Introduction

Motivation: Why do we compute key rate for QKD ?

Quantum Key Distribution (QKD)

A secure, quantum-resistant communication mechanism used for sharing secrets over a public
channel between two parties

Example

= 10 (qu)bits used in QKD
5 (qu)bits are used to form the secret — key rate 1% — %
Under the presence of Eve who disrupts the communication — key rate goes down to 1—10

Question
Q. How many (qu)bits need to be used get n bits of secret key under Eve’s attack?

A. Model using a convex optimization problem [Ref 2]

Optimization Problem: Objective & Constraint
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Reformulation

Facial Reduction Towards Slater: Constraint {p ¢ H" : ['(p) =~}

(QKD)  p" = mgn{f(p) . D(p) =7, p= 0}

1. Objective Function : composite of quantum relative entropy function and two linear maps
After simplification,

f(p) = trace(A(p)log Alp) — Blp)log B(p)),

where  A(p) = > AjpA;*, and  Blp) =) BjpB;.
2. Constraint: spectrahedron
{pe Y : T(p) =7},

where (I'(p)); = trace(I';p) =, Vi =1,...,m, withT; € H" and ; € R.

Difficulties with the Model: Failure of Regularity

Every face F of H'! is exposed, i.e., 32 € H'!, V € C"*",r < n, such that
1
F=H'nZ"=VH,V*

Geometric view: restriction on a slice (V]HIQV*) of H

feasible set F

0
Find a matrix V' with orthonormal columns, feasible point p = VRV* € VH' V¥,

v; = trace(T';p) =trace(I;V RV™) =trace(V*T;,V R)

Important: there exists a positive definite R satisfying the equality system — Slater condition holds!

Facial Reduction Towards Differentiability: Objective f(p)

1. Constraint: {p € H"! : T'(p) =~}

There is no positive definite p — Slater condition fails

= Strong duality may not hold
= Small noise could yield large error

Remedy — facial reduction

2. Objective: trace(A(p)log A(p) — B(p)log B(p))
There are no positive definite A(p), B(p) — (Cannot differentiate f(p)
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Remedy — facial reduction i i
Our Approach

First term trace(A(p) log A(p))

By facial reduction, Ap) = VaARAVy, Ry >~ 0
trace A(p) log A(p) = trace (VARAVZ) log (VARAVX) = trace R 4log R 4

Interpretation: Rotation

v v lo|] R |91 Y v il = | R
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Rotation Rotation

Second term trace(B(p)log B(p))
Similarly via facial reduction, B(p) = VpRpVp, Rp = 0 = trace Rglog Rp

Reduced Objective

f(p) = trace(A(p)log Alp) — B(p)log B(p))
l VaRAV) = Alp) = Ra=V, A(p)Va = Alp)
VRV = B(p) = Rp = VpB(p)Vp =: B(p)

fp) = trace(Alp)log A(p)) — trace(B(p) log B(p))

Facially Reduced Model: Reduction = Redefining Problem Data!

1. Strong Reformulation: Two types of facial reduction

= Facial reduction on the constraint set
= Facial reduction on the objective (new!)

2. Good Choice of Algorithm: Solve the reformulated model using a stable interior point method

(QKD) p* = mpiﬂ{f(P) - T(p) =, p= 0}
1 substitute p <= VpRpVy', Alp) <= VaRAV, Blp) <= VpRpVp
(QKD) p"=min{f(Ky) = T(Ry) =, Ity = 0}
P

| replace p < Ry, f(p) < f(p)
(QKD)  p" = m[}n{f (p) = D(p) =1, p= 0}
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Algorithm

Algorithm: Gauss-Newton Method

Optimality Conditions

dual feasibility ; F/‘f = V,f(p)+T(y) —Z =0
primal feasibility  F) =T(p)—v=0
perturbed complementarity : £, = Zp —pl =0, Z,p >~ 0.

Using the optimality conditions, form
2 d 2 2 2
1Eu(p,y, 2)N1° = 1FL (0,9, Z)| 5 + 1EL(0)]I5 + 1 (o, 2) | 5
Solve the nonlinear least squares problem

1 2
min  —||Fyulp,y, 2
o 20y 2H w0y, Z)|]

f we find (p,y, Z) satisfying ||Fo(p,y, Z)||? =0 = Optimality
Note: nonlinear overdetermined least squares problem!

Gauss-Newton direction, dgy = least squares solution of the linearization

V2 f(p)Ap+T*(Ay) — AZT Fj
F/;dGN ~ —F, e, N(Av) — Ap = — Fﬁ
I ZAp+AZp ] £

We use projected Gauss-Newton direction for computational efficiency (e.g., AZ is eliminated)

Bounding: Our Approach

The main goal of (QKD): Obtain a provable, tight lower bound to the optimal value p*

The dual problem

d* = max min L(p,y) — (Z, p).
e i, (psy) = {Z, p)

We can always find a dual feasible point that minimizes the dual functional
Z=Vf(p)+T*H) = 0.

Lower Bound via Lagarangian dual

p* = d* (strong duality)
ming L(p,y) —(Z,p) (Z=V[f(p)+T*(
f(p)+(9,1(p) =) — (p, Z) (p=argmin, L(p, 7)
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Upper Bound via Projection

) (1, ] ]
pzargmlﬂp{§\\p—p\l2 r F(ﬂ)=v}, p=0 = p" < flp)
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