Sensor Localization and SDP Background
Distance Geometry
SDP Relaxation and Facial Reduction
Finding Sensor Positions
Gauss-Newton Path-Following Method

Sensor Network Localization, Euclidean Distance Matrix Completions, and Graph Realization

Henry Wolkowicz

with: Yichuan Ding, Nathan Krislock, Veronica Piccialli, Jiawei Qian

Friday, October 19, 2007

1

Sensor Localization and SDP Background
Distance Geometry
SDP Relaxation and Facial Reduction
Finding Sensor Positions
Gauss-Newton Path-Following Method

Outline

- Sensor Localization and SDP Background
 - Sensor Localization Problem Statement
 - SDP Relaxations
- Distance Geometry
- SDP Relaxation and Facial Reduction
 - Projection onto Minimal Face
 - Exploit EDM Model
- Finding Sensor Positions
- Gauss-Newton Path-Following Method

Ad hoc wireless sensor network

Large Number of Sensor Nodes

they gather data and communicate among themselves

Anchors

 a few anchors have fixed, known locations (e.g. with GPS/bulky)

Radio Range

sensors/anchors within given (radio) range have known (approx./noise level) distance measurements

Ad hoc wireless sensor network

Large Number of Sensor Nodes

they gather data and communicate among themselves

Anchors

 a few anchors have fixed, known locations (e.g. with GPS/bulky)

Radio Range

 sensors/anchors within given (radio) range have known (approx./noise level) distance measurements

Problem Statement

 Determine (approximate) sensor positions using Semidefinite Relaxations/Robust Algorithm

Underlying Graph Realization/Partial EDM

Graph $\mathcal{G} = (\mathcal{V}, \mathcal{E}, \omega)$

- node set $V = \{1, ..., m + n\}$
- edge set $(i,j) \in \mathcal{E}$; $\omega_{ij} = \|p^i p^j\|^2$ known approximately
- The anchors form a clique (complete subgraph)
- Realization of \mathcal{G} in \mathbb{R}^r : a mapping of node $v^i \to p^i \in \mathbb{R}^r$ with squared distances given by ω .

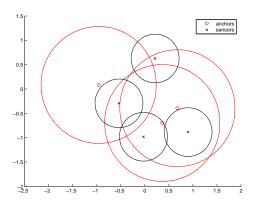
Corresponding Partial Euclidean Distance Matrix, EDM

$$E_{ij} = \left\{ egin{array}{ll} d_{ij}^2 & ext{if } (i,j) \in \mathcal{E} \\ 0 & ext{otherwise}, \end{array}
ight.$$

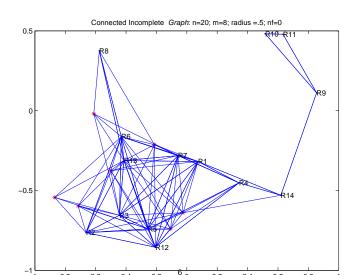
 $d_{ij}^2 = \omega_{ij}$ are known (approx) squared Euclidean distances between sensors p^i, p^j ; anchors correspond to a clique

Gauss-Newton Path-Following Method

Connected Incomplete Graph/Figure



Problem Instance with Radio Range



Applications

Applications for Sensors

- health, military, home
- natural habitat monitoring, earthquake detection, weather/current monitoring
- random deployment in inaccessible terrains or disaster relief operations

- bicycles, car/computer parts, guns (to prevent theft)
- students/teenagers (prevent class absence)

Applications

Applications for Sensors

- health, military, home
- natural habitat monitoring, earthquake detection, weather/current monitoring
- random deployment in inaccessible terrains or disaster relief operations

Future Applications?

- bicycles, car/computer parts, guns (to prevent theft)
- students/teenagers (prevent class absence)

Gauss-Newton Path-Following Method

SNL with Anchors

SNL Model Formulation

- $p^1, \ldots, p^n \in \Re^r$ unknown (sensor) points
- $a^1 = p^{n+1}, \dots, a^m = p^{n+m} \in \Re^r$ known (anchor) points
- r embedding dimension (usually 2 or 3)

•
$$A^T := [a^1, a^2, \dots, a^m]$$
 $X^T := [p^1, p^2, \dots, p^n]$

$$\begin{array}{ll} P^T & := & \left(p^1, p^2, \dots, p^n, a^1, a^2, \dots, a^m\right) \\ & = & \left(p^1, p^2, \dots, p^n, p^{n+1}, p^{n+2}, \dots, p^{n+m}\right) \end{array}$$

Sensor/Anchor Points

$$P = \begin{pmatrix} X \\ A \end{pmatrix}$$

Gauss-Newton Path-Following Method

NLLS

Hard Weighted Nonlinear Least Squares

with W weight matrix:

min
$$f_1(P) := \frac{1}{2} \sum_{i,j} W_{ij} (\|p^i - p^j\|^2 - E_{ij})^2$$

s.t. $\|p^i - p^j\|^2 \le U_{ij} \ \forall (i,j)$
 $\|p^i - p^j\|^2 \ge L_{ij} \ \forall (i,j)$

underdetermined, ill-conditioned

Change EDM to SDP

Linear Mapping \mathcal{K} : SDP onto EDM

• with
$$P = \begin{pmatrix} X \\ A \end{pmatrix}$$
:

$$\begin{aligned} E_{ij} &= & \| p^i - p^j \|^2 \\ &= & (p^i)^T p^i + (p^j)^T p^j - 2(p^i)^T p^j \\ &= & \left(\operatorname{diag} \left(PP^T \right) e^T + e \operatorname{diag} \left(PP^T \right) - 2PP^T \right)_{ij} \end{aligned}$$

•

$$E = \operatorname{diag}(B) e^{T} + \operatorname{e}\operatorname{diag}(B) - 2B =: \mathcal{K}(B)$$

Euclidean Distance Matrix, EDMC, Formulation

$$\overline{\dot{\mathsf{Y}}} = PP^T$$

•

$$E_{ij} = \mathcal{K}(\bar{Y})_{ij} = \|p^i - p^j\|^2 \qquad \text{EDM}$$

$$f_1(P) = \frac{1}{2} \sum_{i,j} W_{ij} (\|p^i - p^j\|^2 - E_{ij})^2 \text{ quartic}$$

$$= \|W \circ (\mathcal{K}(\bar{Y}) - E)\|_F^2 \text{ quadratic}$$

• quartic objective is changed to a quadratic using additional hard quadratic constraint, $\bar{Y} = PP^T$

Euclidean Distance Matrix, EDMC, Formulation

EDMC

• Using:
$$\overline{\mathbf{Y}} := PP^T = \begin{pmatrix} XX^T & XA^T \\ AX^T & AA^T \end{pmatrix}$$

EDMC is:

min
$$f_2(\bar{Y}) := \frac{1}{2} \| W \circ (\mathcal{K}(\bar{Y}) - E) \|_F^2$$
 subject to $g_u(\bar{Y}) := H_u \circ (\mathcal{K}(\bar{Y}) - U) \leq 0$ $g_l(\bar{Y}) := H_l \circ (\mathcal{K}(\bar{Y}) - L) \geq 0$ $\bar{Y} - \begin{pmatrix} Y & XA^T \\ AX^T & AA^T \end{pmatrix} = 0$

Operator K

C: Centered to Hollow Subspaces

•

$$\mathcal{S}_{C} := \{B \in \mathcal{S}^{n} : Be = 0\}, \text{ centered}$$

 $\mathcal{S}_{H} := \{D \in \mathcal{S}^{n} : \operatorname{diag}(D) = 0\}, \text{ hollow}$

• $J = I - \frac{1}{n}$ ONES; offDiag := zero-out diagonal

$$\mathcal{K}(B) := \operatorname{diag}(B) e^{T} + e \operatorname{diag}(B)^{T} - 2B$$

$$:= \mathcal{D}_{e}(B) - 2(B);$$

$$\mathcal{K}^{\dagger}(D) = -\frac{1}{2}J \left[\operatorname{offDiag}(D) \right] J \quad \text{M.P. Gen. Inv.}$$

$$\mathcal{K}^{*}(D) = \mathcal{D}_{e}^{*}(D) - 2D = 2\operatorname{Diag}(De) - 2D$$

Properties of K

\mathcal{K} , \mathcal{K}^{\dagger}

- linear operators \mathcal{K} , \mathcal{K}^{\dagger} are one-one and onto mappings between EDM cone in S_H and the face of the semidefinite cone $\mathcal{F}_{\mathcal{E}_n} := \mathrm{SDP} \cap \mathcal{S}_{\mathbf{C}}$ (centered SDP) $\mathcal{K}^{\dagger}(\mathrm{EDM}) = \mathcal{F}_{\mathcal{E}_n}, \qquad \mathcal{K}(\mathcal{F}_{\mathcal{E}_n}) = \mathrm{EDM}$.
- F_{εn} has empty interior a problem for interior-point methods!

Schoenberg Theorem

- An $n \times n$ symmetric D with diag(D) = 0 is EDM iff $Y := -\frac{1}{2}JDJ \succeq 0$, where $J = I ee^T/n$, $e = (1, ..., 1)^T$, and embedding dim of $D = \operatorname{rank} Y$.
- i.e. if and only if $Y = \mathcal{K}^{\dagger}(D) \succeq 0$
- The points p^1, \dots, p^n that generate D are given by the rows of P where $Y = PP^T$.

Matrix Reformulation/Cone Optimization

Matrices with Sensors/Anchors

$$P = \begin{pmatrix} X \\ A \end{pmatrix}, \bar{Y} := PP^T = \begin{pmatrix} XX^T & XA^T \\ AX^T & AA^T \end{pmatrix}$$

SDP Cone Optimization Problem

$$\begin{array}{ll} \min & \frac{1}{2}\|W\circ(\mathcal{K}\left(\bar{Y}\right)-E\right)\|_F^2 \\ \text{subject to} & H_u\circ(\mathcal{K}\left(\bar{Y}\right)-U^b\right) & \leq & 0 \\ & H_I\circ(\mathcal{K}\left(\bar{Y}\right)-L^b) & \geq & 0 \\ \text{hard constraint} & \bar{Y}-PP^T = 0 \end{array}$$

$$\bar{Y} \succeq 0$$
, sblk₂ $(\bar{Y}) = AA^T$

NOTE: Discard hard constraint. Relaxation to $\bar{Y} \succeq PP^T$ is redundant/NOT needed

Convexity wrt Löwner partial Order

Generalized Convex Constraint

The constraint $g(P, Y) = PP^T - Y \leq 0$ is \succeq -convex, since each function

$$\phi_{Q}(P, Y) := \operatorname{trace} Qg(P, Y)$$
 is convex $\forall Q \succeq 0$.

SDP Cone is Self-Polar

trace
$$QPP^T$$
 = trace $QPIP^T$
= $\text{vec}(P)^T (I \otimes Q) \text{vec}(P)$

Hessian is $I \otimes Q \succeq 0$; and

$$SDP = SDP^+ := \{ S \in S^n : trace SP \ge 0, \forall P \succeq 0 \}$$

Loss of Strict Feasibility

Slater's CQ fails

$$\bar{Y} = \begin{pmatrix} Y_{11} & Y_{21}^T \\ Y_{21} & AA^T \end{pmatrix} \succeq 0 \ \Rightarrow \ Y_{21}^T = XA^T, \text{ for some } X$$

sblk $_{2}(\bar{Y}) = AA^{T}$ or equiv: $\bar{Y}_{22} = AA^{T}$ implies that \bar{Y} is singular (positive semidefinite)

Take advantage/PROJECT onto Minimal Face

Use:

$$\operatorname{sblk}_{2}(\mathcal{K}(\bar{Y})) = \mathcal{K}(AA^{T})$$
 fixed clique of distances

Minimal Face

Minimal Face of SDP cone

Suppose \mathcal{F} is a face of SDP $^{n+m}$.

 $Z \in \operatorname{relint} \mathcal{F} \text{ iff } t := \operatorname{rank} Z = \leq n + m$; $t \text{ is max rank in } \mathcal{F}$.

Let $Z = UDU^T$, $\mathcal{R}(Z) = \mathcal{R}(U)$ (same range).

Project to Lower Dimension

$$\mathcal{F} = U(SDP^t)U^T$$
, U is $(n+m) \times t$

Here we have

$$0 \leq Z = \bar{Y} = \begin{pmatrix} I_n & 0 \\ 0 & AA^T \end{pmatrix}, \quad \text{rank}(Z) = t \leq n + r.$$

Gauss-Newton Path-Following Method

Project onto Minimal Face

Minimal Face of SDP cone

$$\begin{split} & A = U \Sigma_r V^T \ m \times r \text{, rank } r \text{, compact SVD} \\ & \bar{Y} = \begin{pmatrix} Y_{11} & Y_{21}^T \\ Y_{21} & Y_{22}^T \end{pmatrix} \succeq 0, \ \bar{Y}_{22} = AA^T, \ \bar{Y} \in \mathcal{S}^{n+m} \end{split}$$

<u>IFF</u>

$$\bar{Y} = \begin{pmatrix} I_n & 0 \\ 0 & A \end{pmatrix} Z \begin{pmatrix} I_n & 0 \\ 0 & A \end{pmatrix}^T \succeq 0, Z_{22} = I_r, Z \in \mathcal{S}^{n+r}$$

<u>IFF</u>

$$ar{\mathsf{Y}} = egin{pmatrix} I & 0 \ 0 & U \end{pmatrix} Z egin{pmatrix} I & 0 \ 0 & U \end{pmatrix}^T \succeq 0, Z_{22} = \Sigma_r, Z \in \mathcal{S}^{n+r}$$

Finding Sensor Positions Gauss-Newton Path-Following Method

Summary of Projection

Feasible \bar{Y}

$$\bar{\mathbf{Y}} = \begin{pmatrix} \mathbf{Y}_{11} & \mathbf{X}\mathbf{A}^T \\ \mathbf{A}\mathbf{X}^T & \mathbf{Y}_{22} \end{pmatrix} \succeq \mathbf{0}, \, \bar{\mathbf{Y}}_{22} = \mathbf{A}\mathbf{A}^T$$

Structure of Minimal Face of SDP cone

$$\bar{Y} = \begin{pmatrix} I & 0 \\ 0 & A \end{pmatrix} \begin{pmatrix} Z_{11} & Z_{21}^T \\ Z_{21} & Z_{22} \end{pmatrix} \begin{pmatrix} I & 0 \\ 0 & A \end{pmatrix}^T \succeq 0, Z_{22} = I_r$$

 Z_{21} plays role of X^T .

$$E = \mathcal{K}(\bar{Y})$$

$$E_{22} = \mathcal{K}(AA^T)$$
 (clique)

Equivalent Reduced Problem

With

$$Z := \begin{pmatrix} Z_{11} & Z_{21}^T \\ Z_{21} & Z_{22} \end{pmatrix}, \qquad Z_{22} := I_r$$

$$\mathcal{Y}(Z) := \begin{pmatrix} I_n & 0 \\ 0 & A \end{pmatrix} Z \begin{pmatrix} I_n & 0 \\ 0 & A \end{pmatrix}^T$$

EDMC
$$-\mathbf{R}$$

$$\min_{\substack{\underline{1} \\ \underline{2} \\ \text{min}}} \frac{1}{2} \| \mathbf{W} \circ \mathcal{K} (\mathcal{Y} (Z)) - \bar{E} \|_F^2 \\
\text{s.t.} \quad H_u \circ \mathcal{K} (\mathcal{Y} (Z)) - \bar{U}^b \leq 0 \\
\bar{L}^b - H_l \circ \mathcal{K} (\mathcal{Y} (Z)) \leq 0 \\
Z \succeq 0$$

 ℓ_2 rather than ℓ_1 in the literature, e.g. H. Jin(05), A. So, Y. Ye(05), P. Biswas, T. Liang, K. Toh, T. Wang, Y. Ye(06).

Problem/Questions for Relaxation

Problem/Questions

- ① $\{(\bar{Y}, P) : \bar{Y} = PP^T\} \subset \{(\bar{Y}, P) : \bar{P}P^T \bar{Y} \leq 0\}$ (But, is Lagrangian relaxation stronger?)
- Least squares problem is (usually) underdetermined/ill-conditioned.
- Inearization (using Schur complement) results in constraint *NOT* onto, i.e. two relaxations *NOT* numerically equivalent quadratic constraint $XX^T Y \leq 0$ better!
- Exploit EDM model?

Gauss-Newton Path-Following Method

Clique Reductions

Clique: Sensors with Known Distances

$$S_c:=\{p^{t+1},\ldots,p^n\}$$
 all distances $\|p^i-p^j\|$ known $\forall t+1\leq i,j\leq n$ (clique)

$$\mathcal{N}(\mathcal{K}) = \mathcal{R}(\mathcal{D}_{e}), \qquad \qquad \mathcal{D}_{e}(y) = ye^{T} + ey^{T}$$

$$E = \begin{pmatrix} E_1 & \cdot & \cdot \\ \cdot & \underline{E_2} & \cdot \\ \cdot & \cdot & \underline{E_3} \end{pmatrix} \quad \begin{pmatrix} \cdot \\ \underline{\text{clique for sensors}} \\ \underline{\text{clique for anchors}} \end{pmatrix} \quad EDM$$

$$\begin{split} \bar{Y} &= \begin{pmatrix} Y_{11} & \cdot & \cdot \\ \cdot & Y_{22} \in \mathcal{K}^{\dagger}(E_2) + \mathcal{D}_e(y) & \cdot \\ \cdot & \cdot & Y_{33} \end{pmatrix}, \quad \textbf{\textit{E}} &= \mathcal{K}\left(\bar{Y}\right) \end{split}$$

Exploit Loss of Slater CQ

Solve and Reduce

Let: $B = \mathcal{K}^{\dagger}(E_{22}), B \in \mathcal{S}^{n-t}_{+}, Be = 0$

Then: $\exists y$: $\overline{Y}_{22} = P_2 P_2^T = B + y e^T + e y^T$ is rank $\leq r$

And $\hat{B} := B + ee^T + ee^T$ is rank $r_2 \le r + 1$

If $r_2 < n - t$, then Slater's CQ fails! Reduction.

$$\hat{B} = U_2 D_2 U_2^T \in \operatorname{relint} \mathcal{F}_2, \, \mathcal{R}(\hat{B}) = \mathcal{R}(U_2)$$

$$ar{\mathsf{Y}} = egin{pmatrix} l_t & 0 & 0 \ 0 & U_2 & 0 \ 0 & 0 & A \end{pmatrix} Z egin{pmatrix} l_t & 0 & 0 \ 0 & U_2 & 0 \ 0 & 0 & A \end{pmatrix}^\mathsf{T}, \quad Z \in \mathcal{S}^{(t+r_2)+r}.$$

Best Feasible Solution, I

Once optimal \bar{Y} found/Simple Approach

can find sensor positions X using relaxation $\bar{Y} \succeq PP^T$.

Equivalently:
$$Y \succeq XX^T$$
 or $\begin{pmatrix} Y & X^T \\ X & I \end{pmatrix} \succeq 0$.

Best Feasible Solution, II

But can also use EDM

factor $\bar{\mathbf{Y}}$ (use Schoenberg Thm); largest r eigenvalues/best rank r approximation $\mathcal{K}(\bar{\mathbf{Y}}) \approx \mathcal{K}(\bar{\mathbf{Y}}_r) = \mathcal{K}(\sum_{i=1}^r \lambda_i(\bar{\mathbf{Y}}) v_i v_i^T)$

$$QQ^{T} = I, \ V = \left[\sqrt{\lambda_{1}}v_{1}\dots\sqrt{\lambda_{r}}v_{r}\right] = \begin{pmatrix} \bar{X} \\ \bar{A} \end{pmatrix}$$
$$\bar{Y}_{r} = (VQ)(VQ)^{T} \approx \begin{pmatrix} X \\ A \end{pmatrix} \begin{pmatrix} X \\ A \end{pmatrix}^{T}$$

Analytic Solution

$$Q^* := V_Q U_Q^T \in \operatorname{argmin}_{Q^T Q = I} \|\bar{A}Q - A\|_F^2$$
; where $U_Q \Sigma_Q V_Q$ is

SVD of $A^T \bar{A}$

Compare two methods

Method 1

Recover X from optimal \bar{Y} , $X = \bar{Y}_{21}^T A (A^T A)^{-1}$.

Method 2

Use SVD to compute best rank r approximation to optimal \bar{Y} : $\bar{Y}_r = P_r P_r^T$. Then find an orthogonal Q so that $P = P_r Q$ has the anchors in the correct positions.

distances of X estimates from true sensor locations X^*

	test 1	test 2	test 3	test 4	test 5	test 6	test 7	mean
Method 1	1.2780	1.4200	1.4801	1.3696	1.1820	1.4317	1.3912	1.3647
Method 2	0.1887	0.1630	0.1050	0.1394	0.0778	0.0808	0.3881	0.1633

GN Framework

Outline of GN Method

- primal-dual strictly feasible starting point is available
- Use Wolfe Dual and eliminate primal-dual feasibility equations
- exact primal-dual feasibility at each iteration
- NLF (crossover asymptotic quadratic convergence - high accuracy)

Lagrangian of EDMC-R

Form Lagrangian of EDMC-R

$$L(x, y, \Lambda_{u}, \Lambda_{l}, \Lambda) = \frac{1}{2} \| W \circ \mathcal{K} (\mathcal{Y}(x, y) - \bar{E}) \|_{F}^{2} + \langle \Lambda_{u}, H_{u} \circ \mathcal{K} (\mathcal{Y}(x, y)) - \bar{U} \rangle + \langle \Lambda_{l}, \bar{L} - H_{l} \circ \mathcal{K} (\mathcal{Y}(x, y)) \rangle - \langle \Lambda, \text{sBlk}_{1}(l) + \mathcal{Z}_{s}(x, y) \rangle,$$

Here
$$0 \le \Lambda_u, 0 \le \Lambda_l \in \mathcal{S}^{m+n}, \quad 0 \le \Lambda \in \mathcal{S}^{m+n}$$

$$\Lambda = \begin{pmatrix} \Lambda_1 & \Lambda_{21}^T \\ \Lambda_{21} & \Lambda_2 \end{pmatrix}, \qquad \langle A, B \rangle = \operatorname{trace} A^T B.$$

Primal-Dual Optimality Conditions

Theorem

The primal-dual variables $x, y, \Lambda, \lambda_u, \lambda_l$ are optimal for EDMC-R if and only if the following holds: Primal Feasibility; Dual Feasibility; Complementary Slackness

Primal Feasibility

The slack variables satisfy

$$S_u = \bar{U} - H_u \circ (\mathcal{K}(\mathcal{Y}(x,y))), \ S_u = \operatorname{svec} S_u \geq 0$$

$$S_{l} = H_{l} \circ (\mathcal{K}(\mathcal{Y}(x, y))) - \bar{L}, \quad s_{l} = \operatorname{svec} S_{l} \geq 0$$

$$Z_s := sBlk_1(I) + sBlk_2 sMat(y) + sBlk_{21}Mat(x) \succeq 0$$

Primal-Dual Optimality Conditions IIa

$(\mathcal{Z}_{s}^{x})^{*}(\Lambda) = \lambda_{21}$ $= [W \circ (\mathcal{K} \mathcal{Y}^{x})]^{*} (W \circ \mathcal{K} (\mathcal{Y} (x, y)) - \bar{E})$ $+ [H_{u} \circ (\mathcal{K} \mathcal{Y}^{x})]^{*} (\Lambda_{u})$ $- [H_{l} \circ (\mathcal{K} \mathcal{Y}^{x})]^{*} (\Lambda_{l})$ $(\mathcal{Z}_{s}^{y})^{*}(\Lambda) = \lambda_{2}$ $= [W \circ (\mathcal{K} \mathcal{Y}^{y})]^{*} (W \circ \mathcal{K} (\mathcal{Y} (x, y)) - \bar{E})$ $+ [H_{u} \circ (\mathcal{K} \mathcal{Y}^{y})]^{*} (\Lambda_{u})$

 $-\left[H_{l}\circ\left(\mathcal{K}\mathcal{Y}^{y}\right)\right]^{*}\left(\Lambda_{l}\right)$

Primal-Dual Optimality Conditions IIb

Dual Feasibility - Part b

$$\begin{array}{rcl} \Lambda & = & \mathrm{sBlk}_1 \mathrm{sMat}\left(\lambda_1\right) + \mathrm{sBlk}_2 \mathrm{sMat}\left(\lambda_2\right) \\ & + \mathrm{sBlk}_{21} \mathrm{Mat}\left(\lambda_{21}\right) \succeq 0; \end{array}$$

$$\lambda_u \geq 0; \lambda_l \geq 0$$

$$\Lambda = \Lambda(\lambda_1, \mathbf{x}, \mathbf{y}, \lambda_u, \lambda_l)$$

Primal-Dual Optimality Conditions III

Complementary Slackness

$$\lambda_u \circ s_u = 0$$

 $\lambda_l \circ s_l = 0$
 $\Lambda Z_s = 0$ (equivalently trace $\Lambda Z_s = 0$)

Perturbed Complementary Slackness

After Substitutions: Overdetermined Bilinear Optimality System

$$F_{\mu}(x, y, \lambda_u, \lambda_l, \lambda_1) := egin{pmatrix} \lambda_u \circ s_u - \mu_u e \ \lambda_l \circ s_l - \mu_l e \ \Lambda Z_s - \mu_c I \end{pmatrix} = 0,$$

an overdetermined bilinear system with $(m_u + n_u) + (m_l + n_l) + (n + r)^2$ equations $nr + t(n) + (m_u + n_u) + (m_l + n_l) + t(r)$ variables.

Here

$$s_u = s_u(x, y), \ s_l = s_l(x, y), \ \Lambda = \Lambda(\lambda_1, x, y, \lambda_u, \lambda_l), \ Z_s = \mathcal{Z}_s(x, y)$$

Least Squares Problem for Search Direction

Gauss-Newton Search Direction

$$\Delta s := \left(egin{array}{c} \Delta x \ \Delta y \ \Delta \lambda_u \ \Delta \lambda_l \ \Delta \lambda_1 \end{array}
ight)$$

overdetermined linearized system

$$F'_{\mu}(\Delta s) \cong F'_{\mu}(x, y, \lambda_u, \lambda_l, \lambda_1)(\Delta s) = -F_{\mu}(x, y, \lambda_u, \lambda_l, \lambda_1)$$

Blocks of Equations

1.
$$\lambda_u \circ \operatorname{svec} \mathcal{K}_{H_u}(\Delta x, \Delta y) + s_u \circ \Delta \lambda_u = \mu_u e - \lambda_u \circ s_u$$

2.
$$\lambda_I \circ \operatorname{svec} \mathcal{K}_{H_I}(\Delta x, \Delta y) + s_I \circ \Delta \lambda_I = \mu_I e - \lambda_I \circ s_I$$

3.
$$\Lambda Z_{s}(\Delta x, \Delta y) + [sBlk_{1} (sMat (\Delta \lambda_{1})) \\
+sBlk_{2} (sMat \{(\mathcal{K}_{W}^{y})^{*} \mathcal{K}_{W}(\Delta x, \Delta y) \\
+(\mathcal{K}_{H_{u}}^{y})^{*} (sMat (\Delta \lambda_{u})) - (\mathcal{K}_{H_{l}}^{y})^{*} (sMat (\Delta \lambda_{l})) \}) \\
+sBlk_{21} (Mat \{(\mathcal{K}_{W}^{x})^{*} \mathcal{K}_{W}(\Delta x, \Delta y) \\
+(\mathcal{K}_{H_{u}}^{x})^{*} (sMat (\Delta \lambda_{u})) - (\mathcal{K}_{H_{l}}^{x})^{*} (sMat (\Delta \lambda_{l})) \})] Z_{s}$$

$$= \mu_{c} I - \Lambda Z_{s}$$

Sensor Localization and SDP Background
Distance Geometry
SDP Relaxation and Facial Reduction
Finding Sensor Positions
Gauss-Newton Path-Following Method

Strictly Feasible Starting Point

Initial Str. Feas. Start Heuristic

If the graph is connected, we can use the stationarity equations and get a strictly feasible primal-dual starting point and maintain exact numerical primal-dual feasibility throughout the iterations.

Explicit Preconditioning

Diagonal Preconditioning

Given $A \in \mathcal{M}^{m \times n}$, $m \ge n$ full rank matrix; use condition number for $K \succ 0$:

$$\omega(K) = \frac{\operatorname{trace}(K)/n}{\det(K)^{1/n}}$$

Optimal Diagonal Scaling

$$D^* := \operatorname{Diag}(1/\|A_{:,i}\|) \in \operatorname{argmin}_{D \succ 0} \omega\left((AD)^T(AD)\right)$$

(cite Dennis-W.)

 $\|A_{:,i}\|$, the norms of the columns of $F'_{\mu}(\cdot)$ can be found explicitly/efficiently.

Numerics: Increasing Noise Factor

density W = .75; density L = .8; n = 15, m = 5, r = 2

nf	optvalue	relaxation	cond.number F'_{μ}	$sv(Z_s)$	$sv(F'_{\mu})$
0.0000e+000	3.9909e-009	1.1248e-005	3.8547e+006	15	19
5.0000e-002	7.5156e-004	4.4637e-002	1.0244e+011	6	27
1.0000e-001	3.7103e-003	1.1286e-001	1.9989e+010	5	25
1.5000e-001	6.2623e-003	1.3125e-001	1.0065e+010	6	14
2.0000e-001	1.3735e-002	1.3073e-001	6.8833e+009	7	12
2.5000e-001	2.3426e-002	2.4828e-001	2.4823e+010	8	6
3.0000e-001	6.0509e-002	2.3677e-001	3.4795e+010	7	7
3.5000e-001	5.5367e-002	3.7260e-001	2.3340e+008	6	4
4.0000e-001	7.6703e-002	3.6343e-001	8.9745e+010	8	3
4.5000e-001	1.2493e-001	6.9625e-001	3.2590e+010	6	9
5.0000e-001	1.3913e-001	3.9052e-001	2.2870e+005	8	0
5.5000e-001	8.8552e-002	3.8742e-001	5.8879e+007	8	2
6.0000e-001	4.2425e-001	4.1399e-001	4.9251e+012	8	4
6.5000e-001	2.0414e-001	6.6054e-001	2.4221e+010	7	4
7.0000e-001	1.2028e-001	3.4328e-001	1.9402e+010	7	6
7.5000e-001	2.6590e-001	7.9316e-001	1.3643e+011	7	4
8.0000e-001	4.7155e-001	3.7822e-001	6.6910e+009	8	2
8.5000e-001	1.8951e-001	5.8652e-001	1.4185e+011	6	7
9.0000e-001	2.1741e-001	9.8757e-001	2.9077e+005	8	0
9.5000e-001	4.4698e-001	4.6648e-001	2.7013e+006	9	2

Decreasing density W and L

n = 15, m = 5, r = 2

densityW	optvalue	$\ \mathbf{Y} - \mathbf{X}\mathbf{X}\ / \ \mathbf{X}\mathbf{X}^T\ $	$\ \bar{\mathbf{Y}} - PP^T\ /\ PP^T\ $	$sv(Z_s)$	$sv(F'_{\mu})$
9.9900e-001	9.4954e-009	2.8991e-005	2.3742e-005	15	6
9.5405e-001	5.1134e-009	1.5913e-005	1.3441e-005	15	10
9.0910e-001	5.9131e-009	2.0394e-005	1.8625e-005	15	12
8.6415e-001	3.9076e-009	1.4313e-005	1.0464e-005	15	18
8.1920e-001	4.0578e-009	2.7828e-005	1.7884e-005	15	18
7.7425e-001	6.8738e-009	4.0661e-005	2.7265e-005	15	15
7.2930e-001	3.6859e-009	8.4506e-006	6.1864e-006	15	21
6.8435e-001	4.6248e-009	1.9904e-005	1.3379e-005	15	22
6.3940e-001	4.6809e-009	2.0534e-005	1.5896e-005	15	29
5.9445e-001	9.6305e-009	3.3416e-005	2.6535e-005	15	18
5.4950e-001	8.2301e-010	1.0282e-005	8.8234e-006	15	91
5.0455e-001	6.3663e-009	1.2188e-004	1.0635e-004	13	51
4.5960e-001	6.4292e-010	4.6191e-004	3.7895e-004	12	95
4.1465e-001	3.0968e-009	7.4456e-005	6.1611e-005	14	54
3.6970e-001	9.7092e-010	3.5303e-004	2.8009e-004	14	98
3.2475e-001	5.5651e-011	2.7590e-002	2.2310e-002	7	101
2.7980e-001	1.3733e-015	4.7867e-001	3.6324e-001	5	104
2.3485e-001	9.4798e-012	2.0052e+000	1.1612e+000	6	110
1.8990e-001	2.3922e-010	7.5653e-001	6.2430e-001	4	119
1.4495e-001	3.2174e-029	2.5984e+000	1.7237e+000	0	122

Concluding Remarks

- Sensor localization is a special case of EDM where a clique of distances are known.
- different formulations/models for SDP relaxation influence stability of algorithms.
- It can be disadvantageous to linearize the convex constraint

$$XX^T - Y \leq 0$$
 to the LMI $\begin{pmatrix} I & X^T \\ X & Y \end{pmatrix}$.

• Using Wolfe dual, get a stable GN algorithm; with exact primal-dual feasibility and high accuracy.

Sensor Localization and SDP Background
Distance Geometry
SDP Relaxation and Facial Reduction
Finding Sensor Positions
Gauss-Newton Path-Following Method

Thanks!! Enjoy the Weekend

Thanks for your attention!

Sensor Network Localization, Euclidean Distance Matrix Completions, and Graph Realization

Henry Wolkowicz

with: Yichuan Ding, Nathan Krislock, Veronica Piccialli, Jiawei Qian