Robust Interior Point Method for Quantum Key Distribution Rate Computation

Hao Hu ${ }^{1}$ Haesol Im ${ }^{2}$ Jie Lin ${ }^{2}$ Norbert Lütkenhaus ${ }^{2}$ Henry Wolkowicz ${ }^{2}$

$$
{ }^{1} \text { Clemson University }{ }^{2} \text { University of Waterloo }
$$

Introduction

Motivation: Why do we compute key rate for QKD?

Quantum Key Distribution (QKD)

A secure, quantum-resistant communication mechanism used for sharing secrets over a public
Example
10 (qu)bits used in QKD
5 (qub)its are used to form the secret \rightarrow key rate $\frac{5}{10}=\frac{1}{2}$
Under the presence of Eve who disrupts the communication \rightarrow key rate goes down to $\frac{1}{10}$

Question

Q. How many (qu)bits need to be used get n bits of secret key under Eve's attack?
A. Model using a convex optimization problem [Ref 2]

Optimization Problem: Objective \& Constraint

$$
\text { (QKD) } \quad p^{*}:=\min _{\rho}\{f(\rho): \Gamma(\rho)=\gamma, \rho \succeq 0
$$

```
Objective Function : composite of quantum relative entropy function and two linear maps
After simplifcation
\[
f(\rho)=\operatorname{trace}(\mathcal{A}(\rho) \log \mathcal{A}(\rho)-\mathcal{B}(\rho) \log \mathcal{B}(\rho))
\]
\[
\text { where } \mathcal{A}(\rho)=\sum_{j} A_{j} \rho A_{j}^{*}, \quad \text { and } \mathcal{B}(\rho)=\sum_{j} B_{j} \rho B_{j}^{*} \text {. }
\]
Constraint: spectrahedron
\[
\left\{\rho \in \mathbb{H}_{+}^{n}: \Gamma(\rho)=\gamma\right\}
\]
\[
\text { where }(\Gamma(\rho))_{i}=\operatorname{trace}\left(\Gamma_{i} \rho\right)=\gamma_{i}, \forall i=1, \ldots, m \text {, with } \Gamma_{i} \in \mathbb{H}^{n} \text { and } \gamma_{i} \in \mathbb{R} \text {. }
\]
```

Difficulties with the Model: Failure of Regularity
Constraint: $\left\{\rho \in \mathbb{H}_{+}^{n}: \Gamma(\rho)=\gamma\right\}$
There is no positive definite $\rho \rightarrow$ Slater condition fails

- Strong duality may not hold
- Small noise could yield large erro

Remedy \rightarrow facial reduction
Objective: $\operatorname{trace}(\mathcal{A}(\rho) \log \mathcal{A}(\rho)-\mathcal{B}(\rho) \log \mathcal{B}(\rho))$
There are no positive definite $\mathcal{A}(\rho) \mathcal{B}(\rho) \rightarrow$ C
There are no positive definite $\mathcal{A}(\rho), \mathcal{B}(\rho) \rightarrow$ Cannot differentiate $f(\rho)$
ex) $\rho=\left[\begin{array}{cc}1 / 2 & 0 \\ 0 & 1 / 2\end{array}\right] \succ 0, \quad \mathcal{A}(\rho)=\sum_{j} A_{j} \rho A_{j}{ }^{*}=\left[\begin{array}{ccc}1 / 2 & 0 & 0 \\ 0 & 1 / 2 & 0 \\ 0 & 0 & 0\end{array}\right] \succeq 0$
Remedy \rightarrow facial reduction

Our Approach

[^0]
Reformulation

Facial Reduction Towards Slater: Constraint $\left\{\rho \in \mathbb{H}^{n}: \Gamma(\rho)=\gamma\right\}$
Every face F of \mathbb{H}_{+}^{n} is exposed, i.e., $\exists Z \in \mathbb{H}_{+}^{n}, V \in \mathbb{C}^{n \times r}, r \leq n$, such that

$$
F=\mathbb{H}_{+}^{n} \cap Z^{\perp}=V \mathbb{H}_{+}^{r} V^{*}
$$

Geometric view: restriction on a slice $\left(V \mathbb{H}^{r} V^{*}\right)$ of \mathbb{H}^{n}

Find a matrix V with orthonormal columns, feasible point $\rho=V R V^{*} \in V \mathbb{H}_{+}^{r} V^{*}$ $\gamma_{i}=\operatorname{trace}\left(\Gamma_{i} \rho\right)=\operatorname{trace}\left(\Gamma_{i} V R V^{*}\right)=\operatorname{trace}\left(V^{*} \Gamma_{i} V R\right)$
Important: there exists a positive definite R satisfying the equality system \rightarrow Slater condition holds!
Facial Reduction Towards Differentiability: Objective $f(\rho)$ First term $\operatorname{trace}(\mathcal{A}(\rho) \log \mathcal{A}(\rho))$

$$
\text { By facial reduction, } \quad \mathcal{A}(\rho)=V_{A} R_{A} V_{A}^{*}, R_{A} \succ 0
$$

$\operatorname{trace} \mathcal{A}(\rho) \log \mathcal{A}(\rho)=\operatorname{trace}\left(V_{A} R_{A} V_{A}^{*}\right) \log \left(V_{A} R_{A} V_{A}^{*}\right)=\operatorname{trace} R_{A} \log R_{A}$ Interpretation: Rotation

Second term $\operatorname{trace}(\mathcal{B}(\rho) \log \mathcal{B}(\rho))$
Similarly via facial reduction, $\mathcal{B}(\rho)=V_{B} R_{B} V_{B}^{*}, R_{B} \succ 0 \Longrightarrow \operatorname{trace} R_{B} \log R_{B}$ Reduced Objectiv

$$
\begin{aligned}
f(\rho)= & \operatorname{trace}(\mathcal{A}(\rho) \log \mathcal{A}(\rho)-\mathcal{B}(\rho) \log \mathcal{B}(\rho)) \\
& V_{A} R_{A} V_{A}^{*}=\mathcal{A}(\rho) \Longrightarrow R_{A}=V_{A}^{*} \mathcal{A}(\rho) V_{A}=: \widehat{\mathcal{A}}(\rho) \\
& V_{B} R_{B} V_{B}^{*}=\mathcal{B}(\rho) \Longrightarrow R_{B}=V_{B}^{*} \mathcal{B}(\rho) V_{B}=: \widehat{\mathcal{B}}(\rho) \\
\widehat{f}(\rho)= & \operatorname{trace}(\widehat{\mathcal{A}}(\rho) \log \widehat{\mathcal{A}}(\rho))-\operatorname{trace}(\widehat{\mathcal{B}}(\rho) \log \widehat{\mathcal{B}}(\rho))
\end{aligned}
$$

Facially Reduced Model: Reduction = Redefining Problem Data!

$$
\begin{aligned}
& \text { QKD) } \quad p^{*}:=\min \{f(\rho): \Gamma(\rho)=\gamma, \rho \succeq 0\} \\
& \Downarrow \quad \text { substitute } \rho \leftarrow V_{\rho} R_{\rho} V_{\rho}^{*}, \mathcal{A}(\rho) \leftarrow V_{A} R_{A} V_{A}^{*}, \mathcal{B}(\rho) \leftarrow V_{B} R_{B} V_{B}^{*} \\
& \text { QKD) } \quad p^{*}:=\min _{R_{\rho}}\left\{\hat{f}\left(R_{\rho}\right): \widehat{\Gamma}\left(R_{\rho}\right)=\gamma, R_{\rho} \succeq 0\right\} \\
& \text { Q } \downarrow \text { replace } \rho \leftarrow R_{\rho}, f(\rho) \leftarrow \widehat{f}(\rho) \\
& \text { QKD) } \quad \begin{array}{c}
\text { eplace } \rho \leftarrow R^{*}:=\min \{f(\rho): \Gamma(\rho) \leftarrow f(\rho)=\gamma, \rho \succeq 0\}
\end{array}
\end{aligned}
$$

Algorithm

Optimality Conditions

$$
\begin{array}{ll}
\text { dual feasibility } & : F_{d}^{d}=\nabla_{\rho} f(\rho)+\Gamma^{*}(y)-Z= \\
\text { primal feasibility } & : F_{\mu}=\Gamma(\rho)-\gamma=0 \\
\text { perturbed complementarity } & : F_{u}^{c}=Z \rho-\mu I=0, Z, \rho \succ 0
\end{array}
$$

Using the optimality conditions, form

$$
\left\|F_{\mu}(\rho, y, Z)\right\|^{2}=\left\|F_{\mu}^{d}(\rho, y, Z)\right\|_{F}^{2}+\left\|F_{\mu}^{p}(\rho)\right\|_{2}^{2}+\left\|F_{\mu}^{c}(\rho, Z)\right\|_{F}^{2} .
$$

Solve the nonlinear least squares problem

$$
\min _{\rho, Z \backslash 0, y} \frac{1}{2}\left\|F_{\mu}(\rho, y, Z)\right\|^{2}
$$

If we find (ρ, y, Z) satisfying $\left\|F_{0}(\rho, y, Z)\right\|^{2}=0 \Longrightarrow$ Optimality Note: nonlinear overdetermined least squares problem!
Gauss-Newton direction, $d_{G N}=$ least squares solution of the linearization

$$
F_{\mu}^{\prime} d_{G N} \approx-F_{\mu} \text { i.e., }\left[\begin{array}{c}
\nabla^{2} f(\rho) \Delta \rho+\Gamma^{*}(\Delta y)-\Delta Z \\
\mathcal{N}(\Delta v)-\Delta \rho \\
Z \Delta \rho+\Delta Z \rho
\end{array}\right]=-\left[\begin{array}{c}
F_{\mu}^{d} \\
F_{\mu}^{p} \\
F_{\mu}^{c}
\end{array}\right]
$$

We use projected Gauss-Newton direction for computational efficiency (e.g., ΔZ is eliminated)

Bounding: Our Approach

Thain gol of (QKD): Obtain a provable tight lower bound to the optimal value p^{*} The dual problem

$$
d^{*}=\max _{y, Z \nsucceq 0} \min _{\rho \in \mathbb{H}^{n}} L(\rho, y)-\langle Z, \rho\rangle .
$$

We can always find a dual feasible point that minimizes the dual functiona

Lower Bound via Lagarangian dual

$$
\begin{aligned}
& p^{*}=d^{*} \quad \text { (strong duality) }
\end{aligned}
$$

Uper Bound via Projection

$$
\bar{\rho}=\operatorname{argmin}_{\rho}\left\{\frac{1}{2}\|\rho-\hat{\rho}\|^{2}: \Gamma(\rho)=\gamma\right\}, \quad \bar{\rho} \succeq 0 \Longrightarrow p^{*} \leq f(\bar{\rho}) .
$$

References

[^1]
[^0]: Strong Reformulation: Two types of facial reduction

 - Facial reduction on the constrints set

 Good Choice of Algorithm: Solve the reformulated model using a stable interior point method

[^1]: Ref 1. Hao Hu, Haesol Im, Jie Lin, Nobert Lütkenhaus, and Henry Wolkowicz
 Robust Interior Point Method for Quantum Key Distribution Rate Computation (Quantum 6, Vo 6, 2022)
 Ref 2. Adam Winick, Norbert Lütkenhaus, and Patrick J. Coles
 Reliable numerical key rates for quantum key distribution (Quantum vol 2, p.77, 2018

