Hard Combinatorial Problems, Doubly Nonnegative Relaxations, Facial Reduction, and Alternating Direction Method of Multipliers

Henry Wolkowicz Dept. Comb. and Opt., University of Waterloo, Canada

Wednesday, July 21, 2021, 9:45-10:10 AM, EDT

MS40: SDP Approaches to Combinatorial and Global Optimization - Part II of III SIAM Conference on Optimization, (OP21)

Collaborators

- Xinxin Li (Jilin University)
- Ting Kei Pong (The Hong Kong Polytechnic University)
- Naomi Graham, Hao Hu, Jiyoung (Haesol) Im, Hao Sun (University of Waterloo)

Two Main References

- [6] N. Graham, H. Hu, J. Im, X. Li, and H. Wolkowicz, A restricted dual Peaceman-Rachford splitting method for QAP, Tech. report, Waterloo, Ontario, 2020.
- [7] X. Li, T.K. Pong, H. Sun, and H. Wolkowicz, A strictly contractive Peaceman-Rachford splitting method for the doubly nonnegative relaxation of the minimum cut problem, Comput. Optim. Appl. 78 (2021), no. 3, 853–891.
 MR4221619

2

Outline/Background/Motivation I

- Solving hard combinatorial/discrete optimization problems requires: efficient upper/lower bounding techniques.
- These problems are often modelled using quadratic objectives and/or quadratic constraints, i.e., QQPs.
- Lagrangian relaxations of QQPs lead to Semidefinite Programming, SDP, and SDP relaxations, e.g., Handbook on SDP [10].
- SDP relaxations are expensive to solve using interior-point approaches. This becomes doubly expensive when cutting planes are added, e.g., using Doubly Nonnegative, DNN, relaxations

Outline/Background/Motivation II

- Strict feasibility fails for many of the SDP relaxations of these hard combinatorial problems.
 (Compare Rademacher Theorem: Loc. Lip. functions are differentiable a.e.)
 Facial reduction, FR, e.g., [2, 3, 4, 5] provides a means of regularizing the SDP relaxations.
- FR appears to provide a <u>natural splitting of variables</u> for the application of Alternating Direction Method of Multipliers, <u>ADMM</u>, type methods for large scale problems; and for exploiting structure.
- Classes of Problems:
 Min-Cut; Maxcut; and Graph Partitioning;
 and QAP,

Hard Combinatorial Problems and Modelling with Quadratic Functions; Importance of Duality

Instance / Modelling with Quadratic Functions

min
$$q_0(x)$$
 $(= x^T H x + 2g^T x + \alpha)$
s.t. $Ax = b$ (linear constraint)
 $x \in K \subseteq \mathbb{R}^N$ (K hard constraints)

Hard (Combinatorial) Constraints: e.g.,

• both 0, 1 and ± 1 modelled with quadratic const., resp.,

$$K := \{0,1\}^N$$
 or $K := \{\pm 1\}^N$ $q_i(x) := x_i^2 - x_i = 0, \forall i$ or $q_i(x) := x_i^2 - 1 = 0, \forall i$

- K is partition matrices, $x \in \mathcal{M}_m$, (GP)
- K is permutation matrices, $x \in \Pi_n$, (QAP)

Can Close the Duality Gap by Changing Model

Example: (Lagrangian) Duality Gap for QP

$$1 = p^* = \max\{-x_1^2 + x_2^2 : x_2 = 1\}$$

$$< \infty = d^*$$

$$= \inf_{\lambda} \max_{X} L(X, \lambda) = -x_1^2 + x_2^2 - \lambda(x_2 - 1)$$

BUT with a Model Change (same problem)

$$1 = p^* = \max \left\{ -x_1^2 + x_2^2 : \frac{(x_2 - 1)^2 = 0}{(x_2 - 1)^2} \right\}$$

= $d^* = \inf_{\lambda} \max_{x} \left\{ -x_1^2 + x_2^2 - \lambda(x_2 - 1)^2 \right\}$

since stationarity and the Lagrangian function value satisfy:

$$0 = 2x_2 - 2\lambda(x_2 - 1) \implies x_2 = \frac{\lambda}{\lambda - 1} \to 1;$$

$$L(x, \lambda) = x_2^2 - \lambda(x_2 - 1)^2 = \frac{\lambda^2}{(\lambda - 1)^2} - \lambda \frac{1}{(\lambda - 1)^2} = \frac{\lambda}{\lambda - 1} \to 1$$

Further Example: Close Duality Gap

• Let
$$A = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$$
, $B = \begin{bmatrix} 3 & 0 \\ 0 & 4 \end{bmatrix}$, $X^* = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$

$$10 = p^* = \min_{\text{s.t.}} \text{ trace } AXBX^T$$
s.t. $XX^T = I, X \in \mathbb{R}^{n \times n}$

• $L(X, S) = \operatorname{trace} AXBX^T + \operatorname{trace} S(XX^T - I), S \in S^n$ $\operatorname{trace} AXBX^T = x^T(B \otimes A)x, x = \operatorname{vec} X$

Lagrangian dual:
$$d^* = \max_{S \in S^n} \min_X L(X, S)$$

s.t. $B \otimes A + I \otimes S \succ 0$, $S \in S^n$

•
$$10 = p^* > 9 = d^* = \max_{i=1}^n - \operatorname{trace} S_i$$

where
$$B \otimes A = \begin{bmatrix} 3 & 0 & 0 & 0 \\ 0 & 6 & 0 & 0 \\ 0 & 0 & 4 & 0 \\ 0 & 0 & 0 & 8 \end{bmatrix} \implies S_{11} \ge -3, S_{22} \ge -6$$

Change Model; Add Redundant Constraint; Increase Number of Lagrange Dual Multipliers

Duplicate orthogonality constraint

Add: $X^TX = I$ closes duality gap by exploiting the new Lagrange multipliers in $T \in S^n$

$$10 = p^* = 10 = d^* = \max \text{ trace } -S - T$$

s.t. $B \otimes A + I \otimes S + T \otimes I \succeq 0$,

Theorem (Anstreicher, W. '95, [1])

Strong duality holds for

min trace
$$AXBX^T$$

s.t. $XX^T = I, X^TX = I, X \in \mathbb{R}^{n \times n}$

۶

QP: Obtain Strong Duality in General? A Modelling Issue

$$H \in \mathcal{S}^n$$
, A , $m \times n$, $m < n$, K compact

Theorem (Poljak, Rendl, W. '95, [8])

$$\begin{array}{lll} p^* &=& \max_x & \{q_0(x) := x^T H x + 2g^T x + \alpha : Ax = b, x \in K\} \\ &=& \max_x & \{q_0(x) : \|Ax - b\|^2 = 0, x \in K\} \\ &=& d^* &=& \min_\lambda \phi(\lambda) \end{array}$$

where the dual functional is:

$$\phi(\lambda) := \max_{x \in K} L(x, \lambda) := q_0(x) - \lambda ||Ax - b||^2$$

Summary: To strengthen the Lagrangian dual

- linear constraints Ax b = 0 to quadratic $||Ax b||^2 = 0$
- Add redundant constraints

Model with Quadratics Details; Homogenize, and Lift to Matrix Space

Homogenize using $x_0 \in \mathbb{R}$ with $x_0^2 - 1 = 0$

$$\begin{cases} \min q_0(x, x_0) = x^T H x + 2g^T x x_0 + \alpha x_0^2 \\ Ax - b = 0 & \cong \|Ax - b x_0\|_2^2 = 0 \end{cases}$$

Lifting (linearization): $\mathbb{R}^{N+1} \to \mathbb{S}^{N+1}$

$$y = \begin{pmatrix} x_0 \\ x \end{pmatrix}, Y = yy^T \in \mathbb{S}_+^{N+1}, \text{ symmetric, psd, } Y_{00} = 1$$

obj. fn.
$$y^T \begin{bmatrix} \alpha & g^T \\ g & H \end{bmatrix} y = \operatorname{trace} \begin{bmatrix} \alpha & g^T \\ g & H \end{bmatrix} Y$$
, rank $(Y) = 1$

Relaxation to Convex Problem:

Discard the (hard) rank one constraint on Y

Lifting with QQP and FACIAL REDUCTION

Lifting Linear Equality Constraint

$$0 = \|Ax - bx_0\|_2^2 = \left\| \begin{bmatrix} -b & A \end{bmatrix} \begin{pmatrix} x_0 \\ x \end{pmatrix} \right\|_2^2$$
$$= \begin{pmatrix} x_0 \\ x \end{pmatrix}^T \begin{bmatrix} -b^T \\ A^T \end{bmatrix} \begin{bmatrix} -b & A \end{bmatrix} \begin{pmatrix} x_0 \\ x \end{pmatrix}$$
$$= \operatorname{trace} \begin{bmatrix} \|b\|^2 & -b^T A \\ -A^T b & A^T A \end{bmatrix} Y = 0$$

5,00,00

EXPOSING VECTOR $W \in \mathbb{S}^{N+1}_{\perp}$, with: spectr. decomp., FR

$$W := \begin{bmatrix} \|b\|^2 & -b^T A \\ -A^T b & A^T A \end{bmatrix} = \begin{bmatrix} V & U \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 0 & D \end{bmatrix} \begin{bmatrix} V & U \end{bmatrix}^T, D \in \mathbb{S}_+^{N+1-r}$$

Y feasible
$$\implies$$
 YW = 0 (Strict feasibility (Slater) fails)
 \implies Y = VRV^T, R \in S^r₊ (facial reduction)

Hard Discrete Constraints

Zero-One; Homogenize with x_0 , $x_0^2 - 1 = 0$

$$q_i(x, x_0) := x_i^2 - x_i x_0 = 0, \forall i$$

Lifting (linearization): $\mathbb{R}^{N+1} \to \mathbb{S}^{N+1}$

$$y = \begin{pmatrix} x_0 \\ x \end{pmatrix}, \ Y = yy^T \in \mathbb{S}_+^{N+1}, \quad \text{symmetric, psd,} \quad Y_{00} = 1$$

constr. for
$$\{0,1\}$$
: $\operatorname{\mathsf{arrow}}(Y) = e_0 := \begin{pmatrix} 1 \\ 0 \end{pmatrix} \in \mathbb{R}^{n+1}$ $(\operatorname{\mathsf{diag}}(Y) = Y_{:,0})$

Adjoint: Arrow \cong arrow*

$$\langle \mathsf{Arrow}(v), S \rangle = \langle v, \mathsf{arrow}(S) \rangle, \quad \forall v \in \mathbb{R}^{N+1}, \forall S \in \mathbb{S}^{N+1}$$

Splitting Methods, Facial Reduction, FR

Natural Splitting? $Y \in \mathcal{P}, R \in \mathcal{R} \subseteq \mathbb{S}_+^r$ $Y = VRV^T$

$$Y \in \mathcal{P} \subset \mathbb{S}_{+}^{N+1}, \qquad R \in \mathcal{R} \subseteq \mathbb{S}_{+}^{r}, \quad r < N+1$$

Facial reduction generally provides a reduction in dimension and a guarantee that strict feasibility holds.

There is a natural separation of constraints where

$$Y \in \mathcal{P}$$
 polyhedral $R \in \mathcal{R}$ convex set

Adding Redundant Constraints Back

- FR results in many constraints becoming redundant; and these are deleted for e.g., interior-point methoods.
- However, after the splitting, many of the redundant constraints can be added back to the separate split problems to form sets P, R.

Instance: Minimum Cut, MC, Problem

Given: Undirected Graph $G = (\mathcal{V}, \mathcal{E})$

edge set \mathcal{E} and node set $|\mathcal{V}| = n$ $m = (m_1 \ m_2 \ \dots \ m_k)^T, \ \sum_{i=1}^k m_i = n;$ given partition into k sets

MC Problem:

partition vertex set V into k subsets with given sizes in m to *minimize the cut* after removing the k-th set; X is the unknown 0.1 partition matrix.

Applications

re-orderings for sparsity patterns; microchip design and circuit board, floor planning and other layout problems.

(k = 3, vertex separator problem)

Quadratic-Quadratic Model/Homogenized

Include Many Redundant Constraints

$$\begin{array}{lll} {\rm cut}(\textit{m}) & = & \min & \frac{1}{2} \, {\rm trace} \, \textit{AXBX}^T \\ & {\rm s.t.} & \textit{X} \circ \textit{X} = \textit{x}_0 \textit{X} & \in \{0,1\} \\ & & ||\textit{Xe} - \textit{x}_0 \textit{e}||^2 = 0 & {\rm row \; sums} = 1 \\ & & ||\textit{X}^T \textit{e} - \textit{x}_0 \textit{e}||^2 = 0 & {\rm column \; sums} \\ & & \textit{X}_{:j} \circ \textit{X}_{:j} = 0, \; \forall \textit{i} \neq \textit{j} & {\rm col. \; elem. \; orth.} \\ & & \textit{X}^T \textit{X} - \textit{M} = 0 & {\rm scaled \; orth.} \\ & & & {\rm diag} \, (\textit{XX}^T) - \textit{e} = 0 & {\rm unit \; norm \; rows} \\ & & \textit{x}_0 \textit{e}_n^T \textit{Xe}_k - \textit{n} = 0 & \textit{n} \; {\rm vertices} \\ & & \textit{x}_0^2 = 1 & {\rm homog.} \end{array}$$

- e_i is the vector of ones of dimension j; M = Diag(m).
- *u* ∘ *v* Hadamard (elementwise) product.

SDP Constraints, FR and Exposing Vectors

Trace constraints (from linear equality constraints

$$\begin{aligned} \operatorname{trace} D_1 \, Y &= 0, \qquad D_1 := \begin{bmatrix} n & -e_k^{\, I} \otimes e_n^{\, I} \\ -e_k \otimes e_n & (e_k e_k^{\, T}) \otimes I_n \end{bmatrix}, \\ \operatorname{trace} D_2 \, Y &= 0, \qquad D_2 := \begin{bmatrix} m^T m & -m^T \otimes e_n^{\, T} \\ -m \otimes e_n & I_k \otimes (e_n e_n^{\, T}) \end{bmatrix}, \end{aligned}$$

 e_j vector of ones of dimension j; $D_i \succeq 0, i = 1, 2$; nullspaces of these matrices yield the facial reduction $Y = VRV^T$.

Block: trace, diagonal and off-diagonal

$$\begin{array}{lll} \mathcal{D}_t(Y) &:= & \left(\operatorname{trace} \overline{Y}_{(ij)} \right) = M \in \mathbb{S}^k; \\ \mathcal{D}_d(Y) &:= & \sum_{i=1}^k \operatorname{diag} \overline{Y}_{(ii)} = e_n \in \mathbb{R}^n; \\ \mathcal{D}_o(Y) &:= & \left(\sum_{s \neq t} \left(\overline{Y}_{(ij)} \right)_{st} \right) = \hat{M} \in \mathbb{S}^k, \end{array}$$

where $\hat{M} := mm^T - M$.

SDP Constraints cont...

trace Y = n + 1; and Gangster constraints on Y

The Hadamard product and orthogonal type constraints lead to gangster constraints

i.e., simple constraints that restrict elements to be zero (shoot holes in the matrix) and/or restrict entire blocks. gangster and restricted gangster constraint on *Y*:

$$\mathcal{G}_H(Y)=0,$$

for specific index sets *H*.

SDP Relaxation

SDP Relaxation with Many (some redundant) Constraints

$$\operatorname{cut}(m) \geq p_{\operatorname{SDP}}^* := \min \quad \frac{1}{2}\operatorname{trace} L_A Y$$
 s.t. $\operatorname{arrow}(Y) = e_0$ $\operatorname{trace} D_1 Y = 0, \operatorname{trace} D_2 Y = 0$ $\mathcal{G}_{J_0}(Y) = 0, Y_{00} = 1$ $\mathcal{D}_t(Y) = M, \mathcal{D}_d(Y) = e, \mathcal{D}_o(Y) = \widehat{M}$ $Y \in \mathbb{S}_+^{kn+1}$

Equivalent FR greatly simplified SDP; with $Y = \widetilde{V}R\widetilde{V}^T$

$$\begin{array}{lll} \operatorname{cut}(\textit{m}) \geq \textit{p}_{\operatorname{SDP}}^* & = & \min & \frac{1}{2}\operatorname{trace}\left(\widetilde{\textit{V}}^T\textit{L}_{\textit{A}}\widetilde{\textit{V}}\right)\textit{R} \\ & \text{s.t.} & \mathcal{G}_{\widehat{\textit{J}}_{\mathcal{I}}}(\widetilde{\textit{V}}\textit{R}\widetilde{\textit{V}}^T) = \mathcal{G}_{\widehat{\textit{J}}_{\mathcal{I}}}(\textit{e}_0\textit{e}_0^T) \\ & \textit{R} \in \mathbb{S}_+^{(\textit{k}-1)(\textit{n}-1)+1} \end{array}$$

Primal-Dual Strong Duality (Regularity) for FR SDP

Theorem

(Generalized) slater point for the primal:

$$\widetilde{R} = \begin{bmatrix} \frac{1}{0} & \frac{1}{n^2(n-1)} (n \operatorname{Diag}(\widehat{m}_{k-1}) - \widehat{m}_{k-1} \widehat{m}_{k-1}^T) \otimes (n I_{n-1} - E_{n-1}) \end{bmatrix} \in \mathbb{S}_{++}^{(k-1)(n-1)+1}.$$

$$Moreover. \ Robinson \ regularity \ holds.$$

The dual problem

$$\max \quad \frac{1}{2} w_{00}$$
s.t. $\widetilde{V}^T \mathcal{G}_{\widehat{J}_{\mathcal{I}}}^*(w) \widetilde{V} \preceq \widetilde{V}^T L_A \widetilde{V}$.

satisfies strict feasibility.

Motivation

Difficulties for Primal-dual interior-point Methods for SDP

- solving large problems
- obtaining high accuracy solutions
- exploiting sparsity
- adding on nonnegativity and other cutting plane constraints

First order operator splitting methods for SDP

- FR provides a natural (successful) splitting, Y = VRV^T,
 (Y polyhedral, R cone/convex)
- Flexibility in dealing with additional constraints
- separable/split optimization steps are inexpensive

Strengthen model with redundant constraint

Set Constraints, Low Rank (helps with early stopping)

$$\mathcal{R} := \{ R \in \mathbb{S}_{+}^{(k-1)(n-1)+1} : \operatorname{trace} R = n+1 \},$$

$$\mathcal{Y} := \{ Y \in \mathbb{S}^{nk+1} : 1 \ge Y(J^c) \ge 0,$$

$$\mathcal{G}_{\overline{J}}(Y) = \mathcal{G}_{\overline{J}}(e_0 e_0^T)$$

$$\mathcal{D}_o(Y) = \widehat{M}, \ e^T Y_{(i0)} = m_i, \forall i \}$$

Strengthened model

(DNN)
$$p_{DNN}^* = \min_{\substack{1 \ \text{s.t.}}} \frac{1}{2} \operatorname{trace} L_A Y + \mathbb{1}_{\mathcal{Y}}(Y) + \mathbb{1}_{\mathcal{R}}(R)$$

where $\mathbb{1}_{\mathcal{S}}(\cdot)$ is indicator function of set \mathcal{S} .

Splitting Method

Augmented Lagrangian Function, $\mathcal{L}_{\beta}(R, Y, Z) =$

$$f_{\mathcal{R}}(R) + g_{\mathcal{Y}}(Y) + \langle Z, Y - \widehat{V}R\widehat{V}^T \rangle + \frac{\beta}{2} ||Y - \widehat{V}R\widehat{V}^T||^2$$

- $\beta > 0$ penalty parameter for quadratic penalty term,
- (L_s diagonally scaled objective $L_s := \frac{1}{2}L + \alpha I > 0$)

$$f_{\mathcal{R}}(R) = \mathbb{1}_{\mathcal{R}}(R), \quad g_{\mathcal{Y}}(Y) = \operatorname{trace} L_{\mathcal{S}}Y + \mathbb{1}_{\mathcal{Y}}(Y).$$

sPRSM, Strictly Contractive Peaceman-Rachford Splitting

i.e., alternate minimization of \mathcal{L}_{β} in the variables Y and R interlaced by an update of the Z variable.

In particular, we update the dual variable Z both after the R-update and the Y-update (both of which have unique solutions).

FRSMR, FR Splitting Method with Redundancies

- Pick any $Y^0, Z^0 \in \mathbb{S}^{nk+1}$. Fix $\beta > 0$ and $\gamma \in (0, 1)$. Set t = 0.
- For each $t = 0, 1, \ldots$, update

$$\begin{aligned} \bullet R^{t+1} &= \operatorname{argmin}_{R \in \mathcal{R}} \mathcal{L}_{\beta}(R, Y^{t}, Z^{t}) \\ &= \operatorname{argmin}_{R} f_{\mathcal{R}}(R) - \langle Z^{t}, \widehat{V}R\widehat{V}^{T} \rangle + \frac{\beta}{2} \left\| Y^{t} - \widehat{V}R\widehat{V}^{T} \right\|^{2} \end{aligned}$$

- $\bullet Z^{t+\frac{1}{2}} = Z^t + \gamma \beta (Y^t \widehat{V}R^{t+1}\widehat{V}^T),$
- $\begin{array}{ll} \bullet Y^{t+1} & = & \operatorname{argmin}_{Y \in \mathcal{Y}} \mathcal{L}_{\beta}(R^{t+1}, Y, Z^{t+\frac{1}{2}}) \\ & = & \operatorname{argmin}_{Y} g_{\mathcal{Y}}(Y) + \langle Z^{t+\frac{1}{2}}, Y \rangle + \frac{\beta}{2} \left\| Y \widehat{V} R^{t+1} \widehat{V}^{T} \right\|^{2}, \end{array}$
- $\bullet Z^{t+1} = Z^{t+\frac{1}{2}} + \gamma \beta (Y^{t+1} \widehat{V}R^{t+1}\widehat{V}^T).$

Global convergence

Theorem

Let $\{R^t\}$, $\{Y^t\}$ and $\{Z^t\}$ be the generated sequences from FRSMR. Then $\{(R^t, Y^t)\}$ converges to an optimal solution (R^*, Y^*) of the DNN relaxation, $\{Z^t\}$ converges to some Z^* , and (R^*, Y^*, Z^*) satisfies the optimality conditions of the DNN relaxation

$$\begin{array}{rcl}
0 & \in & -\widehat{V}^T Z^* \widehat{V} + \mathcal{N}_{\mathcal{R}}(R^*), \\
0 & \in & L_s + Z^* + \mathcal{N}_{\mathcal{Y}}(Y^*), \\
Y^* & = & \widehat{V} R^* \widehat{V}^T,
\end{array}$$

where $\mathcal{N}_{S}(x)$ denotes the normal cone of S at x.

1. Explicit solution for R^{t+1}

With the assumption that $\hat{V}^T\hat{V} = I$

$$R^{t+1} = \operatorname{argmin}_{R \in \mathcal{R}} - \langle Z, \widehat{V}R\widehat{V}^T \rangle + \frac{\beta}{2} \left\| Y^t - \widehat{V}R\widehat{V}^T \right\|^2$$
$$= \mathcal{P}_{\mathcal{R}}(\widehat{V}^T(Y^t + \frac{1}{\beta}Z^t)\widehat{V}),$$

where $\mathcal{P}_{\mathcal{R}}$ denotes the projection (nearest point) onto the intersection of the SDP cone $\mathbb{S}^{(k-1)(n-1)+1}_+$ and the hyperplane $\{R \in \mathbb{S}^{(k-1)(n-1)+1} : \operatorname{trace} R = n+1\}.$

(diagonalize; then project eigenvalues onto simplex)

2. Explicit solution of Y^{t+1}

The Y-subproblem yields a closed form solution by projection onto the polyhedral set \mathcal{Y} , i.e.,

$$Y^{t+1} = \operatorname{argmin}_{Y \in \mathcal{Y}} \frac{\beta}{2} \left\| Y - \widehat{V} R^{t+1} \widehat{V}^T - \frac{1}{\beta} (L_s + Z^{t+\frac{1}{2}}) \right\|^2.$$

Note that the update (projection of \tilde{Y}) satisfies e.g.,

$$(Y^{t+1})_{ij} = \begin{cases} 1 & \text{if } i = j = 0 \\ 0 & \text{if } ij \in J \setminus \{00\} \\ 0 & \text{if } ij \in J^c, \ Y_{ij} \le 0 \\ \tilde{Y}_{ij} & \text{if } ij \in J^c, \ 0 < Y_{ij}. \end{cases}$$

Lower bound from **Inaccurate** Solutions

Theorem (Fenchel Dual)

Define modified dual functional

$$g(Z) := \min_{Y \in \widetilde{\mathcal{Y}}} \langle L_s + Z, Y \rangle - (n+1) \lambda_{\max}(\widehat{V}^T Z \widehat{V}),$$

with
$$\widetilde{\mathcal{Y}} := \{ Y \in \mathbb{S}^{nk+1} : \mathcal{G}_{\widehat{J}_0}(Y) = \mathcal{G}_{\widehat{J}_0}(e_0e_0^T), \ 0 \leq \mathcal{G}_{\widehat{J}_0^C}(Y) \leq 1,$$

$$\mathcal{D}_o(Y) = \widehat{M}, \ \mathcal{D}_t(Y) = M, \ e^T Y_{(i0)} = m_i, i = 1, \dots, k \}.$$

Then

$$p_{\mathrm{DNN}}^* = d_Z^* := \max_Z g(Z),$$

and the latter (dual) problem is attained, i.e., strong duality holds.

The Lower Bound

Evaluating $g(Z^t)$ always yields a lower bound for the DNN relaxation optimal value

$$p_{\mathrm{DNN}}^* \geq g(Z^t)$$

Upper bound from feasible solution

Approx. output Yout

- Obtain a vector $v = (v_0 \ \bar{v})^T \in \mathbb{R}^{nk+1}, v_0 \neq 0$ from Y^{Out}
- Reshape \bar{v} ; get $n \times k$ matrix X^{Out}
- Since X implies trace $X^TX = n$, a constant, we get

$$||X^{\text{out}} - X||^2 = -2 \operatorname{trace} X^T X^{\text{out}} + \operatorname{constant}.$$

Solve the linear program (transportation problem)

$$\hat{X} \in \operatorname{argmax}\left\{\langle X^{\mbox{out}}, X \rangle : X \mbox{\emph{e}} = \mbox{\emph{e}}, X^{\mbox{\emph{T}}} \mbox{\emph{e}} = \mbox{\emph{m}}, X \geq 0\right\}$$

• Upper bound = $\frac{1}{2}$ trace $A\hat{X}B\hat{X}^T$

Choosing the vector *v* for *X*^{out} for upper bound

rank $Y = 1 \implies$ column/eigenvector 0 yields opt. X

- o column 0 of Yout;
- random sampling/repeated: sum of random weighted-eigenvalue eigenvectors of Yout,

$$v = \sum_{i=1}^{r} w_i \lambda_i v_i$$

where ordered eigenpairs of Y^{out} and ordered weights; r here is the *numerical rank* of Y^{out} .

Numerical Tests from [7,6]

Tests using:

Matlab R2017a on a ThinkPad X1 with an Intel CPU (2.5GHz) and 8GB RAM running Windows 10.

Three classes of problems:

- (a) random structured graphs (compare with previous results in Pong et al. [9])
- (b) partially random graphs with various sizes classified by the number of 1's, $|\mathcal{I}|$, in the vector m (similar to QAP)
- (c) vertex separator instances

Facial Reduction, FR

Lifting Linear Equality Constraint

Table: Data	a terminology
-------------	---------------

imax	maximum size of each set								
k	number of sets								
n	number of nodes (sum of sizes of sets)								
p	density of graph								
u_0	known lower bound								
$I = e^T m_{\text{one}}$	number of 1's in m								
Iters	number of iterations								
CPU	time in seconds								
Bounds	best lower and upper bounds and relative gap								
Residuals	final values of:								
	$\left\ egin{aligned} egin{aligned} igg Y^{t+1} - \widehat{V}R^{t+1}\widehat{V}^T igg & (\cong \Delta Z); \ Y^{t+1} - Y^t igg & (\cong \Delta Y) \end{aligned} ight.$								
	$ Y^{t+1}-Y^t \ (\cong \Delta Y)$								

Numerical Tests

Comparison small structured graphs with Pong et al

		D	ata		Lower b	ounds	Upper b	ounds	Rel-	gap	Time (cpu)	
	n	k	$k \mid E \mid u_0$		FRSMR	Mosek	FRSMR	Mosek	FRSMR	Mosek	FRSMR	Mosek
ĺ	20	4	136	6	6	6	6	6	0.00	0.00	0.21	3.96
İ	25	4	222	8	8	8	8	8	0.00	0.00	0.20	10.94
İ	25	5	170	14	14	14	14	14	0.00	0.00	0.31	34.19
	31	5	265	22	22	22	22	22	0.00	0.00	1.28	149.49

Numerics cont... Random Graphs

ones, $\mathcal{I} = \emptyset$, mean over 3 instances

	Sp	ecification	s		Iter	сри -		Bounds	Residuals		
imax	k	n	р	- 1	1161		low	up	rel-gap	prim.	dual
5	6	19.0	0.49	0	333.33	0.89	38.0	38.33	0.01	4.15e-03	6.18e-03
6	7	24.67	0.44	0	500.0	3.03	60.0	61.67	0.02	4.86e-03	8.74e-03
7	8	31.0	0.37	0	966.67	9.53	68.33	71.0	0.04	8.44e-04	3.74e-04
8	9	40.0	0.31	0	833.33	22.75	100.33	110.67	0.09	1.43e-03	6.92e-04
9	10	50.33	0.23	0	1100.0	75.26	119.67	132.33	0.09	1.53e-03	6.81e-04

Numerics cont... Random Graphs

 $k \notin \mathcal{I} \neq \emptyset$, mean over 4 instances

	S	pecification	ns		Iters	cpu		Bounds	Residuals		
imax	k	n	р	- 1	11615	Сри	lower	upper	rel-gap	primal	dual
5	6	16.25	0.51	1.50	450.00	1.02	22.25	23.00	0.03	2.36e-03	1.64e-03
6	7	17.00	0.43	3.25	325.00	1.18	23.00	23.25	0.00	3.75e-02	5.90e-02
7	8	21.00	0.38	3.50	625.00	4.98	34.50	36.00	0.02	3.66e-03	1.95e-03
8	9	21.75	0.30	5.00	400.00	3.36	20.75	21.25	0.01	8.37e-02	9.51e-02
9	10	38.00	0.23	3.25	775.00	25.84	55.25	63.50	0.11	3.26e-03	1.37e-03

Numerics Cont... Random Graphs

$k \in \mathcal{I} \neq \mathcal{K}$, mean 5 instances

	5	Specification	ns		Iters	cpu		Bounds		Residuals		
imax	k	n	р	- 1	11615	Сри	lower	upper	rel-gap	primal	dual	
5	6	13.60	0.49	2.80	160.00	0.33	22.60	22.60	0.00	2.55e-02	3.02e-02	
6	7	18.00	0.42	3.40	460.00	1.99	37.80	39.00	0.02	5.66e-02	7.10e-02	
7	8	22.20	0.39	3.80	560.00	3.96	57.80	60.20	0.02	1.04e-02	1.19e-02	
8	9	22.60	0.30	5.20	540.00	4.92	37.20	38.00	0.01	3.48e-02	4.29e-02	
9	10	31.00	0.23	4.80	700.00	16.78	61.80	68.00	0.06	1.44e-02	1.01e-02	

$\mathcal{I} = \mathcal{K}$, mean 6 instances

	Speci	fications		Iters	Time (cpu)		Bounds		Residuals	
k	n	р	I	11615	Time (cpu)	lower	upper	rel-gap	primal	dual
6	6.00	0.59	6.00	100.00	0.06	4.67	4.67	0.00	5.12e-03	5.10e-03
7	7.00	0.48	7.00	100.00	0.08	5.67	5.67	0.00	8.66e-02	1.27e-01
8	8.00	0.41	8.00	150.00	0.18	7.17	7.17	0.00	2.64e-01	1.68e-01
9	9.00	0.34	9.00	233.33	0.37	7.83	8.00	0.03	1.88e-01	3.99e-02
10	10.00	0.25	10.00	266.67	0.56	7.50	7.50	0.00	6.28e-02	8.71e-02

Numerics Cont...

Table: Comparisons on the bounds for MC and bounds for the cardinality of separators

Name	n	E	m ₁	m ₂	m ₃	lower	upper	lower	upper	lower	upper	lower	upper
						MC by :	SDP ₄	MCby	ONN-final	Separato	or by SDP ₄	Separator	by DNN-final
Example 1	93	470	42	41	10	0.07	1	0	1	11	11	11	11
bcspwr03	118	179	58	57	3	0.56	1	0	2	4	5	4	5
Smallmesh	136	354	65	66	5	0.13	1	0	1	6	6	6	6
can-144	144	576	70	70	4	0.90	6	0	6	5	6	5	8
can-161	161	608	73	72	16	0.31	2	0	2	17	18	17	18
can-229	229	774	107	107	15	0.40	6	0	6	16	19	16	19
gridt(15)	120	315	56	56	8	0.29	4	0	4	9	11	9	12
gridt(17)	153	408	72	72	9	0.17	4	0	4	10	13	10	13
grid3dt(5)	125	604	54	53	18	0.54	2	0	4	19	19	19	22
grid3dt(6)	216	1115	95	95	26	0.28	4	0	4	27	30	27	31
grid3dt(7)	343	1854	159	158	26	0.60	22	0	27	27	37	27	44

Conclusion

- We discussed strategies for finding new, strengthened lower and upper bounds, for hard discrete optimization problems.
- In particular, we exploited the fact that strict feasibility fails for many of these problems and that facial reduction, FR, leads to a natural splitting approach for ADMM, sPRSM, type methods.
- The FR makes many constraints redundant and simplifies the problem. We strengthened the subproblems in the splitting by returning redundant constraints.
- A special scaling, and a random sampling provided strengthened lower and upper bounds from low approximate solutions from our approach. (Allowing for early stopping.

References I

- K.M. Anstreicher and H. Wolkowicz, *On Lagrangian relaxation of quadratic matrix constraints*, SIAM J. Matrix Anal. Appl. **22** (2000), no. 1, 41–55.
- J.M. Borwein and H. Wolkowicz, *Characterization of optimality for the abstract convex program with finite-dimensional range*, J. Austral. Math. Soc. Ser. A **30** (1980/81), no. 4, 390–411. MR 83i:90156
- _____, Facial reduction for a cone-convex programming problem, J. Austral. Math. Soc. Ser. A **30** (1980/81), no. 3, 369–380. MR 83b:90121
- _____, Regularizing the abstract convex program, J. Math. Anal. Appl. **83** (1981), no. 2, 495–530. MR 83d:90236

References II

- D. Drusvyatskiy and H. Wolkowicz, *The many faces of degeneracy in conic optimization*, Foundations and Trends[®] in Optimization **3** (2017), no. 2, 77–170.
- N. Graham, H. Hu, J. Im, X. Li, and H. Wolkowicz, *A restricted dual Peaceman-Rachford splitting method for QAP*, Tech. report, University of Waterloo, Waterloo, Ontario, 2020, 29 pages, submitted, research report.
- X. Li, T.K. Pong, H. Sun, and H. Wolkowicz, A strictly contractive Peaceman-Rachford splitting method for the doubly nonnegative relaxation of the minimum cut problem, Comput. Optim. Appl. **78** (2021), no. 3, 853–891. MR 4221619
- S. Poljak, F. Rendl, and H. Wolkowicz, *A recipe for semidefinite relaxation for* (0,1)*-quadratic programming*, J. Global Optim. **7** (1995), no. 1, 51–73. MR 96d:90053

References III

- T.K. Pong, H. Sun, N. Wang, and H. Wolkowicz, *Eigenvalue, quadratic programming, and semidefinite programming relaxations for a cut minimization problem*, Comput. Optim. Appl. **63** (2016), no. 2, 333–364. MR 3457444
- H. Wolkowicz, R. Saigal, and L. Vandenberghe (eds.), Handbook of semidefinite programming, International Series in Operations Research & Management Science, 27, Kluwer Academic Publishers, Boston, MA, 2000, Theory, algorithms, and applications. MR MR1778223 (2001k:90001)

Thanks for your attention!

Hard Combinatorial Problems,
Doubly Nonnegative Relaxations,
Facial Reduction,
and
Alternating Direction Method of Multipliers

Henry Wolkowicz Dept. Comb. and Opt., University of Waterloo, Canada

Wednesday, July 21, 2021, 9:45-10:10 AM, EDT

MS40: SDP Approaches to Combinatorial and Global
Optimization Part II of III