A Strengthened Barvinok-Pataki Bound on SDP Rank

 (how to take advantage of facial reduction AGAIN)Henry Wolkowicz
Dept. Comb. and Opt., University of Waterloo, Canada

Sunday, Dec. 5, 2021, 14:00-14:30, ET
CMS W21
joint work with: Jiyoung (Haesol) Im

Outline

- The Barvinok-Pataki bound provides an upper bound on the rank of extreme points of a spectrahedron (intersection of SDP cone \mathbb{S}_{+}^{n} and a linear manifold)
- bound depends solely on algebra of problem: triangular number of the rank r,
$t(r) \leq m$, the number of affine constraints.
- We provide a strengthened upper bound on rank using the singularity degree of the spectrahedron.
- Thus we bring in the geometry and stability of the spectrahedron, i.e., paradox?:
increased instability, as seen by higher singularity degree, yields a lower, strengthened rank bound.

Background/Notation

- Semidefinite programming, SDP, over symmetric matrices

$$
\begin{array}{cll}
p^{*}=\min _{X \in \mathbb{S}^{n}} & f(X) & \left(f: \mathcal{S}^{n} \rightarrow \mathbb{R}\right) \\
\text { s.t. } & \mathcal{A}(X)=b & \left(\in \mathbb{R}^{m}\right) \tag{1}\\
& X \succeq 0 & \left(X \in \mathbb{S}_{+}^{n}\right)
\end{array}
$$

- the spectrahedron (feasible set/intersection of an affine set and the positive semidefinite cone) is:

$$
\mathcal{F}=\{X \succeq 0: \mathcal{A}(X)=b\}
$$

- onto linear map $\mathcal{A}: \mathbb{S}^{n} \rightarrow \mathbb{R}^{m} ; \quad \mathcal{A}(X)=\left(\left\langle A_{i}, X\right\rangle\right)_{i} \in \mathbb{R}^{m}$; where $A_{i} \in \mathcal{S}^{n}, i \in\{1, \ldots, m\},\left\langle A_{i}, X\right\rangle=\operatorname{trace}\left(A_{i} X\right)$.

Applications

Having an upper bound, $\operatorname{rank}(X) \leq r, \forall X \in \mathcal{F}\}$, is useful in many applications, e.g.,

- splitting methods where a projections onto the psd cone \mathbb{S}_{+}^{n} is one of the subproblems; one can cheat on projection onto \mathbb{S}_{+}^{n} and apply the Eckart-Young Theorem and obtain the nearest psd matrix rank $\leq r$.
- low rank SDP algorithms, e.g., [3, Burer-Monteiro '05], where the variable X with $X \succeq 0$ is replaced by $V V^{\top}$ where $V \in \mathbb{R}^{n \times r}$, thus reducing the number of unknowns triangular number $t(n)=n(n+1) / 2 \leftarrow n r$.

Recall

Definition (F is a face of $C, F \unlhd C$)

A nonempty convex subset F of a convex set C is a face of C, if $x, y \in C, \lambda \in(0,1), \lambda x+(1-\lambda) y \in F \Longrightarrow x, y \in F$.

Properties

- an intersection of faces is a face (for minimal face)
- a face of a face is a face (for FR algorithm)

Known Bounds I

Theorem ([4, Pataki, '98, Theorem 2.1])

Suppose that $X \in F$, where F is a face of the feasible set \mathcal{F}. Let $d=\operatorname{dim} F, r=\operatorname{rank} X$. Then

$$
\begin{equation*}
t(r) \leq m+d \tag{2}
\end{equation*}
$$

Application: Extreme points; (Barvinok-Pataki bound)

Given the number of constraints is m, (2), gives an upper bound on the rank of a solution.
E.g., extreme points X : $\operatorname{dim}($ face $(\{X\}))=0 \Longrightarrow$
$t(\operatorname{rank}(X)) \leq m, \quad$ for all extreme points $X \in \mathcal{F}$.

Known Bounds II

Theorem ([1, Barvinok, 2001, Theorem 1.1])

Let $\mathcal{L} \subset \mathcal{S}^{n}$ be an affine manifold such that the intersection $\mathcal{F}=\mathbb{S}_{+}^{n} \cap \mathcal{L} \neq \emptyset$ and $\operatorname{codim} \mathcal{L} \leq t(r+1)-1$ for some nonnegative integer r. Then there exists $X \in \mathcal{F}$ such that rank $X \leq r$.

Remark

There exists $X \in \mathcal{F}$ with $\operatorname{rank}(X) \leq\left\lfloor\frac{\sqrt{8 m+1}-1}{2}\right\rfloor$. We may obtain an equivalent bound by defining the smallest $r \in \mathcal{N}$ satisfying $\binom{r+2}{2}>m$. Therefore if we have $\binom{r+2}{2}-1 \geq m$, where m is the number of linearly independent constraints, we obtain the statement in the theorem.

Known Bounds III

> Theorem ([1, Barvinok, 2001, Theorem 1.2])
> Let $r>0, n \geq r+2$. Let $\mathcal{L} \subset \mathcal{S}^{n}$ be an affine manifold such that the intersection $\mathcal{F}=\mathbb{S}_{+}^{n} \cap \mathcal{L} \neq \emptyset$ and bounded, and $\operatorname{codim} \mathcal{L}=t(r+1)$, for some nonnegative integer r. Then there exists $X \in \mathcal{F}$ such that $\operatorname{rank} X \leq r$.

Remark; bounded spectrahedron case

Given triple (r, m, n), where r is upper bound on target rank; $m=\binom{r+2}{2}$ is the number of linearly independent constraints; and the embedding space \mathcal{S}^{n} satisfies $n \geq r+2 \geq 3$.
Then there exists a point $X \in \mathcal{F}$ such that $\operatorname{rank}(X) \leq r$.

Facial Reduction, FR, [2, Borwein-W 1981]

Minimal Face of $C \subseteq \mathbb{S}_{+}^{n}$, face(C)

face (C) is the intersection of all faces containing C.

- face F is exposed if it is the intersection of \mathbb{S}_{+}^{n} and a hyperplane: $F=\mathbb{S}_{+}^{n} \cap Z^{\perp}$, for some $Z \in \mathbb{S}_{+}^{n}$
- vector Z is called an exposing vector of F and it is maximal if it is of the highest rank over all exposing vectors.
- $F R$ is a process of identifying the minimal face of \mathbb{S}_{+}^{n} containing the affine set $\{X: \mathcal{A}(X)=b\}$. Since \mathbb{S}_{+}^{n} is facially exposed, the process can be characterized as identifying an exposing vector.

Theorem of the Alternative

For the feasible constraint system for \mathcal{F}, exactly one of the following statements holds:
(1) There exists $X \succ 0$ such that $\mathcal{A}(X)=b$,
(2) There exists $y \in \mathbb{R}^{m}$ such that

$$
\begin{equation*}
(0 \neq Z=) \quad \mathcal{A}^{*}(y) \in \mathbb{S}_{+}^{n} \backslash\{0\},\langle b, y\rangle=0 \tag{4}
\end{equation*}
$$

Pseudo Code for Facial Reduction Algorithm

- REQUIRE: data (\mathcal{A}, b) for affine set $\{X: \mathcal{A}(X)=b\}$
- WHILE: $\nexists X \succ 0$ satisfying $\mathcal{A}(X)=b$
- find an exposing vector Z
- compute V such that $\operatorname{Range}(V)=\operatorname{Null}(Z)$
- $\mathcal{A} \leftarrow \mathcal{A}_{V}(\cdot):=\mathcal{A}\left(V(\cdot) V^{T}\right)$
- ENDWHILE
- OUTPUT: face $(\mathcal{F})=V \mathbb{S}_{+}^{r} V^{T}, V$ a facial vector, substitute $X \succeq 0 \leftarrow V R V^{T}, R \succeq 0$

Dimension AND Constraint Reduction

- The dimension is reduced $n \leftarrow r$, face $(\mathcal{F})=V \mathbb{S}_{+}^{r} V^{T}$.
- And constraint reduction:

Lemma

At least one linear constraint of the SDP becomes redundant after each step of FR.

Proof.

Let $Z=\mathcal{A}^{*}(y)$ be the exposing vector satisfying the system (4). Let V be a minimal facial vector satisfying
$\operatorname{Null}\left(\mathcal{A}^{*}(y)\right)=$ Range (V). Clearly, $V^{\top} \mathcal{A}^{*}(y) V=\sum_{i=1}^{m} y_{i} V^{\top} A_{i} V=0$. After the reduction the constraints have the form trace $\left(V^{\top} A_{i} V X\right)=b_{i}, \forall i$. Since $y \in \mathbb{R}^{m}$ is a nonzero vector, the matrices in $\left\{V^{T} A_{i} V\right\}_{i=1, \ldots, m}$ are not linearly independent.

Hölder Regularity; Singularty Degree, sd (\mathcal{F})

Definition (Hölder regularity (projections))

A, B closed convex sets are γ-Hölder regular, if for any compact set $U, \exists c>0$ such that: $\operatorname{dist}(x, A \cap B) \leq c\left(\operatorname{dist}^{\gamma}(x, A)+\operatorname{dist}^{\gamma}(x, B)\right), \forall x \in U$ (and add displacement vector in)

Definition ([7, Sturm 2000] [6])

Given a spectrahehedron \mathcal{F}, the singularity degree of \mathcal{F}, denoted by $\operatorname{sd}(\mathcal{F})$, is the smallest number of facial reduction, FR, steps for finding face (\mathcal{F}).

Theorem ([7, Sturm error bound 2000])

\mathcal{F} is $\left(1 /\left(2^{s d(\mathcal{F})}\right)\right)$-Hölder regular with displacement.

$$
\operatorname{sd}(\mathcal{F}) \leq 1 \text { if } \mathcal{F}=\mathcal{L} \cap P, P \text { polyhedral cone (e.g. LP) }
$$

Two Lemmas

Lemma (Bound on singularity degree [5, 6])

Let \mathcal{F} be a nonempty spectrahedron such that $\mathcal{F} \neq\{0\}$. Then the singularity degree of \mathcal{F} satisfies the following bound:

$$
\operatorname{sd}(\mathcal{F}) \leq \min \{n-1, m\}
$$

Lemma (rank of feasible points unchanged after FR)

Let $V \in \mathbb{R}^{n \times r}$ be a minimal facial vector containing the set $\mathcal{F}:=\{X \succeq 0: \mathcal{A}(X)=b\}$, i.e., $V \mathbb{S}_{+}^{r} V^{\top} \supseteq \mathcal{F}$. Then, for $V R V^{\top}$ feasible, we have $\operatorname{rank}\left(V R V^{T}\right)=\operatorname{rank}(R)$.

Main Result

Theorem

(A strengthened Barvinok-Pataki bound) Suppose that the singularity degree of the nonempty spectrahedron \mathcal{F} satisfies $s=\operatorname{sd}(\mathcal{F})>0$. Then there exists a point $X \in \mathcal{F}$ with $r=\operatorname{rank}(X)$ that satisfies

$$
\begin{equation*}
t(r) \leq \min \{t(n-s), m-s\} \tag{5}
\end{equation*}
$$

Corollary

Let $s=\operatorname{sd}(\mathcal{F})$. Then there exists a solution $X \in \mathcal{F}$ such that

$$
\operatorname{rank}(X) \leq\left\lfloor\frac{\sqrt{1+8 \min \{t(n-s), m-s\}}}{2}-1\right\rfloor
$$

Conclusion

- given spectrahedron $\mathcal{F}=\left\{X \succeq 0: \mathcal{A}(X)=b \in \mathbb{R}^{m}\right\}$
- Barvinok-Pataki bound: exists $X \in \mathcal{F}$ s.t. $\operatorname{rank}(X)=r$ and $t(r) \leq m$.
- our strengthened bound uses singularity degree $\operatorname{sd}(\mathcal{F})$

$$
t(r) \leq \min \{t(n-\operatorname{sd}(\mathcal{F})), m-\operatorname{sd}(\mathcal{F})\} \leq m
$$

- important applications exist for existence of low rank solutions
- many open questions arise on understanding singularity degree and: complexity of feasible solutions; projections onto faces of cones; singularity degree and strength of SDP relaxations;

References I

(in A. Barvinok, A remark on the rank of positive semidefinite matrices subject to affine constraints, Discrete Comput. Geom. 25 (2001), no. 1, 23-31. MR 1797294 (2002i:90125)
囲 J.M. Borwein and H. Wolkowicz, Regularizing the abstract convex program, J. Math. Anal. Appl. 83 (1981), no. 2, 495-530. MR 83d:90236
囦 S. Burer and R.D.C. Monteiro, Local minima and convergence in low-rank semidefinite programming, Math. Program. 103 (2005), no. 3, Ser. A, 427-444. MR 2166543 (2006j:90058)

- G. Pataki, On the rank of extreme matrices in semidefinite programs and the multiplicity of optimal eigenvalues, Math. Oper. Res. 23 (1998), no. 2, 339-358.

References II

(1. S. Sremac, Error bounds and singularity degree in semidefinite programming, Ph.D. thesis, University of Waterloo, 2019.
囯 S. Sremac, H.J. Woerdeman, and H. Wolkowicz, Error bounds and singularity degree in semidefinite programming, SIAM J. Optim. 31 (2021), no. 1, 812-836. MR 4227005

囯 J.F. Sturm, Error bounds for linear matrix inequalities, SIAM J. Optim. 10 (2000), no. 4, 1228-1248 (electronic). MR 1777090 (2001i:90057)

Thanks for your attention!

A Strengthened Barvinok-Pataki Bound on SDP Rank (how to take advantage of facial reduction AGAIN)

Henry Wolkowicz
Dept. Comb. and Opt., University of Waterloo, Canada

Sunday, Dec. 5, 2021, 14:00-14:30, ET CMS W21 joint work with: Jiyoung (Haesol) Im

