Notation and Preliminaries
Regularization for Cone Programs
Towards a Better regularization
Numerical Tests
Strict Complementarity and Nonzero Duality Gaps
Concluding Remarks and Ongoing Work

Strong Duality and Stability in Conic Convex Optimization

Henry Wolkowicz University of Waterloo

Joint work with: Simon Schurr and Levent Tuncel

Monday, January 21, 2008 at: AdvOL McMaster University

1

Notation and Preliminaries
Regularization for Cone Programs
Towards a Better regularization
Numerical Tests
Strict Complementarity and Nonzero Duality Gaps
Concluding Remarks and Ongoing Work

Outline

- Notation and Preliminaries
 - SDP Duality Gap Example
- Regularization for Cone Programs
 - Facial Reduction; the Minimal Face
 - Regularization Using Ramana's Dual for SDP
- Towards a Better regularization
 - A Stable Auxiliary Problem
 - The SDP Case
- Mumerical Tests
- Strict Complementarity and Nonzero Duality Gaps
 - Strict Complementarity Partitions and Nonzero Gaps
- 6 Concluding Remarks and Ongoing Work
 - Near Failure of Slater's CQ/Distance to Infeasibility

Cone Optimization

Primal-Dual Pair of Optimization Problems in Conic Form

(finite)
$$V_P = \sup_{y} \{\langle b, y \rangle : A^* y \leq_K c\},$$
 (P)

$$v_D = \inf_{x} \{\langle c, x \rangle : Ax = b, x \succeq_{K^*} 0\}.$$
 (D)

where

- A an onto linear transformation; adjoint is A^*
- K a proper convex cone with dual/polar cone $K^* = \{x : \langle x, z \rangle > 0, \ \forall z \in K\}.$
- $z' \preceq_K z''(z' \prec_K z'')$ partial order, $z'' z' \in K(\in \text{int}K)$

Cone Optimization

Primal-Dual Pair of Optimization Problems in Conic Form

(finite)
$$V_P = \sup_{y} \{\langle b, y \rangle : A^* y \leq_K c\},$$
 (P)

$$v_D = \inf_{\mathbf{x}} \{ \langle \mathbf{c}, \mathbf{x} \rangle : A\mathbf{x} = \mathbf{b}, \ \mathbf{x} \succeq_{K^*} \mathbf{0} \}.$$
 (D)

where

- \mathcal{A} an onto linear transformation; adjoint is \mathcal{A}^*
- K a proper convex cone with dual/polar cone $K^* = \{x : \langle x, z \rangle \ge 0, \ \forall z \in K\}.$
- $z' \leq_K z''(z' \prec_K z'')$ partial order, $z'' z' \in K(\in \text{int}K)$

SDP Duality Gap Example

Concluding Remarks and Ongoing Work Semidefinite Programming, SDP

SDP

$$V_P = \sup_{y} \{ \langle b, y \rangle : A^* y \leq_{\mathcal{K}} c \}, \tag{P}$$

$$v_D = \inf_{x} \{ \langle c, x \rangle : Ax = b, x \succeq_{K^*} 0 \}.$$
 (D)

For SDP,
$$\mathcal{A}: \mathbb{S}^n \to \mathbb{R}^m$$
, $b \in \mathbb{R}^m$, $c \in \mathbb{S}^n$, and $\mathcal{K} = \mathcal{K}^* = \mathbb{S}^n_+ := \{X \in \mathbb{S}^n : X \text{ is PSD}\}.$

SDP Duality Gap Example

Faces of Cones

Face

A convex cone F is a face of K, denoted $F \triangleleft K$, if

$$x, y \in K \text{ and } x + y \in F \implies x, y \in F.$$

If $F \subseteq K$ and $F \neq K$, write $F \subseteq K$.

Conjugate Face

If $F \subseteq K$, the conjugate face (or complementary face) of F is

$$F^c := F^{\perp} \cap K^* \unlhd K^*$$
.

If
$$x \in ri(F)$$
, then $F^c = \{x\}^{\perp} \cap K^*$.

SDP Duality Gap Example

Minimal Face (Minimal Cone)

Feasible set of (\mathcal{P})

Let
$$\mathcal{F}_P := \{ y : c - \mathcal{A}^* y \succeq_{\mathcal{K}} 0 \}$$

$$f_P := \bigcap \{F \leq K : c - \mathcal{A}^*(\mathcal{F}_P) \subset F\}.$$

SDP Duality Gap Example

Minimal Face (Minimal Cone)

Feasible set of (\mathcal{P})

Let
$$\mathcal{F}_P := \{ y : c - \mathcal{A}^* y \succeq_{\mathcal{K}} 0 \}$$

Minimal Face

Assuming that \mathcal{F}_P is nonempty, the minimal face (or minimal cone) of (\mathcal{P}) is

$$f_P := \bigcap \{F \leq K : c - \mathcal{A}^*(\mathcal{F}_P) \subset F\}.$$

i.e., the minimal face that contains all the feasible slacks.

SDP Duality Gap Example

Numerical Tests Strict Complementarity and Nonzero Duality Gaps Concluding Remarks and Ongoing Work

SDP Example from Ramana, 1995

Primal SDP

$$0 = v_P = \sup_{y} \left\{ y_2 : \begin{pmatrix} y_2 & 0 & 0 \\ 0 & y_1 & y_2 \\ 0 & y_2 & 0 \end{pmatrix} \preceq \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \right\}$$

$$y^* = (y_1^* \quad 0)^T, \quad y_1^* \leq 0, \quad Z^* = c - A^* y^* = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -y_1^* & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

Slater's CQ fails for primal

Dual of SDP Example

Dual Program

$$1 = v_D = \inf_X \{X_{11} : X_{22} = 0, X_{11} + 2X_{23} = 1, X \succeq 0\}$$

$$X^* = \begin{pmatrix} 1 & 0 & X_{13} \\ 0 & 0 & 0 \\ X_{13} & 0 & X_{33} \end{pmatrix}, \quad X_{33} \ge (X_{13}^2)$$

Slater's CQ for (primal) dual & complementarity fails

duality gap
$$V_D - V_P = 1 - 0 = 1$$
,
trace $X^*Z^* = \text{trace} \begin{pmatrix} 1 & 0 & X_{13} \\ 0 & 0 & 0 \\ X_{12} & 0 & X_{22} \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & -y_1^* & 0 \\ 0 & 0 & 0 \end{pmatrix} = 1 > 0$

Minimal Face for Ramana Example

Feasible Set/Minimal Face

$$\mathcal{F}_{P} = \{ y \in \mathbb{R}^{2} : y_{1} \leq 0, \ y_{2} = 0 \}$$

$$f_{P} = \bigcap \{ F \leq K : c - \mathcal{A}^{*}(\mathcal{F}_{P}) \subset F \}$$

$$= \begin{pmatrix} \mathbb{S}_{+}^{2} & 0 \\ 0 & 0 \end{pmatrix}$$

$$\leq \mathbb{S}_{+}^{3}$$

Slater CQ and Minimal Face

If (\mathcal{P}) is feasible, then

$$c - A^*y \not\succ_K 0 \forall y$$
 (Slater's CQ fails for (P)) $\iff f_P \triangleleft K$

Facial Reduction; the Minimal Face

Regularization Using Ramana's Dual for SDP

Regularization of (P)

Borwein-W (1981)

If v_P is finite, then (P) is equivalent to regularized (P)

$$\mathbf{V}_{RP} = \sup_{y} \{ \langle b, y \rangle : \mathcal{A}^* y \leq_{\mathbf{f}_{P}} \mathbf{c} \}.$$
 (RP)

Lagrangian Dual DRP Satisfies Strong Duality:

$$\mathbf{v}_P = \mathbf{v}_{RP} = \mathbf{v}_{DRP} = \inf_{\mathbf{x}} \left\{ \langle c, \mathbf{x} \rangle : A\mathbf{x} = \mathbf{b}, \ \mathbf{x} \succeq_{\mathbf{f}_P^*} \mathbf{0} \right\}$$
 (DRP)

and v_{DRP} is attained

Implementation Problems with Regularization

Difficulties

Borwein and W. also gave an algorithm to compute f_P . But Difficulties:

- The algorithm requires the solution of several (homogeneous) cone programs (constraints are: $Ax = 0, \langle c, x \rangle = 0, 0 \neq x \succ_{\kappa} 0$
- ② If Slater's CQ fails for (\mathcal{D}) , then it also fails for each of these cone programs.

Ramana's Strong Dual for SDP

Concluding Remarks and Ongoing Work

Ramana '95: Extended Lagrange-Slater dual (ELSD) for (P)

Construction of this dual takes advantage of the well understood facial structure of \mathbb{S}^n_+ .

Advantages:

- ELSD is explicit in terms of original data (A, b, c)
- 2 ELSD is poly. size (# vrbles is (kn^2) , $k \le \min\{m, n\}$)

Disdvantages:

- Slater's CQ may fail for ELSD and its Lagrangian dual.
- ELSD can potentially be very large.

A Stable Auxiliary Problem The SDP Case

Our Goals:

Equivalence in the case of SDP

Ramana, Tunçel, and W. '97: Ramana's ELSD is equivalent to (DRP) (dual of regularized primal of Borwein and W.) (Both approaches may require solution of potentially large SDPs that need not satisfy Slater's CQ.)

Goals: Derive an Algorithm that Satisfies

- recognizes if Slater's CQ holds and if (P)-(D) has a zero duality gap
- ② size of any intermediate cone program solved does not exceed that of (P) or (D)
- intermediate cone programs to be solved are well behaved

Our Goals:

Equivalence in the case of SDP

Ramana, Tunçel, and W. '97: Ramana's ELSD is equivalent to (DRP) (dual of regularized primal of Borwein and W.) (Both approaches may require solution of potentially large SDPs that need not satisfy Slater's CQ.)

Goals: Derive an Algorithm that Satisfies

- recognizes if Slater's CQ holds and if (P)–(D) has a zero duality gap
- intermediate cone programs to be solved are well behaved

Theorem of the Alternative for Slater's CQ

THEOREM

Suppose that (\mathcal{P}) is feasible. Then exactly one of the following two systems is consistent:

- (1) Ax = 0, $\langle c, x \rangle = 0$, and $0 \neq x \succeq_{K^*} 0$
- (2) $A^*y \prec_K c$ (Slater's CQ holds for (P))

Difficult?

In theory, we can solve $\min\{0 : x \text{ satisfies (1)}\}\$ to determine if Slater's CQ fails for (\mathcal{P}) .

But this problem need not satisfy the generalized Slater CQ. So how can we solve (1)?

Theorem of the Alternative for Slater's CQ

THEOREM

Suppose that (\mathcal{P}) is feasible. Then exactly one of the following two systems is consistent:

- (1) Ax = 0, $\langle c, x \rangle = 0$, and $0 \neq x \succeq_{K^*} 0$
- (2) $\mathcal{A}^* y \prec_{\mathcal{K}} c$ (Slater's CQ holds for (\mathcal{P}))

Difficult?

In theory, we can solve $\min\{0 : x \text{ satisfies } (1)\}$ to determine if Slater's CQ fails for (\mathcal{P}) .

But this problem need not satisfy the generalized Slater CQ. So how can we solve (1)?

Stable Theorem of the Alternative

Strict Complementarity and Nonzero Duality Gaps

Stable Auxiliary Problem

Let
$$e \in \text{int}(K) \cap \text{int}(K^*)$$
; define $\mathcal{A}_{c}x := \begin{pmatrix} \mathcal{A}x \\ \langle c, x \rangle \end{pmatrix}$

$$\alpha^* := \left\{ \inf_{x,\alpha} \alpha : \mathcal{A}_{c}x = 0, x + \alpha e \succeq_{K^*} 0, \langle e, x \rangle \leq 1 \right\} \tag{A}$$

Properties/Advantages

- size of (A) essentially that of (D)
- A strictly feasible primal-dual point is easily found.
- Apply primal-dual IPM; assume a barrier for K* such that the central path defined by it converges to a point in the relative interior of the optimal face; follow central path closely at end of algorithm.

Slater's Condition and the Auxiliary problem

Solution to (A) yields info on (P)–(D)

Theorem: The x component of the central path for (A) converges to a point in $ri(face(G_P))$, where

$$G_P := \{x : Ax = 0, \langle c, x \rangle = 0, x \succeq_{K^*} 0\}.$$

Moreover, since $f_P \subset \{x^*\}^{\perp} \cap K = [face(G_P)]^c \subseteq K$, one of the following holds:

- $\alpha^* = 0$ and $x^* = 0$, so Slater's CQ holds for (\mathcal{P}) , or
- $\alpha^* = 0$ and $0 \neq x^* \succeq_{K^*} 0$, so $f_P \subset \{x^*\}^{\perp} \cap K \triangleleft K$, or
- 3 $\alpha^* < 0$ and $x^* \succ_{K^*} 0$, so the generalized Slater CQ holds for (\mathcal{D}) .

Our Algorithm

Input: A, b, c, K, and $\varepsilon > 0$

Strict Complementarity and Nonzero Duality Gaps
Concluding Remarks and Ongoing Work

Compute an optimal α^* and $x^* \in ri(face(G_P))$ from (A) using a primal-dual IPM.

While $||x^*|| > \varepsilon$

If $\alpha^* < 0$, then $x^* \succ_{K^*} 0$, $f_P = \{0\}$. Hence optimal y for (\mathcal{P}) satisfies $A^*y = c$; exit algorithm.

Else

- **1** $y \in \mathcal{F}_P$ implies $c \mathcal{A}^* y \in [\text{face}(G_P)]^c \triangleleft K$, get reduced primal with cone $K' = [\text{face}(G_P)]^c$.
- 2 Replace (update) primal by reduced primal.

End

Notation and Preliminaries
Regularization for Cone Programs
Towards a Better regularization
Numerical Tests
Strict Complementarity and Nonzero Duality Gaps

Concluding Remarks and Ongoing Work

A Stable Auxiliary Problem
The SDP Case

Conclusion of Algorithm

Finish

Finally, solve reduced primal problem for which Slater's CQ holds.

(This provides a certificate of optimality.)

 \to For cones such as \mathbb{S}^n_+ , auxiliary problems get progressively smaller.

Regularization for SDP

The (Conjugate) Faces, $\mathcal{F} \subseteq \mathbb{S}^n_+$ are of the Form

$$\mathcal{F} = (P \ Q) \begin{pmatrix} \mathbb{S}_{+}^{r} & 0 \\ 0 & 0 \end{pmatrix} (P \ Q)^{T} = P \mathbb{S}_{+}^{r} P^{T}$$

$$\mathcal{F}^{c} = (P \ Q) \begin{pmatrix} 0 & 0 \\ 0 & \mathbb{S}_{+}^{n-r} \end{pmatrix} (P \ Q)^{T} = Q \mathbb{S}_{+}^{n-r} Q^{T}$$

where matrix $(P \ Q)$ is orthogonal.

The Minimal Face f_P Using the Auxiliary Problem

With $x^* \in ri(G_P)$ from Auxiliary Problem

$$X^* = \begin{pmatrix} P & Q \end{pmatrix} \begin{pmatrix} D & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} P & Q \end{pmatrix}^T,$$

$$\text{State}(\mathbf{C}_{\mathbf{C}}) = \text{State}(\mathbf{C}_{\mathbf{C}}^*) = \begin{pmatrix} P & Q \\ 0 & 0 \end{pmatrix}$$

$$face(G_P) = face(x^*) = \begin{pmatrix} P & Q \end{pmatrix} \begin{pmatrix} S_+^r & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} P & Q \end{pmatrix}^T$$

Then: $f_P \subseteq K' := [face(G_P)]^c = Q \mathbb{S}_+^{n-r} Q^T$.

WLOG: shift c and find linear transformation \mathcal{L}'

$$c' \leftarrow c - \mathcal{A}^* y' \in K' - K'; \quad \mathcal{R}(\mathcal{A}^* \mathcal{L}') \subset K' - K'$$

A Reduced Lower Dimensional Primal Problem

equivalent cone constraints: $\mathcal{A}^*\mathcal{L}'y' \preceq_{K'} c'$ $Q^T(A^*\mathcal{L}'y')Q \preceq_{\mathbb{S}^{n-r}} Q^Tc'Q$ Notation and Preliminaries
Regularization for Cone Programs
Towards a Better regularization
Numerical Tests
Strict Complementarity and Nonzero Duality Gaps
Concluding Remarks and Ongoing Work

Previous SDP with $K = \mathbb{S}^3_+$ and a Duality Gap of 1

SeDuMi 1.1 Results

$$y^* = \begin{pmatrix} -0.321 \times 10^6 & 0.372 \end{pmatrix}^T$$

$$s^* = \begin{pmatrix} 0.628 \times 10^5 & 0 & 0\\ 0 & -0.321 \times 10^6 & -0.372\\ 0 & -0.372 & 0 \end{pmatrix};$$

desired accuracy (10⁻⁶) achieved but!!

$$\langle c, x^* \rangle - \langle b, y^* \rangle \approx -0.12!$$
 and s^* is not pos. semidef.

After One Step of the Reduction

Our code yields correct primal solution:

$$y^* = \begin{pmatrix} -1.50 \\ 0 \end{pmatrix}, \quad s^* = \begin{pmatrix} 1.00 & 0 & 0 \\ 0 & 1.50 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

21

Higher Dimensional Numerical Experiments

SDP with $m = n \ge 3$, $b = e_2$, c = 0

$$A^*y = \begin{pmatrix} y_1 & y_2 & y_3 & \cdots & y_{n-1} & y_n \\ y_2 & y_3 & & & \ddots \\ \vdots & & & \ddots & & \\ y_{n-1} & & & y_n & & \\ y_n & & & & 0 \end{pmatrix}$$

SeDuMi/Our Algorithm

SeDuMi gives incorrect primal/dual solution; duality gap of -1; our algorithm gives correct solution

$$\mathcal{F}_P = \{ y \in \mathbb{R}^n : y_1 \le 0, \ y_2 = \dots = y_n = 0 \}$$

min. face $f_P = \{ Z \in \mathbb{S}^n_+ : Z_{11} \ge 0, \ Z_{ij} = 0 \ \forall (i,j) \ne (1,1) \}$, and (\mathcal{D}) is infeasible.

(\mathcal{P}) – (\mathcal{D}) in Symmetric Subspace Form

Symmetric Subspace Form

Let: $\bar{s} := c$; $A\bar{x} = b$; $\mathcal{L} = \text{Nullspace}(\mathcal{A})$. Then:

$$v_P = \langle \bar{s}, \bar{x} \rangle - \inf_{s} \{ \langle \bar{x}, s \rangle : s \in (\bar{s} + \mathcal{L}^{\perp}) \cap K \},$$
 (\mathcal{P}')

$$V_D = \inf_{x} \{ \langle \bar{s}, x \rangle : x \in (\bar{x} + \mathcal{L}) \cap K^* \}. \tag{D'}$$

Recession Cone Feasibility Problems for (\mathcal{P}') and (\mathcal{D}') :

 $e \in \text{int}(K) \cap \text{int}(K^*)$; and $(0 \neq x^*, 0 = \alpha^*)$ soln to aux. prob.

$$S := \{ s \in \mathcal{L}^{\perp} \cap K : \langle e, s \rangle = 1 \}, \tag{PRF}$$

$$x^*/\langle e, x^* \rangle \in \mathcal{X} := \{x \in \mathcal{L} \cap K^* : \langle e, x \rangle = 1\}.$$
 (DRF)

Notation and Preliminaries

Strict Complementarity and Nonzero Duality Gaps
Concluding Remarks and Ongoing Work

Complementarity Partition

Symmetric Subspace Form

$$S := \{ s \in \mathcal{L}^{\perp} \cap K : \langle e, s \rangle = 1 \}, \quad \mathcal{L}^{\perp} = \mathcal{R}(\mathcal{A}^*)$$
 (PRF)
$$\mathcal{X} := \{ x \in \mathcal{L} \cap K^* : \langle e, x \rangle = 1 \} \quad \mathcal{L} = \mathcal{N}(\mathcal{A})$$
 (DRF)

Complementarity Partition for given $\mathcal{F} \subseteq K$:

 $(\mathcal{F}, \mathcal{F}^c)$ is a complementarity partition if $face(\mathcal{S}) \subset \mathcal{F}$ and $face(\mathcal{X}) \subset \mathcal{F}^c$; it is a strict complementarity partition if also $[face(\mathcal{S})]^c = face(\mathcal{X})$ (equiv. $[face(\mathcal{S})]^c \cap [face(\mathcal{X})]^c = \{0\}$); it is proper if \mathcal{S} and \mathcal{X} are both nonempty.

Strict Complementarity and Nonzero Gaps

Theorem: Let K be a proper cone

(1) If (PRF)–(DRF) has a proper complementarity partition but not a strict complementarity partition, then there exists \bar{s} and \bar{x} such that (\mathcal{P}) – (\mathcal{D}) with data $(\mathcal{L}, K, \bar{s}, \bar{x})$ has a finite nonzero duality gap.

(Partial Converse)

(2) If (a) (\mathcal{P}) – (\mathcal{D}) with data $(\mathcal{L}, K, \bar{s}, \bar{x})$ has a finite nonzero duality gap with both optimal values attained, and (b) all feasible solutions of (\mathcal{P}) and (\mathcal{D}) are optimal, then (PRF)–(DRF) has a proper complementarity partition but not a strict complementarity partition.

Generating SDP Instances with nonzero gaps

$K = \mathbb{S}^n_+$ Instance

Choose positive integers n, p, d with n > p + d. Let $e = I_n \in \text{int}(K) \cap \text{int}(K^*)$.

Choose subspace \mathcal{L} and Orthogonal Matrix Q

$$\mathrm{face}(\mathcal{L}^{\perp} \cap \mathcal{K}) = Q \begin{pmatrix} 0 & & & \\ & 0 & & \\ & & \mathbb{S}^{p}_{\perp} \end{pmatrix} Q^{T}, \\ \mathrm{face}(\mathcal{L} \cap \mathcal{K}^{*}) = Q \begin{pmatrix} \mathbb{S}^{d}_{+} & & \\ & 0 & \\ & & 0 \end{pmatrix} Q^{T}.$$

These faces form a not strict complementarity partition

Choose a nonzero $U \in \mathbb{S}^{n-p-d'}_+$

$$\bar{\mathfrak{s}}:=\bar{\mathfrak{x}}:=Q\begin{pmatrix}0&&&\\&U&&\\&&0\end{pmatrix}Q^T.$$

duality gap is $\langle \bar{s}, \bar{x} \rangle = ||U||_F^2 > 0$.

Conclusion

Summary:

- presented a stable algorithm to solve (feasible) conic problems for which Slater's CQ fails;
- algorithm requires the solution of problems whose size is the same as that of the original dual; In special cases such as SDP and SOCP, these problems become progressively smaller;
- Failure of strict complementarity for the associated recession problems is closely related to the existence of instances having a finite nonzero duality gap; provides a means of generating instances for testing.

Work in Progress

Future:

- We intend to refine our code and test it on larger SDPs having a finite nonzero duality gap.
- Perform backward error analysis to study how rounding errors and errors in computing approximate solutions to the auxiliary problems affects the number of iterations of our algorithm.
- In particular, we want to reduce the problem when Slater's condition almost fails.

Auxiliary Problem for Distance to Infeasibility

Perturbed Auxiliary Problem

let \mathcal{Q} denote the second order cone, SOC; relax the equality constraints $\mathcal{A}_{c}x = 0$ to SOC constraint $\|\mathcal{A}_{c}x\|_{2} \leq \delta$.

$$v_{P}^{aux} := \inf_{x,\delta} \delta$$
s.t. $\begin{pmatrix} \delta \\ A_{c}x \end{pmatrix} \succeq_{\mathcal{Q}} 0$
 $\langle x, e \rangle = 1$
 $x \succeq_{\mathcal{U}^{*}} 0$.

Similar nice properties; and, near failure of Slater's CQ is identified.