Motivation, Notation, Preliminaries REGULARIZATION for Cone Programs Towards a Better regularization Numerical Tests Strict Complementarity and Nonzero Duality Gaps Concluding Remarks

Strong Duality, Complementarity, and Duality Gaps, in Conic Convex Optimization

Henry Wolkowicz Dept. Comb. & Opt, Univ. Waterloo

Joint work with: Simon Schurr and Levent Tuncel

ISMP 2009

Motivation, Notation, Preliminaries REGULARIZATION for Cone Programs Towards a Better regularization Numerical Tests Strict Complementarity and Nonzero Duality Gaps Concluding Remarks

Cone Optimization, (e.g. $K = \mathbb{S}^n_+$, SDP, $K = \mathbb{R}^n_+$, SDP)

Primal-Dual Pair of Optimization Problems in Conic Form

(assumed finite)
$$v_P = \sup_y \{\langle b, y \rangle : A^*y \leq_K c\},$$
 (P)
 $(v_P \leq) \quad v_D = \inf_x \{\langle c, x \rangle : Ax = b, x \succeq_{K^*} 0\}.$ (D)

where

- A an onto linear transformation; adjoint is A^*
- K a proper convex cone with dual/polar cone $K^* = \{x : \langle s, x \rangle > 0 \ \forall s \in K\}$
- $s' \leq_K s''(s' \prec_K s'')$ partial order, $s'' s' \in K(\in intK)$

Cone Optimization, (e.g. $K = \mathbb{S}^n_+$, SDP, $K = \mathbb{R}^n_+$, SDP)

Primal-Dual Pair of Optimization Problems in Conic Form

(assumed finite)
$$v_P = \sup_y \{\langle b, y \rangle : \mathcal{A}^* y \preceq_K c\},$$
 (P)
$$(v_P \leq) \quad v_D = \inf_x \{\langle c, x \rangle : \mathcal{A} x = b, \ x \succeq_{K^*} 0\}.$$
 (D)

where

- \mathcal{A} an onto linear transformation; adjoint is \mathcal{A}^*
- K a proper convex cone with dual/polar cone $K^* = \{x : \langle s, x \rangle > 0, \ \forall s \in K \}.$
- $s' \leq_K s''(s' \prec_K s'')$ partial order, $s'' s' \in K(\in intK)$

Motivation, Notation, Preliminaries
REGULARIZATION for Cone Programs
Towards a Better regularization
Numerical Tests
Strict Complementarity and Nonzero Duality Gaps
Concluding Remarks

Motivation/Outline

Strong Duality Failure (NO Constraint Qualification, CQ)

- Instances: SDP relaxations for hard combinatorial problems (e.g. QAP, GP, strengthened MC)
- Fresh look at known Characterizations of Optimality using Subspace Formulation

Regularization, EFficient Solutions

• theme: use MINIMAL REPRESENTATIONS

Connections Complementarity/Duality

 Surprising Connections Complementarity of Homog. Probl. and duality/Numerical implications

Faces of Cones

Face

A convex cone F is a face of K, denoted $F \subseteq K$, if

$$x, y \in K$$
 and $x + y \in F \implies x, y \in F$.

If $F \subseteq K$ and $F \neq K$, write $F \triangleleft K$.

Conjugate Face

If $F \subseteq K$, the conjugate face (or complementary face) of F is

$$F^{c} := F^{\perp} \cap K^{*} \unlhd K^{*}.$$

If
$$x \in ri(F)$$
, then $F^c = \{x\}^{\perp} \cap K^*$.

Minimal Face (Minimal Cone)

Feasible sets

```
\begin{array}{lll} \mathcal{F}^{\mathsf{F}}_{\mathsf{P}} & := & \{y: c - \mathcal{A}^* y \succeq_{\mathcal{K}} 0\} & \mathsf{primal} \\ \mathcal{F}^{\mathsf{s}}_{\mathsf{P}} & := & \{s: s = c - \mathcal{A}^* y \succeq_{\mathcal{K}} 0, \; \mathsf{for \, some} \; y\} & \mathsf{primal \, slacks} \\ \mathcal{F}^{\mathsf{x}}_{\mathsf{D}} & := & \{x: \mathcal{A} x = b, x \succeq_{\mathcal{K}}^* 0\} & \mathsf{dual} \end{array}
```

Minimal Faces

$$f_P := \text{face} \mathcal{F}_P^s \subseteq K$$
 $f_D := \text{face} \mathcal{F}_D^x \subseteq K^*$

Minimal Face (Minimal Cone)

Feasible sets

```
\begin{array}{lll} \mathcal{F}^{y}_{P} & := & \{y:c-\mathcal{A}^{*}y\succeq_{K}0\} & \text{primal} \\ \mathcal{F}^{s}_{P} & := & \{s:s=c-\mathcal{A}^{*}y\succeq_{K}0, \text{ for some }y\} & \text{primal slacks} \\ \mathcal{F}^{x}_{D} & := & \{x:\mathcal{A}x=b,x\succeq_{K}^{*}0\} & \text{dual} \end{array}
```

Minimal Faces

$$f_P := \text{face} \mathcal{F}_P^s \triangleleft K$$
 $f_D := \text{face} \mathcal{F}_D^x \triangleleft K^*$

SUBSPACE FORM and MINIMAL REPRESENTATIONS Recession Directions and Minimal Subspaces

(Modified) SDP Example from Ramana, 1995

Primal SDP

$$0 = v_P = \sup_{y} \left\{ y_2 : \begin{pmatrix} 0 & 0 & y_2 \\ 0 & y_2 & 0 \\ y_2 & 0 & y_1 \end{pmatrix} \preceq \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \right\}$$

$$y^* = \begin{pmatrix} y_1^* & 0 \end{pmatrix}^T, \quad y_1^* \leq 0, \quad s^* = c - \mathcal{A}^* y^* = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -y_1^* \end{pmatrix}$$

Slater's CQ fails for primal and dual; $v_D = 1 > v_P = 0$

6

Minimal Face for Ramana Example

Feasible Set/Minimal Face

$$\begin{aligned} \mathcal{F}_P^{y} &= \{ y \in \mathbb{R}^2 : y_1 \le 0, \ y_2 = 0 \} \\ f_P &= \bigcap \{ F \le K : \mathcal{F}_P^{\mathbb{S}} = c - \mathcal{A}^*(\mathcal{F}_P^{y}) \subset F \} \\ &= \begin{pmatrix} 0 & 0 \\ 0 & \mathbb{S}_+^2 \end{pmatrix} \\ &\vartriangleleft \quad \mathbb{S}_+^3 \end{aligned}$$

Slater CQ and Minimal Face

If (\mathbb{P}) is feasible, then

$$c - A^*y \not\succ_K 0 \forall y$$
 (Slater's CQ fails for (P)) $\iff f_P \triangleleft K$

SUBSPACE FORM and MINIMAL REPRESENTATIONS Recession Directions and Minimal Subspaces

Minimal Face for Ramana Example

Feasible Set/Minimal Face

$$\begin{aligned} \mathcal{F}_P^{y} &= \{ y \in \mathbb{R}^2 : y_1 \leq 0, \ y_2 = 0 \} \\ f_P &= \bigcap \{ F \leq K : \mathcal{F}_P^{\mathbb{S}} = c - \mathcal{A}^*(\mathcal{F}_P^{y}) \subset F \} \\ &= \begin{pmatrix} 0 & 0 \\ 0 & \mathbb{S}_+^2 \end{pmatrix} \\ &\vartriangleleft \quad \mathbb{S}_+^3 \end{aligned}$$

Slater CQ and Minimal Face

If (\mathbb{P}) is feasible, then

$$c - A^*y \not\succ_K 0 \forall y$$
 (Slater's CQ fails for (P)) $\iff f_P \triangleleft K$

7

SUBSPACE FORM and MINIMAL REPRESENTATIONS Recession Directions and Minimal Subspaces

Regularization of (P) Using Minimal Face

Borwein-W (1981), $f_P = \text{face} \mathcal{F}_P^s$

 (\mathbb{P}) is equivalent to regularized (\mathbb{P})

$$v_{RP} := \sup_{y} \{ \langle b, y \rangle : A^* y \leq_{\mathbf{f}_{\mathbf{P}}} c \}.$$
 (RP)

Lagrangian Dual DRP Satisfies Strong Duality

$$v_P = v_{RP} = v_{DRP} := \inf_{x} \left\{ \langle c, x \rangle : Ax = b, x \succeq_{f_P^*} 0 \right\}$$
 (DRP)

SUBSPACE FORM and MINIMAL REPRESENTATIONS Recession Directions and Minimal Subspaces

Regularization of (P) Using Minimal Face

Borwein-W (1981), $f_P = \text{face} \mathcal{F}_P^s$

(P) is equivalent to regularized (P)

$$v_{RP} := \sup_{y} \{ \langle b, y \rangle : A^* y \leq_{f_P} c \}.$$
 (RP)

Lagrangian Dual DRP Satisfies Strong Duality:

$$v_P = v_{RP} = v_{DRP} := \inf_{\mathbf{x}} \left\{ \langle c, \mathbf{x} \rangle : A\mathbf{x} = \mathbf{b}, \ \mathbf{x} \succeq_{\mathbf{f}_P^*} \mathbf{0} \right\} \quad \text{(DRP)}$$

(SYMMETRIC) Subspace Form for (P) and (D)

Assume Linear Feasibility for $\tilde{s}, \tilde{y}, \tilde{x}$; with data A, b, c, K

$$\mathcal{A}^* \tilde{\mathbf{y}} + \tilde{\mathbf{s}} = \mathbf{c}$$
 $\mathcal{A} \tilde{\mathbf{x}} = \mathbf{b}$ $\mathcal{L}^{\perp} = \mathcal{R}(\mathcal{A}^*)$ (range) $\mathcal{L} = \mathcal{N}(\mathcal{A})$ (nullspace)

Equivalent Primal-Dual Pair in Subspace Form, (e.g. N&N '94)

Particular solution + solution of homogeneous equation

$$v_P = c\tilde{x} - \inf_{s} \left\{ s\tilde{x} : s \in (\tilde{s} + \mathcal{L}^{\perp}) \cap K \right\}.$$
 (P)

$$v_D = \tilde{y}b + \inf_{x} \left\{ \tilde{s}x : x \in (\tilde{x} + \mathcal{L}) \cap K^* \right\}. \tag{D}$$

SDP Duality Gap Example SUBSPACE FORM and MINIMAL REPRESENTATIONS

Recession Directions and Minimal Subspaces

(SYMMETRIC) Subspace Form for (\mathbb{P}) and (\mathbb{D})

Assume Linear Feasibility for $\tilde{s}, \tilde{y}, \tilde{x}$; with data A, b, c, K

$$\mathcal{A}^* ilde{y} + ilde{s} = c$$
 $\mathcal{A} ilde{x} = b$ $\mathcal{L}^\perp = \mathcal{R}(\mathcal{A}^*)$ (range) $\mathcal{L} = \mathcal{N}(\mathcal{A})$ (nullspace)

Equivalent Primal-Dual Pair in Subspace Form, (e.g. N&N '94)

<u>Particular solution</u> + solution of homogeneous equation

$$v_P = c\tilde{x} - \inf_{s} \left\{ s\tilde{x} : s \in (\tilde{s} + \mathcal{L}^{\perp}) \cap K \right\}.$$
 (P)

$$v_D = \tilde{y}b + \inf_{\tilde{x}} \{ \tilde{s}x : x \in (\tilde{x} + \mathcal{L}) \cap K^* \}. \tag{D}$$

١.

Numerical/Stability Advantages of Subspace Form

Single Bilinear Equation For Interior Point Methods

Current p-d i-p methods introduce ill-conditioning (ill-posedness) from symmetrization & block elimination. Instead solve:

$$0 = F_{\mu}(\mathbf{y}, \mathbf{v}) = (\mathbf{c} - \mathcal{A}^* \mathbf{y})(\tilde{\mathbf{x}} + \mathcal{V}^* \mathbf{v}) - \mu \mathbf{I}$$

$$\mathcal{L}^{\perp} = \mathcal{R}(\mathcal{A}^*)$$
 (range) $\mathcal{L} = \mathcal{N}(\mathcal{A}) = \mathcal{R}(\mathcal{V}^*)$ (nullspace)

Some Applications

- Gauss-Newton method for SDP (Kruk et al 2001)
- GN and CG method for SDP relaxation of Max-Cut (W. 2004)
- Large Scale LP (Wei and W. 2004)

Numerical/Stability Advantages of Subspace Form

Single Bilinear Equation For Interior Point Methods

Current p-d i-p methods introduce ill-conditioning (ill-posedness) from symmetrization & block elimination. Instead solve:

$$0 = F_{\mu}(\mathbf{y}, \mathbf{v}) = (\mathbf{c} - \mathcal{A}^* \mathbf{y})(\tilde{\mathbf{x}} + \mathcal{V}^* \mathbf{v}) - \mu \mathbf{I}$$

$$\mathcal{L}^{\perp} = \mathcal{R}(\mathcal{A}^*)$$
 (range) $\mathcal{L} = \mathcal{N}(\mathcal{A}) = \mathcal{R}(\mathcal{V}^*)$ (nullspace)

Some Applications

- Gauss-Newton method for SDP (Kruk et al 2001)
- GN and CG method for SDP relaxation of Max-Cut (W. 2004)
- Large Scale LP (Wei and W. 2004)

Strict Complementarity and Nonzero Duality Gaps

For (\mathbb{P}) and (\mathbb{D})

Faces of Recession Directions (feasible case)

Concluding Remarks

$$f_P^0 := \mathrm{face}\left(\mathcal{L}^\perp \cap K\right) \left(\subset f_P\right) \qquad f_D^0 := \mathrm{face}\left(\mathcal{L} \cap K^*\right) \left(\subset f_D\right)$$

Recall

minimal faces
$$f_P = \text{face} \mathcal{F}_P^S$$
 $f_D = \text{face} \mathcal{F}_P^X$

Minimal Subspaces/Linear Transformations

min. subsp.
$$\mathcal{L}_{PM}^{\perp} := \mathcal{L}^{\perp} \cap (f_P - f_P)$$
 $\mathcal{L}_{DM} := \mathcal{L} \cap (f_D - f_D)$ min. Lin. Tr. \mathcal{A}_{PM}^* \mathcal{A}_{DM}

SDP Duality Gap Example
SUBSPACE FORM and MINIMAL REPRESENTATIONS
Recession Directions and Minimal Subspaces

For (\mathbb{P}) and (\mathbb{D})

Faces of Recession Directions (feasible case)

Concluding Remarks

$$f_P^0 := \mathrm{face}\left(\mathcal{L}^\perp \cap K\right) (\subset f_P) \qquad f_D^0 := \mathrm{face}\left(\mathcal{L} \cap K^*\right) (\subset f_D)$$

Recall

minimal faces
$$f_P = \text{face} \mathcal{F}_P^s$$
 $f_D = \text{face} \mathcal{F}_D^x$

Minimal Subspaces/Linear Transformations

min. subsp.
$$\mathcal{L}_{PM}^{\perp} := \mathcal{L}^{\perp} \cap (f_P - f_P)$$
 $\mathcal{L}_{DM} := \mathcal{L} \cap (f_D - f_D)$ min. Lin. Tr. \mathcal{A}_{PM}^* \mathcal{A}_{DM}

Towards a Better regularization

Numerical Tests

Strict Complementarity and Nonzero Duality Gaps

Concluding Remarks

Minimal Representations using MINIMAL SUBSPACE Constraint Qualifications, CQs, for (P)

Regularization of (P) Using Minimal Subspace

Assume K Facially Dual Complete, FDC (Pataki/07, 'nice')

i.e.
$$F \triangleleft K \implies K^* + F^{\perp}$$
 is closed. (e.g. \mathbb{S}^n_+ , \mathbb{R}^n_+ , SOC).

$$\mathcal{L}_{PM}^{\perp} = \mathcal{L}^{\perp} \cap (f_P - f_P)$$

$$V_{RP} = c\tilde{x} - \inf_{s} \left\{ s\tilde{x} : s \in (\tilde{s} + \mathcal{L}_{MP}^{\perp}) \cap K \right\}$$
 (RP)

Lagrangian Dual DRP Satisfies Strong Duality

$$V_{DRP} = \tilde{y}b + \inf_{X} \{\tilde{s}x : x \in (\tilde{x} + \mathcal{L}_{MP}) \cap K^*\}$$
 (DRP)

REGULARIZATION for Cone Programs
Towards a Better regularization
Numerical Tests
Strict Complementarity and Nonzero Duality Gaps

Minimal Representations using MINIMAL SUBSPACE Constraint Qualifications, CQs, for (P)

Regularization of (P) Using Minimal Subspace

Concluding Remarks

Assume K Facially Dual Complete, FDC (Pataki/07, 'nice')

i.e.
$$F \triangleleft K \implies K^* + F^{\perp}$$
 is closed. (e.g. \mathbb{S}^n_+ , \mathbb{R}^n_+ , SOC).

$$\mathcal{L}_{PM}^{\perp} = \mathcal{L}^{\perp} \cap (f_P - f_P)$$

$$v_{RP} = c\tilde{x} - \inf_{s} \left\{ s\tilde{x} : s \in (\tilde{s} + \mathcal{L}_{MP}^{\perp}) \cap K \right\}$$
(RP)

Lagrangian Dual DRP Satisfies Strong Duality

$$v_{DRP} = \tilde{y}b + \inf_{x} \{\tilde{s}x : x \in (\tilde{x} + \mathcal{L}_{MP}) \cap K^*\}$$
 (DRP)

REGULARIZATION for Cone Programs
Towards a Better regularization
Numerical Tests
Strict Complementarity and Nonzero Duality Gaps

Minimal Representations using MINIMAL SUBSPACE Constraint Qualifications, CQs. for (P)

Regularization of (P) Using Minimal Subspace

Assume K Facially Dual Complete, FDC (Pataki/07, 'nice')

i.e.
$$F \triangleleft K \implies K^* + F^{\perp}$$
 is closed. (e.g. \mathbb{S}^n_+ , \mathbb{R}^n_+ , SOC).

$$\mathcal{L}_{PM}^{\perp} = \mathcal{L}^{\perp} \cap (f_P - f_P)$$

$$V_{RP} = c\tilde{x} - \inf_{s} \left\{ s\tilde{x} : s \in (\tilde{s} + \mathcal{L}_{MP}^{\perp}) \cap K \right\}$$
 (RP)

Lagrangian Dual DRP Satisfies Strong Duality:

$$v_{DRP} = \tilde{y}b + \inf_{x} \left\{ \tilde{s}x : x \in (\tilde{x} + \mathcal{L}_{MP}) \cap K^* \right\}$$
 (DRP)

Numerical Tests
Strict Complementarity and Nonzero Duality Gaps
Concluding Remarks

Nice and Devious Cones

Alternate Form of BW Characterization

$$v_P \ge \sup_{y \in g^{-1}(f_P - f_P)} \langle b, y \rangle + \langle (c - \mathcal{A}^* y), \bar{x} \rangle$$
, for some $\bar{x} \in f_P^* = \mathcal{K}^* + f_P^{\perp}$; WOLG $\bar{x} \in \mathcal{K}^*$

Lemma for SDP Case (Ramana, Tuncel, W./97)

Let
$$0 \neq F \triangleleft \mathbb{S}_{+}^{n}$$
. Then $\mathbb{S}_{+}^{n} + F^{\perp}$ is closed (nice) $\mathbb{S}_{+}^{n} + \operatorname{span} F^{c}$ is not closed (devious) $\mathbb{S}_{+}^{n} + F^{\perp} = \overline{\mathbb{S}_{+}^{n} + \operatorname{span} F^{c}}$

Let
$$\mathcal{L} = \operatorname{span} F^c$$
; choose $c = \tilde{s} = 0$ and $\tilde{x} \in (\mathbb{S}^n_+ + F^\perp) \setminus (\mathbb{S}^n_+ + \operatorname{span} F^c)$; (subspace repr. (P),(D): (1)). then $0 = v_P < v_D = \infty$.

Numerical Tests
Strict Complementarity and Nonzero Duality Gaps
Concluding Remarks

Nice and Devious Cones

Alternate Form of BW Characterization

$$v_P \ge \sup_{y \in g^{-1}(f_P - f_P)} \langle b, y \rangle + \langle (c - \mathcal{A}^* y), \bar{x} \rangle$$
, for some $\bar{x} \in f_P^* = \mathcal{K}^* + f_P^{\perp}$; WOLG $\bar{x} \in \mathcal{K}^*$

Lemma for SDP Case (Ramana, Tuncel, W./97)

Let
$$0 \neq F \triangleleft \mathbb{S}_{+}^{n}$$
. Then $\mathbb{S}_{+}^{n} + F^{\perp}$ is closed (nice) $\mathbb{S}_{+}^{n} + \operatorname{span} F^{c}$ is not closed (devious) $\mathbb{S}_{+}^{n} + F^{\perp} = \overline{\mathbb{S}_{+}^{n}} + \operatorname{span} F^{c}$

Let
$$\mathcal{L} = \operatorname{span} F^c$$
; choose $c = \tilde{s} = 0$ and $\tilde{x} \in (\mathbb{S}^n_+ + F^\perp) \setminus (\mathbb{S}^n_+ + \operatorname{span} F^c)$; (subspace repr. (P),(D): (1)). then $0 = v_P < v_D = \infty$.

Strict Complementarity and Nonzero Duality Gaps

Strong Duality for (P) $(v_P = v_D \text{ and } v_D \text{ is attained})$

Minimal Face and Minimal Subspace CQs for (P)

Concluding Remarks

- $\oint_P = K \text{ is a CQ}$ $\text{(from BW: } f_P^* = K^* \text{)}$
- ② $\mathcal{L}^{\perp} \cap (f_P f_P) = \mathcal{L}_{PM}^{\perp} = \mathcal{L}^{\perp}$ is a CQ (if K is FDC (nice)) ($\tilde{s} \in f_P - f_P : x^* = x_K^* + x_f^* \in f_P^* = K^* + f_P^{\perp} \implies x^*(\tilde{s} + \mathcal{L}^{\perp}) = x_K^*(\tilde{s} + \mathcal{L}^{\perp})$)

Universal CQ, UCQ for (P) (i.e. independent of <u>feasible</u> data c, b)

 $\mathcal{L}^{\perp} \subset f_P^0 - f_P^0$ is a UCQ (if K is FDC) (wlog choose $\tilde{\mathbf{s}} \in K$, $\tilde{\mathbf{x}} \in K^*$; shows that $f_P^0 \subset f_P$, $f_D^0 \subset f_D$)

Strong Duality for (P) $(v_P = v_D \text{ and } v_D \text{ is attained})$

Minimal Face and Minimal Subspace CQs for (P)

 $\oint_P = K \text{ is a CQ}$ (from BW: $f_P^* = K^*$)

Strict Complementarity and Nonzero Duality Gaps

2 $\mathcal{L}^{\perp} \cap (f_P - f_P) = \mathcal{L}_{PM}^{\perp} = \mathcal{L}^{\perp}$ is a CQ (if K is FDC (nice)) ($\tilde{s} \in f_P - f_P : x^* = x_K^* + x_f^* \in f_P^* = K^* + f_P^{\perp} \implies x^*(\tilde{s} + \mathcal{L}^{\perp}) = x_K^*(\tilde{s} + \mathcal{L}^{\perp})$)

Universal CQ, UCQ for (P) (i.e. independent of <u>feasible</u> data c, b)

$$\mathcal{L}^{\perp} \subset f_P^0 - f_P^0$$
 is a UCQ (if K is FDC)
(wlog choose $\tilde{s} \in K$, $\tilde{x} \in K^*$; shows that $f_P^0 \subset f_P$, $f_D^0 \subset f_D$)

Our Goals:

Goals: Derive an Algorithm that Satisfies

- recognizes if Slater's CQ holds and if (ℙ)–(ⅅ) has a zero duality gap (improves on stability/efficiency of B-W algorithm)
- Size of any intermediate cone program solved does not exceed that of (ℙ) or (ⅅ) (improves on size/efficiency of Ramana's dual)
- intermediate cone programs to be solved are well behaved (in the Slater CQ sense)

Numerical Tests Strict Complementarity and Nonzero Duality Gaps Concluding Remarks

Theorem of the Alternative for Slater's CQ

THEOREM

Suppose that (\mathbb{P}) is feasible. Then exactly one of the following two systems is consistent:

- (1) Ax = 0, $\langle c, x \rangle = 0$, and $0 \neq x \succeq_{K^*} 0$
- (2) $\mathcal{A}^*y \prec_{\mathcal{K}} \mathbf{c}$ (Slater's CQ holds for (\mathbb{P}))

Difficult?

In theory, we can solve

(*) min{0 : x satisfies (1)}

o determine if Slater's CQ fails for (P).

But this problem (*) need not satisfy the generalized Slater CQ

Numerical Tests Strict Complementarity and Nonzero Duality Gaps Concluding Remarks

Theorem of the Alternative for Slater's CQ

THEOREM

Suppose that (\mathbb{P}) is feasible. Then exactly one of the following two systems is consistent:

- (1) Ax = 0, $\langle c, x \rangle = 0$, and $0 \neq x \succeq_{K^*} 0$
- (2) $\mathcal{A}^*y \prec_{\mathcal{K}} \mathbf{c}$ (Slater's CQ holds for (\mathbb{P}))

Difficult?

In theory, we can solve

$$(*)$$
 min $\{0: x \text{ satisfies (1)}\}$

to determine if Slater's CQ fails for (\mathbb{P}).

But this problem (*) need not satisfy the generalized Slater CQ!

Stable Theorem of the Alternative

Stable Auxiliary Problem

Let
$$e \in \text{int}(K) \cap \text{int}(K^*)$$
; define $A_c x := \begin{pmatrix} Ax \\ \langle c, x \rangle \end{pmatrix}$

$$\alpha^* := \left\{ \inf_{x,\alpha} \alpha : A_c x = 0, x + \alpha e \succeq_{K^*} 0, \langle e, x \rangle \le 1 \right\} \tag{A}$$

Properties/Advantages

- size of (A) essentially that of (D)
- A strictly feasible primal-dual point is easily found.
- Apply primal-dual IPM; assume a barrier for K* such that the central path defined by it converges to a point in the relative interior of the optimal face; follow central path closely at end of algorithm.

Slater's Condition and the Auxiliary problem

Solution to (A) yields info on (P)–(D)

Strict Complementarity and Nonzero Duality Gaps

Theorem: The x component of the central path for (A) converges to a point in $ri(face(G_P))$, where

$$G_P := \{x : Ax = 0, \langle c, x \rangle = 0, x \succeq_{K^*} 0\}.$$

Moreover, since $f_P \subset \{x^*\}^{\perp} \cap K = [face(G_P)]^c \subseteq K$, one of the following holds:

- \bullet $\alpha^* = 0$ and $x^* = 0$, so Slater's CQ holds for (\mathbb{P}), or
- $\alpha^* = 0$ and $0 \neq x^* \succeq_{K^*} 0$, so $f_P \subset \{x^*\}^{\perp} \cap K \triangleleft K$, or

lowards a Better regularization

Numerical Tests

Strict Complementarity and Nonzero Duality Gaps

Concluding Remarks

Algorithm <u>Alternates</u> to Obtain Minimal Representations

For Minimal Face

From auxiliary problem, find:

$$0 \neq x \in K^*, \{x\}^{\perp} = H, \{x\}^{\perp} \cap K \supset f_P$$

For Minimal Subspace

Find A_H so that $\mathcal{R}(A_H^*) = \mathcal{R}(A^*) \cap H$ to get reduced problem in H

Previous SDP with $K = \mathbb{S}^3_+$ and a Duality Gap of 1

SeDuMi 1.1 Results

$$y^* = \begin{pmatrix} -0.321 \times 10^6 & 0.372 \end{pmatrix}^T$$

$$s^* = \begin{pmatrix} 0 & 0 & -0.372 \\ - & 0.628 \times 10^5 & 0 \\ - & - & -0.321 \times 10^6 \end{pmatrix};$$

desired accuracy (10⁻⁶) achieved but!!

$$\langle c, x^* \rangle - \langle b, y^* \rangle \approx -0.12!$$
 and s^* is not pos. semidef.

After One Step of the Reduction

Our code yields correct primal solution:

$$y^* = \begin{pmatrix} -1.50 \\ 0 \end{pmatrix}, \quad s^* = \begin{pmatrix} 0 & 0 & 0 \\ - & 1.00 & 0 \\ - & - & 1.50 \end{pmatrix}$$

Higher Dimensional Numerical Experiments

SDP with $m = n \ge 3$, $b = e_2$, c = 0

$$A^*y = \begin{pmatrix} y_1 & y_2 & y_3 & \cdots & y_{n-1} & y_n \\ y_2 & y_3 & & & & \\ \vdots & & & \ddots & \\ y_{n-1} & & & & y_n & \\ y_n & & & & 0 \end{pmatrix}$$

SeDuMi/Our Algorithm

SeDuMi gives incorrect primal/dual solution; duality gap of -1; our algorithm gives correct solution

$$F_P = \{ y \in \mathbb{R}^n : y_1 \le 0, \ y_2 = \dots = y_n = 0 \}$$
 min. face $f_P = \{ s \in \mathbb{S}^n_+ : s_{11} \ge 0, \ s_{ij} = 0 \ \forall (i,j) \ne (1,1) \}$, and (\mathbb{D}) is infeasible.

(Near) Loss of Slater Condition/Strict Feasibility

Theoretical/Numerical Difficulties

- Primal Slater condition implies strong duality, i.e. zero duality gap AND dual attainment.
- (Near) loss of strict feasibility is used as a measure in complexity theory. (e.g. Renegar/95, Freund/01, Lara and Tuncel/02)
- (Near) loss of strict feasibility correlates with number of iterations and loss of accuracy in interior-point methods (e.g. Freund/Ordonez/Toh 2006)

(Near) Loss of Slater Condition/Strict Feasibility

Theoretical/Numerical Difficulties

- Primal Slater condition implies strong duality, i.e. zero duality gap AND dual attainment.
- (Near) loss of strict feasibility is used as a measure in complexity theory. (e.g. Renegar/95, Freund/01, Lara and Tuncel/02)
- (Near) loss of strict feasibility correlates with number of iterations and loss of accuracy in interior-point methods (e.g. Freund/Ordonez/Toh 2006)

Loss of Strict Complementarity, (SC)

Strict Complementary Optimal Primal-Dual Pair

ullet There exists an optimal primal-dual pair x, s such that

$$\mathbf{X} + \mathbf{S} \succ \mathbf{0} \quad (\in \operatorname{int}(\mathbf{K} + \mathbf{K}^*))$$

Theoretical Difficulties/Convergence

- Convergence proofs for asymptotic quadratic superlinear convergence require SC.
- Proofs of convergence to the analytic center require SC

Numerical Difficulties/Relation to Duality Gaps???

increased number of iterations? loss of accuracy?

Loss of Strict Complementarity, (SC)

Strict Complementary Optimal Primal-Dual Pair

There exists an optimal primal-dual pair x, s such that

$$\mathbf{X} + \mathbf{S} \succ \mathbf{0} \quad (\in \operatorname{int}(\mathbf{K} + \mathbf{K}^*))$$

Theoretical Difficulties/Convergence

- Convergence proofs for asymptotic quadratic superlinear convergence require SC.
- Proofs of convergence to the analytic center require SC

increased number of iterations? loss of accuracy?

Loss of Strict Complementarity, (SC)

Strict Complementary Optimal Primal-Dual Pair

There exists an optimal primal-dual pair x, s such that

$$\mathbf{X} + \mathbf{S} \succ \mathbf{0} \quad (\in \operatorname{int}(\mathbf{K} + \mathbf{K}^*))$$

Theoretical Difficulties/Convergence

- Convergence proofs for asymptotic quadratic superlinear convergence require SC.
- Proofs of convergence to the analytic center require SC

Numerical Difficulties/Relation to Duality Gaps???

increased number of iterations? loss of accuracy?

Hard SDP Instances (Wei and W. 2006)

Maximal Complementary Solution Pair:

• A p-d pair of optimal solutions (\bar{s}, \bar{x}) is a <u>maximal complementary solution pair</u> if the pair maximizes the sum rank(s) + rank(x) over all p-d optimal (s, x).

Strict Complementarity Nullity, *g*:

• $g = n - \text{rank}(\bar{s}) - \text{rank}(\bar{x})$, where (\bar{s}, \bar{x}) is a maximal complementary solution pair

Hard SDP Instances

problems where nullity is nonzero

Hard SDP Instances (Wei and W. 2006)

Maximal Complementary Solution Pair:

• A p-d pair of optimal solutions (\bar{s}, \bar{x}) is a <u>maximal complementary solution pair</u> if the pair maximizes the sum rank(s) + rank(x) over all p-d optimal (s, x).

Strict Complementarity Nullity, g:

• $g = n - \text{rank}(\bar{s}) - \text{rank}(\bar{x})$, where (\bar{s}, \bar{x}) is a maximal complementary solution pair

Hard SDP Instances:

problems where nullity is nonzero

Hard SDP Instances (Wei and W. 2006)

Maximal Complementary Solution Pair:

• A p-d pair of optimal solutions (\bar{s}, \bar{x}) is a <u>maximal complementary solution pair</u> if the pair maximizes the sum rank(s) + rank(x) over all p-d optimal (s, x).

Strict Complementarity Nullity, g:

• $g = n - \text{rank}(\bar{s}) - \text{rank}(\bar{x})$, where (\bar{s}, \bar{x}) is a maximal complementary solution pair

Hard SDP Instances:

problems where nullity is nonzero

Generating Hard SDP Instances

Complementarity Partition and Nonzero Duality Gap

Algorithm for Given Nullity g

Algorithm

- Given: rank of optimum x is r > 0; number constraints is m > 1
- Let $Q = [Q_P|Q_N|Q_D]$ be orthogonal matrix; dimensions of Q_P , Q_N , Q_D are $n \times r$, $n \times g$, $n \times (n-r-g)$, resp. Construct: $\mathbf{x} := \mathbf{Q}_P \mathbf{D}_{\mathbf{x}} \mathbf{Q}_P^T$ $s := \mathbf{Q}_D \mathbf{D}_{\mathbf{s}} \mathbf{Q}_D^T$, where $\mathbf{D}_{\mathbf{x}} \succ 0$ and $\mathbf{D}_{\mathbf{s}} \succ 0$.
- cont...

Generating Hard SDP Instances

Complementarity Partition and Nonzero Duality Gap

Algorithm cont...

Algorithm cont...

Define

$$A_{1} = \begin{bmatrix} Q_{P}|Q_{N}|Q_{D} \end{bmatrix} \begin{bmatrix} 0 & 0 & Y_{2}^{T} \\ 0 & Y_{1} & Y_{3}^{T} \\ Y_{2} & Y_{3} & Y_{4} \end{bmatrix} \begin{bmatrix} Q_{P}|Q_{N}|Q_{D} \end{bmatrix}^{T},$$

where $Y_1 > 0$, Y_4 symmetric, and $Q_D Y_2 \neq 0$.

- Choose $A_i \in \mathbb{S}^n$, with $\{A_1 Q_P, A_2 Q_P, \dots, A_m Q_P\}$ lin. indep. (Note $A_1 Q_P = Q_D Y_2 \neq 0$.)
- Set b := A(x), $c := A^*(y) + s$, with $y \in \mathbb{R}^m$ random.

Generating Hard SDP Instances Complementarity Partition and Nonzero Duality Gap

Theorem for Generating Hard Instances

Theorem

The data (A, b, c) constructed in the above algorithm gives a hard SDP instance with a strict complementarity nullity g.

Proof Outline

- Step 2 guarantees s, x ≥ 0, sx = 0 but strict complementarity fails.
- step 5 guarantees primal-dual feasibility, i.e. s,x are an optimal pair.
- Steps 3,4 guarantee s, x are a maximal complementary solution pair.

Generating Hard Instances with Slater Condition

Corollary

With data (A, b, c) constructed using above algorithm:

- If the following additional condition on A_2 is satisfied $[Q_P|Q_N]^T A_2[Q_P|Q_N] \succ 0$, then Slater's CQ holds for (P).
- ② If the following additional conditions on A_i , i = 1, ..., m, are satisfied,

trace
$$Y_4 = -\text{trace } Y_1$$

 $\alpha > 0$, trace $A_i x = \alpha \text{trace } A_i$, $i = 2, ..., m$,

then $\hat{\mathbf{x}} = \alpha \mathbf{I} \succ \mathbf{0}$ is feasible for (D)

Generating Hard SDP Instances

Complementarity Partition and Nonzero Duality Gap

Empirical Observations

Numerical Difficulties Correlate with Large Nullity

- There is a strong correlation between the iteration number to achieve the desired stopping tolerance and the size of the complementarity nullity, when the accuracy requirement is high.
- Large nullity instances cause problems for SDPT3 solver.
- Local asymptotic convergence rate is slower when nullity is larger.

Theoretical Connections Complementarity/Duality?

Numerical Difficulties

(Both) loss of Slater CQ (strict feasibility) and loss of strict complementarity independently result in numerical difficulties for interior-point methods.

Theoretical Connection?

Is there a theoretical connection between loss of duality (from loss of a CQ) and loss of strict complementarity?

Complementarity Partition

Recall Faces of Recession Directions

$$f_P^0 := \mathrm{face}\left(\mathcal{L}^\perp \cap \mathcal{K}\right), \qquad f_D^0 := \mathrm{face}\left(\mathcal{L} \cap \mathcal{K}^*\right)$$

The pair f_P^0 , f_D^0 define a Complementarity Partition

$$face(f_P^0) \subset face(f_D^0)^c$$
 and $face(f_D^0) \subset face(f_P^0)^c$. it is a strict complementarity partition if both $[face(f_P^0)]^c = face(f_D^0)$ and $[face(f_D^0)]^c = face(f_P^0)$; it is proper if f_D^0 and f_D^0 are both nonempty.

SDP Picture

For SDP (after a rotation)

$$\begin{bmatrix} f_D^0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & f_P^0 \end{bmatrix}$$

Form Primal-Dual Pair

$$\tilde{\mathbf{x}} = \tilde{\mathbf{s}} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & \mathbf{v} \succ \mathbf{0} & 0 \\ 0 & 0 & 0 \end{bmatrix} \implies \langle \mathbf{s}, \mathbf{x} \rangle \geq \|\mathbf{v}\|_{\mathcal{F}}^2,$$

for all feasible pairs s, x. (gap is dimension of v)

Strict Complementarity and Nonzero Gaps

Theorem: K is a proper cone

(1) If f_P^0 , f_D^0 define a proper complementarity partition with a gap of dimension 1, so, the partition is not a strict complementarity partition, then there exists \bar{s} and \bar{x} such that (\mathbb{P}) – (\mathbb{D}) with data $(\mathcal{L}, K, \bar{s}, \bar{x})$ has a finite nonzero duality gap.

(Partial Converse)

(2) If (a) (\mathbb{P}) – (\mathbb{D}) with data $(\mathcal{L}, K, \bar{s}, \bar{x})$ has a finite nonzero duality gap with both optimal values attained, and (b) the objective functions are constant along all recession directions of (\mathbb{P}) and (\mathbb{D}) , then f_P^0, f_D^0 has a proper complementarity partition but not a strict complementarity partition.

Motivation, Notation, Preliminaries
REGULARIZATION for Cone Programs
Towards a Better regularization
Numerical Tests
Strict Complementarity and Nonzero Duality Gaps
Concluding Remarks

Conclusion

- Minimal Representations of the data regularize (P) min. face f_P and/or the min. L.T. \mathcal{A}_{PM} or \mathcal{L}_{PM}^*
- presented a stable algorithm to solve (feasible) conic problems for which Slater's CQ fails
- Failure of strict complementarity for the associated recession problems is closely related to the existence of instances having a finite nonzero duality gap; provides a means of generating instances for testing.