2}=0 & \text { row sums }=1 \\
& \left\|X^{T} e-x_{0} m\right\|^{2}=0 & \text { column sums } \\
& X_{: i} \circ X_{: j}=0, \forall i \neq j & \text { col. elem. orth. } \\
& X^{T} X-M=0 & \text { scaled orth. } \\
& \operatorname{diag}\left(X X^{T}\right)-e=0 & \text { unit norm rows } \\
& x_{0} e_{n}^{T} X e_{k}-n=0 & n \text { vertices } \\
& x_{0}^{2}=1 &
\end{array}
$$

- $e_{j}$ is the vector of ones of dimension $j ; M=\operatorname{Diag}(m)$.
- $u \circ v$ Hadamard (elementwise) product.


## SDP Constraints, FR and Exposing Vectors

## Trace constraints (from linear equality constraints

$$
\begin{array}{lc}
\operatorname{trace} D_{1} Y=0, & D_{1}:=\left[\begin{array}{cc}
n & -e_{k}^{T} \otimes e_{n}^{T} \\
-e_{k} \otimes e_{n} & \left(e_{k} e_{k}^{T}\right) \otimes I_{n}
\end{array}\right] \\
\operatorname{trace} D_{2} Y=0, & D_{2}:=\left[\begin{array}{cc}
m^{T} m & -m^{T} \otimes e_{n}^{T} \\
-m \otimes e_{n} & I_{k} \otimes\left(e_{n} e_{n}^{T}\right)
\end{array}\right]
\end{array}
$$

$e_{j}$ vector of ones of dimension $j ; D_{i} \succeq 0, i=1,2$; nullspaces of these matrices yield the facial reduction $Y=V R V^{T}$.

Block: trace, diagonal and off-diagonal

$$
\begin{aligned}
\mathcal{D}_{t}(Y) & :=\left(\operatorname{trace} \bar{Y}_{(i j)}\right)=M \in \mathbb{S}^{k} \\
\mathcal{D}_{d}(Y) & :=\sum_{i=1}^{k} \operatorname{diag} \bar{Y}_{(i i)}=e_{n} \in \mathbb{R}^{n} \\
\mathcal{D}_{o}(Y) & :=\left(\sum_{s \neq t}\left(\bar{Y}_{(i j)}\right)_{s t}\right)=\hat{M} \in \mathbb{S}^{k}
\end{aligned}
$$

where $\hat{M}:=m m^{T}-M$.

## SDP Constraints cont. . .

trace $Y=n+1$; and Gangster constraints on $Y$
The Hadamard product and orthogonal type constraints lead to gangster constraints
i.e., simple constraints that restrict elements to be zero (shoot holes in the matrix) and/or restrict entire blocks. gangster and restricted gangster constraint on $Y$ :

$$
\mathcal{G}_{H}(Y)=0,
$$

for specific index sets $H$.

## SDP Relaxation

## SDP Relaxation with Many (some redundant) Constraints

$$
\begin{array}{rll}
\operatorname{cut}(m) \geq p_{\mathrm{SDP}}^{*}:=\min & \frac{1}{2} \operatorname{trace} L_{A} Y \\
\text { s.t. } & \operatorname{arrow}(Y)=e_{0} \\
& \operatorname{trace} D_{1} Y=0, \text { trace } D_{2} Y=0 \\
& \mathcal{G}_{0}(Y)=0, Y_{00}=1 \\
& \mathcal{D}_{t}(Y)=M, \mathcal{D}_{d}(Y)=e, \mathcal{D}_{o}(Y)=\widehat{M} \\
& Y \in \mathbb{S}_{+}^{k n+1}
\end{array}
$$

Equivalent FR greatly simplified SDP; with $Y=\widetilde{V} R \widetilde{V}^{T}$

$$
\begin{array}{rll}
\operatorname{cut}(m) \geq p_{\mathrm{SDP}}^{*}=\min & \frac{1}{2} \operatorname{trace}\left(\widetilde{V}^{T} L_{A} \widetilde{V}\right) R \\
& \text { s.t. } & \mathcal{G}_{\mathcal{J}_{\mathcal{I}}}\left(\widetilde{V} R \widetilde{V}^{T}\right)=\mathcal{G}_{\widehat{J}_{\mathcal{I}}}\left(e_{0} e_{0}^{T}\right) \\
& R \in \mathbb{S}_{+}^{(k-1)(n-1)+1}
\end{array}
$$

## Primal-Dual Strong Duality (Regularity) for FR SDP

## Theorem

(1) (Generalized) slater point for the primal: $\tilde{R}=\left[\begin{array}{c|c}1 & 0 \\ \hline 0 & \frac{1}{n^{2}(n-1)}\left(n \operatorname{Diag}\left(\hat{m}_{k-1}\right)-\hat{m}_{k-1} \hat{m}_{k-1}^{T}\right) \otimes\left(n n_{n-1}-E_{n-1}\right)\end{array}\right] \in \mathbb{S}_{++}^{(k-1)(n-1)+1}$. Moreover, Robinson regularity holds.
(2) The dual problem

$$
\begin{aligned}
\max & \frac{1}{2} w_{00} \\
\text { s.t. } & \widetilde{V}^{\top} \mathcal{G}_{\widetilde{J}_{\mathcal{I}}}^{*}(w) \widetilde{V} \preceq \widetilde{V}^{T} L_{A} \widetilde{V} .
\end{aligned}
$$

satisfies strict feasibility.

## Motivation

## Difficulties for Primal-dual interior-point Methods for SDP

- solving large problems
- obtaining high accuracy solutions
- exploiting sparsity
- adding on nonnegativity and other cutting plane constraints

First order operator splitting methods for SDP

- FR provides a natural (successful) splitting, $Y=V R V^{T}$, (Y polyhedral, R cone/convex)
- Flexibility in dealing with additional constraints
- separable/split optimization steps are inexpensive


## Strengthen model with redundant constraint

Set Constraints, Low Rank (helps with early stopping)

$$
\begin{aligned}
& \mathcal{R}:=\left\{R \in \mathbb{S}_{+}^{(k-1)(n-1)+1}: \text { trace } R=n+1\right\} \\
& \mathcal{Y}:=\left\{Y \in \mathbb{S}^{n k+1}: 1 \geq Y\left(J^{c}\right) \geq 0\right. \\
& \mathcal{G}_{\bar{J}}(Y)=\mathcal{G}_{\bar{J}}\left(e_{0} e_{0}^{T}\right) \\
& \left.\quad \mathcal{D}_{o}(Y)=\widehat{M}, e^{T} Y_{(i 0)}=m_{i}, \forall i\right\}
\end{aligned}
$$

## Strengthened model

$$
\begin{aligned}
(\mathrm{DNN})
\end{aligned} p_{D N N}^{*}=\min \quad \frac{1}{2} \operatorname{trace} L_{A} Y+\mathbb{1}_{\mathcal{Y}}(Y)+\mathbb{1}_{\mathcal{R}}(R)
$$

where $\mathbb{1}_{\mathcal{S}}(\cdot)$ is indicator function of set $\mathcal{S}$.

## Splitting Method

Augmented Lagrangian Function, $\quad \mathcal{L}_{\beta}(R, Y, Z)=$
$=f_{\mathcal{R}}(R)+g_{\mathcal{y}}(Y)+\left\langle Z, Y-\widehat{V} R \widehat{V}^{T}\right\rangle+\frac{\beta}{2}\left\|Y-\widehat{V} R \widehat{V}^{T}\right\|^{2}$

- $\beta>0$ penalty parameter for quadratic penalty term,
- $\left(L_{s}\right.$ diagonally scaled objective $\left.L_{s}:=\frac{1}{2} L+\alpha I \succ 0\right)$

$$
f_{\mathcal{R}}(R)=\mathbb{1}_{\mathcal{R}}(R), \quad g_{\mathcal{Y}}(Y)=\operatorname{trace} L_{s} Y+\mathbb{1}_{\mathcal{Y}}(Y) .
$$

## sPRSM, Strictly Contractive Peaceman-Rachford Splitting

i.e., alternate minimization of $\mathcal{L}_{\beta}$ in the variables $Y$ and $R$ interlaced by an update of the $Z$ variable.
In particular, we update the dual variable $Z$ both after the $R$-update and the $Y$-update (both of which have unique solutions).

## FRSMR, FR Splitting Method with Redundancies

- Pick any $Y^{0}, Z^{0} \in \mathbb{S}^{n k+1}$. Fix $\beta>0$ and $\gamma \in(0,1)$. Set $t=0$.
- For each $t=0,1, \ldots$, update
- $R^{t+1}=\operatorname{argmin}_{R \in \mathcal{R}} \mathcal{L}_{\beta}\left(R, Y^{t}, Z^{t}\right)$
$=\operatorname{argmin}_{R} f_{\mathcal{R}}(R)-\left\langle Z^{t}, \widehat{V} R \widehat{V}^{T}\right\rangle+\frac{\beta}{2}\left\|Y^{t}-\widehat{V} R \widehat{V}^{T}\right\|^{2}$
- $Z^{t+\frac{1}{2}}=Z^{t}+\gamma \beta\left(Y^{t}-\widehat{V} R^{t+1} \widehat{V}^{T}\right)$,
- $Y^{t+1}=\operatorname{argmin}_{Y \in \mathcal{Y}} \mathcal{L}_{\beta}\left(R^{t+1}, Y, Z^{t+\frac{1}{2}}\right)$
$=\operatorname{argmin}_{Y} g_{\mathcal{Y}}(Y)+\left\langle Z^{t+\frac{1}{2}}, Y\right\rangle+\frac{\beta}{2}\left\|Y-\widehat{V} R^{t+1} \widehat{V}^{T}\right\|^{2}$,
$\bullet Z^{t+1}=Z^{t+\frac{1}{2}}+\gamma \beta\left(Y^{t+1}-\widehat{V} R^{t+1} \widehat{V}^{T}\right)$.


## Global convergence

## Theorem

Let $\left\{R^{t}\right\},\left\{Y^{t}\right\}$ and $\left\{Z^{t}\right\}$ be the generated sequences from FRSMR. Then $\left\{\left(R^{t}, Y^{t}\right)\right\}$ converges to an optimal solution $\left(R^{*}, Y^{*}\right)$ of the DNN relaxation, $\left\{Z^{t}\right\}$ converges to some $Z^{*}$, and $\left(R^{*}, Y^{*}, Z^{*}\right)$ satisfies the optimality conditions of the DNN relaxation

$$
\begin{aligned}
0 & \in-\widehat{V}^{T} Z^{*} \widehat{V}+\mathcal{N}_{\mathcal{R}}\left(R^{*}\right) \\
0 & \in L_{s}+Z^{*}+\mathcal{N}_{\mathcal{Y}}\left(Y^{*}\right) \\
Y^{*} & =\widehat{V} R^{*} \widehat{V}^{T}
\end{aligned}
$$

where $\mathcal{N}_{S}(x)$ denotes the normal cone of $S$ at $x$.

## 1. Explicit solution for $R^{t+1}$

With the assumption that $\widehat{V}^{T} \widehat{V}=I$

$$
\begin{aligned}
R^{t+1} & =\operatorname{argmin}_{R \in \mathcal{R}}-\left\langle Z, \widehat{V} R \widehat{V}^{T}\right\rangle+\frac{\beta}{2}\left\|Y^{t}-\widehat{V} R \widehat{V}^{T}\right\|^{2} \\
& =\mathcal{P}_{\mathcal{R}}\left(\widehat{V}^{T}\left(Y^{t}+\frac{1}{\beta} Z^{t}\right) \widehat{V}\right),
\end{aligned}
$$

where $\mathcal{P}_{\mathcal{R}}$ denotes the projection (nearest point) onto the intersection of the SDP cone $\mathbb{S}_{+}^{(k-1)(n-1)+1}$ and the hyperplane $\left\{R \in \mathbb{S}^{(k-1)(n-1)+1}\right.$ : trace $\left.R=n+1\right\}$.
(diagonalize; then project eigenvalues onto simplex)

## 2. Explicit solution of $Y^{t+1}$

The $Y$-subproblem yields a closed form solution by projection onto the polyhedral set $\mathcal{Y}$, i.e.,

$$
Y^{t+1}=\operatorname{argmin}_{Y \in \mathcal{Y} \frac{\beta}{2}}\left\|Y-\widehat{V} R^{t+1} \widehat{V}^{T}-\frac{1}{\beta}\left(L_{s}+Z^{t+\frac{1}{2}}\right)\right\|^{2} .
$$

Note that the update (projection of $\tilde{Y}$ ) satisfies e.g.,

$$
\left(Y^{t+1}\right)_{i j}= \begin{cases}1 & \text { if } i=j=0 \\ 0 & \text { if } i j \in J \backslash\{0\} \\ 0 & \text { if } i j \in J^{c}, Y_{i j} \leq 0 \\ \tilde{Y}_{i j} & \text { if } i j \in J^{c}, 0<Y_{i j} .\end{cases}
$$

## Lower bound from Inaccurate Solutions

## Theorem (Fenchel Dual)

Define modified dual functional
$g(Z):=\min _{Y \in \tilde{\mathcal{Y}}}\left\langle L_{s}+Z, Y\right\rangle-(n+1) \lambda_{\max }\left(\widehat{V}^{T} Z \widehat{V}\right)$,
with $\widetilde{\mathcal{Y}}:=$

$$
\begin{aligned}
& \left\{Y \in \mathbb{S}^{n k+1}: \mathcal{G}_{\mathcal{J}_{0}}(Y)=\mathcal{G}_{\mathcal{J}_{0}}\left(e_{0} e_{0}^{T}\right), 0 \leq \mathcal{G}_{\mathcal{J}_{0}}(Y) \leq 1,\right. \\
& \left.\quad \mathcal{D}_{0}(Y)=\widehat{M}, \mathcal{D}_{t}(Y)=M, e^{T} Y_{(i 0)}=m_{i}, i=1, \ldots, k\right\} .
\end{aligned}
$$

Then

$$
p_{\mathrm{DNN}}^{*}=d_{Z}^{*}:=\max _{Z} g(Z)
$$

and the latter (dual) problem is attained, i.e., strong duality holds.

## The Lower Bound

Evaluating $g\left(Z^{t}\right)$ always yields a lower bound for the DNN relaxation optimal value

$$
p_{\mathrm{DNN}}^{*} \geq g\left(Z^{t}\right)
$$

## Upper bound from feasible solution

## Approx. output $Y^{0 u t}$

- Obtain a vector $v=\left(v_{0} \bar{v}\right)^{T} \in \mathbb{R}^{n k+1}, v_{0} \neq 0$ from $Y^{\text {out }}$
- Reshape $\bar{v}$; get $n \times k$ matrix $X^{\text {out }}$
- Since $X$ implies trace $X^{\top} X=n$, a constant, we get

$$
\left\|X^{\text {out }}-X\right\|^{2}=-2 \operatorname{trace} X^{T} X^{\text {out }}+\text { constant }
$$

- Solve the linear program (transportation problem)

$$
\hat{X} \in \operatorname{argmax}\left\{\left\langle X^{\text {out }}, X\right\rangle: X e=e, X^{\top} e=m, X \geq 0\right\}
$$

- Upper bound $=\frac{1}{2}$ trace $A \hat{X} B \hat{X}^{T}$


## Choosing the vector $v$ for $X^{\text {out }}$ for upper bound

rank $Y=1 \Longrightarrow$ column/eigenvector 0 yields opt. $X$
(1) column 0 of $Y^{\text {out }}$;
(2) eigenvector corresponding to largest eigenvalue of $Y^{\text {out }}$;
(3) random sampling/repeated: sum of random weighted-eigenvalue eigenvectors of $Y^{o u t}$,

$$
v=\sum_{i=1}^{r} w_{i} \lambda_{i} v_{i}
$$

where ordered eigenpairs of $Y^{\text {out }}$ and ordered weights; $r$ here is the numerical rank of $Y^{\text {out }}$.

## Numerical Tests from $[7,6]$

## Tests using:

Matlab R2017a on a ThinkPad X1 with an Intel CPU (2.5GHz) and 8GB RAM running Windows 10.

Three classes of problems:
(a) random structured graphs (compare with previous results in Pong et al. [9])
(b) partially random graphs with various sizes classified by the number of 1 's, $|\mathcal{I}|$, in the vector $m$ (similar to QAP)
(c) vertex separator instances

## Facial Reduction, FR

## Lifting Linear Equality Constraint

Table: Data terminology

| imax | maximum size of each set |
| :--- | :--- |
| $k$ | number of sets |
| $n$ | number of nodes (sum of sizes of sets) |
| $p$ | density of graph |
| $u_{0}$ | known lower bound |
| $I=e^{T} m_{\text {one }}$ | number of 1's in $m$ |
| Iters | number of iterations |
| CPU | time in seconds |
| Bounds | best lower and upper bounds and relative gap |
| Residuals | final values of: <br>  <br>  <br>  <br>  <br>  <br>  <br>  <br> $Y^{t+1}-\widehat{V} R^{t+1} \widehat{V}^{T} \\|(\cong \Delta Z) ;$ <br> $Y^{t+1}-Y^{t} \\|(\cong \Delta Y)$ |

## Numerical Tests

Comparison small structured graphs with Pong et al

| Data |  |  | Lower bounds |  | Upper bounds |  | Rel-gap |  | Time (cpu) |  |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| $n$ | $k$ | $\|E\|$ | $u_{0}$ | FRSMR | Mosek | FRSMR | Mosek | FRSMR | Mosek | FRSMR | Mosek | FRS |
| ---: | :--- |

## Numerics cont... Random Graphs

\# ones, $\mathcal{I}=\emptyset$, mean over 3 instances

| Specifications |  |  |  |  | Iter | cpu | Bounds |  |  | Residuals |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| imax | $k$ | $n$ | $p$ | 1 |  |  | low | up | rel-gap | prim. | dual |
| 5 | 6 | 19.0 | 0.49 | 0 | 333.33 | 0.89 | 38.0 | 38.33 | 0.01 | $4.15 \mathrm{e}-03$ | $6.18 \mathrm{e}-03$ |
| 6 | 7 | 24.67 | 0.44 | 0 | 500.0 | 3.03 | 60.0 | 61.67 | 0.02 | $4.86 \mathrm{e}-03$ | $8.74 \mathrm{e}-03$ |
| 7 | 8 | 31.0 | 0.37 | 0 | 966.67 | 9.53 | 68.33 | 71.0 | 0.04 | $8.44 \mathrm{e}-04$ | $3.74 \mathrm{e}-04$ |
| 8 | 9 | 40.0 | 0.31 | 0 | 833.33 | 22.75 | 100.33 | 110.67 | 0.09 | 1.43e-03 | 6.92e-04 |
| 9 | 10 | 50.33 | 0.23 | 0 | 1100.0 | 75.26 | 119.67 | 132.33 | 0.09 | $1.53 \mathrm{e}-03$ | 6.81e-04 |

## Numerics cont... Random Graphs

$k \notin \mathcal{I} \neq \emptyset$, mean over 4 instances

| Specifications |  |  |  |  | Iters | cpu | Bounds |  |  | Residuals |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| imax | $k$ | $n$ | $p$ | 1 |  |  | lower | upper | rel-gap | primal | dual |
| 5 | 6 | 16.25 | 0.51 | 1.50 | 450.00 | 1.02 | 22.25 | 23.00 | 0.03 | 2.36e-03 | $1.64 \mathrm{e}-03$ |
| 6 | 7 | 17.00 | 0.43 | 3.25 | 325.00 | 1.18 | 23.00 | 23.25 | 0.00 | 3.75e-02 | $5.90 \mathrm{e}-02$ |
| 7 | 8 | 21.00 | 0.38 | 3.50 | 625.00 | 4.98 | 34.50 | 36.00 | 0.02 | 3.66e-03 | $1.95 \mathrm{e}-03$ |
| 8 | 9 | 21.75 | 0.30 | 5.00 | 400.00 | 3.36 | 20.75 | 21.25 | 0.01 | 8.37e-02 | $9.51 \mathrm{e}-02$ |
| 9 | 10 | 38.00 | 0.23 | 3.25 | 775.00 | 25.84 | 55.25 | 63.50 | 0.11 | 3.26e-03 | $1.37 \mathrm{e}-03$ |

## Numerics Cont... Random Graphs

$k \in \mathcal{I} \neq \mathcal{K}$, mean 5 instances

| Specifications |  |  |  |  | Iters | cpu | Bounds |  |  | Residuals |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| imax | $k$ | $n$ | $p$ | 1 |  |  | lower | upper | rel-gap | primal | dual |
| 5 | 6 | 13.60 | 0.49 | 2.80 | 160.00 | 0.33 | 22.60 | 22.60 | 0.00 | 2.55e-02 | 3.02e-02 |
| 6 | 7 | 18.00 | 0.42 | 3.40 | 460.00 | 1.99 | 37.80 | 39.00 | 0.02 | 5.66e-02 | $7.10 \mathrm{e}-02$ |
| 7 | 8 | 22.20 | 0.39 | 3.80 | 560.00 | 3.96 | 57.80 | 60.20 | 0.02 | $1.04 \mathrm{e}-02$ | $1.19 \mathrm{e}-02$ |
| 8 | 9 | 22.60 | 0.30 | 5.20 | 540.00 | 4.92 | 37.20 | 38.00 | 0.01 | 3.48e-02 | $4.29 \mathrm{e}-02$ |
| 9 | 10 | 31.00 | 0.23 | 4.80 | 700.00 | 16.78 | 61.80 | 68.00 | 0.06 | $1.44 \mathrm{e}-02$ | $1.01 \mathrm{e}-02$ |

$\mathcal{I}=\mathcal{K}$, mean 6 instances

| Specifications |  |  |  | Iters | Time (cpu) | Bounds |  |  | Residuals |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| k | $n$ | $p$ | 1 |  |  | lower | upper | rel-gap | primal | dual |
| 6 | 6.00 | 0.59 | 6.00 | 100.00 | 0.06 | 4.67 | 4.67 | 0.00 | 5.12e-03 | $5.10 \mathrm{e}-03$ |
| 7 | 7.00 | 0.48 | 7.00 | 100.00 | 0.08 | 5.67 | 5.67 | 0.00 | 8.66e-02 | 1.27e-01 |
| 8 | 8.00 | 0.41 | 8.00 | 150.00 | 0.18 | 7.17 | 7.17 | 0.00 | $2.64 \mathrm{e}-01$ | 1.68e-01 |
| 9 | 9.00 | 0.34 | 9.00 | 233.33 | 0.37 | 7.83 | 8.00 | 0.03 | $1.88 \mathrm{e}-01$ | $3.99 \mathrm{e}-02$ |
| 10 | 10.00 | 0.25 | 10.00 | 266.67 | 0.56 | 7.50 | 7.50 | 0.00 | $6.28 \mathrm{e}-02$ | $8.71 \mathrm{e}-02$ |

## Numerics Cont...

Table: Comparisons on the bounds for MC and bounds for the cardinality of separators


## Conclusion

- We discussed strategies for finding new, strengthened lower and upper bounds, for hard discrete optimization problems.
- In particular, we exploited the fact that strict feasibility fails for many of these problems and that facial reduction, FR, leads to a natural splitting approach for ADMM, sPRSM, type methods.
- The FR makes many constraints redundant and simplifies the problem. We strengthened the subproblems in the splitting by returning redundant constraints.
- A special scaling, and a random sampling provided strengthened lower and upper bounds from low approximate solutions from our approach. (Allowing for early stopping.


## References I

固 K．M．Anstreicher and H．Wolkowicz，On Lagrangian relaxation of quadratic matrix constraints，SIAM J．Matrix Anal．Appl． 22 （2000），no．1，41－55．

嗇 J．M．Borwein and H．Wolkowicz，Characterization of optimality for the abstract convex program with finite－dimensional range，J．Austral．Math．Soc．Ser．A 30 （1980／81），no．4，390－411．MR 83i：90156
$\qquad$ ，Facial reduction for a cone－convex programming problem，J．Austral．Math．Soc．Ser．A 30 （1980／81），no．3， 369－380．MR 83b：90121

囯 ，Regularizing the abstract convex program，J．Math． Anal．Appl． 83 （1981），no．2，495－530．MR 83d：90236

## References II

D. Drusvyatskiy and H. Wolkowicz, The many faces of degeneracy in conic optimization, Foundations and Trends ${ }^{\circledR}$ in Optimization 3 (2017), no. 2, 77-170.
目 N. Graham, H. Hu, J. Im, X. Li, and H. Wolkowicz, A restricted dual Peaceman-Rachford splitting method for QAP, Tech. report, University of Waterloo, Waterloo, Ontario, 2020, 29 pages, submitted, research report.

- X. Li, T.K. Pong, H. Sun, and H. Wolkowicz, A strictly contractive Peaceman-Rachford splitting method for the doubly nonnegative relaxation of the minimum cut problem, Comput. Optim. Appl. 78 (2021), no. 3, 853-891. MR 4221619
击 S. Poljak, F. Rendl, and H. Wolkowicz, A recipe for semidefinite relaxation for ( 0,1 )-quadratic programming, J. Global Optim. 7 (1995), no. 1, 51-73. MR 96d:90053


## References III

围 T.K. Pong, H. Sun, N. Wang, and H. Wolkowicz, Eigenvalue, quadratic programming, and semidefinite programming relaxations for a cut minimization problem, Comput. Optim. Appl. 63 (2016), no. 2, 333-364. MR 3457444

埥 H. Wolkowicz, R. Saigal, and L. Vandenberghe (eds.), Handbook of semidefinite programming, International Series in Operations Research \& Management Science, 27, Kluwer Academic Publishers, Boston, MA, 2000, Theory, algorithms, and applications. MR MR1778223 (2001k:90001)

# Hard Combinatorial Problems, Doubly Nonnegative Relaxations, Facial Reduction, and <br> Alternating Direction Method of Multipliers 

Henry Wolkowicz
Dept. Comb. and Opt., University of Waterloo, Canada

Wednesday, July 21, 2021, 9:45-10:10 AM, EDT
MS40: SDP Approaches to Combinatorial and Global Ontimization41 Part II of III

