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Introduction

Motivation: Why dowe compute key rate for QKD?

Quantum Key Distribution (QKD)

A secure, quantum-resistant communication mechanism used for sharing secrets over a public

channel between two parties

Example

10 (qu)bits used in QKD
5 (qu)bits are used to form the secret→ key rate 5

10 = 1
2

Under the presence of Eve who disrupts the communication→ key rate goes down to 1
10

Question

Q. How many (qu)bits need to be used get n bits of secret key under Eve’s attack?

A. Model using a convex optimization problem [Ref 2]

Optimization Problem: Objective & Constraint

(QKD) p∗ := min
ρ
{f (ρ) : Γ(ρ) = γ, ρ � 0}

1. Objective Function : composite of quantum relative entropy function and two linear maps

After simplification,

f (ρ) = trace(A(ρ) logA(ρ)− B(ρ) logB(ρ)),

where A(ρ) =
∑

j AjρAj
∗, and B(ρ) =

∑
j BjρB∗j .

2. Constraint: spectrahedron
{ρ ∈ Hn

+ : Γ(ρ) = γ},

where (Γ(ρ))i = trace(Γiρ) = γi, ∀i = 1, . . . , m, with Γi ∈ Hn and γi ∈ R.

Difficulties with the Model: Failure of Regularity

1. Constraint: {ρ ∈ Hn
+ : Γ(ρ) = γ}

There is no positive definite ρ→ Slater condition fails
Strong duality may not hold

Small noise could yield large error

Remedy→ facial reduction

2. Objective: trace(A(ρ) logA(ρ)− B(ρ) logB(ρ))
There are no positive definite A(ρ),B(ρ)→ Cannot differentiate f (ρ)

ex) ρ =
[

1/2 0
0 1/2

]
� 0, A(ρ) =

∑
j AjρAj

∗ =

[
1/2 0 0
0 1/2 0
0 0 0

]
� 0

Remedy→ facial reduction

Our Approach

1. Strong Reformulation: Two types of facial reduction
Facial reduction on the constraint set

Facial reduction on the objective (new!)

2. Good Choice of Algorithm: Solve the reformulated model using a stable interior point method

Reformulation

Facial Reduction Towards Slater: Constraint {ρ ∈ Hn
+ : Γ(ρ) = γ}

Every face F of Hn
+ is exposed, i.e., ∃Z ∈ Hn

+, V ∈ Cn×r, r ≤ n, such that

F = Hn
+ ∩ Z⊥ = V Hr

+V ∗

Geometric view: restriction on a slice (V Hr
+V ∗) of Hn

+

Find a matrix V with orthonormal columns, feasible point ρ = V RV ∗ ∈ V Hr
+V ∗,

γi = trace(Γiρ)=trace(ΓiV RV ∗)=trace(V ∗ΓiV R)
Important: there exists a positive definite R satisfying the equality system→ Slater condition holds!

Facial Reduction Towards Differentiability: Objective f (ρ)
First term trace(A(ρ) logA(ρ))

By facial reduction, A(ρ) = VARAV ∗A, RA � 0

traceA(ρ) logA(ρ) = trace
(
VARAV ∗A

)
log

(
VARAV ∗A

)
= trace RA log RA

Interpretation: Rotation

Second term trace(B(ρ) logB(ρ))
Similarly via facial reduction,B(ρ) = VBRBV ∗B, RB � 0 =⇒ trace RB log RB

Reduced Objective

f (ρ) = trace(A(ρ) logA(ρ)− B(ρ) logB(ρ))y VARAV ∗A = A(ρ) =⇒ RA = V ∗AA(ρ)VA =: Â(ρ)
VBRBV ∗B = B(ρ) =⇒ RB = V ∗BB(ρ)VB =: B̂(ρ)

f̂ (ρ) = trace(Â(ρ) log Â(ρ))− trace(B̂(ρ) log B̂(ρ))

Facially Reduced Model: Reduction = Redefining Problem Data!

(QKD) p∗ := min
ρ
{f (ρ) : Γ(ρ) = γ, ρ � 0}

⇓ substitute ρ← VρRρV ∗ρ , A(ρ)← VARAV ∗A, B(ρ)← VBRBV ∗B
(QKD) p∗ := min

Rρ

{f̂ (Rρ) : Γ̂(Rρ) = γ, Rρ � 0}

⇓ replace ρ← Rρ , f (ρ)← f̂ (ρ)
(QKD) p∗ := min

ρ
{f (ρ) : Γ(ρ) = γ, ρ � 0}

Nice model - Featuring differentiability & Slater

Algorithm

Algorithm: Gauss-Newton Method

Optimality Conditions

dual feasibility : F d
µ = ∇ρf (ρ) + Γ∗(y)− Z = 0

primal feasibility : F
p
µ = Γ(ρ)− γ = 0

perturbed complementarity : F c
µ = Zρ− µI = 0, Z, ρ � 0.

Using the optimality conditions, form

‖Fµ(ρ, y, Z)‖2 = ‖F d
µ(ρ, y, Z)‖2F + ‖F p

µ(ρ)‖22 + ‖F c
µ(ρ, Z)‖2F .

Solve the nonlinear least squares problem

min
ρ,Z�0,y

1
2
‖Fµ(ρ, y, Z)‖2

If we find (ρ, y, Z) satisfying ‖F0(ρ, y, Z)‖2 = 0 =⇒ Optimality

Note: nonlinear overdetermined least squares problem!

Gauss-Newton direction, dGN = least squares solution of the linearization

F ′µdGN ≈ −Fµ i.e.,

[
∇2f (ρ)∆ρ + Γ∗(∆y)−∆Z

N (∆v)−∆ρ
Z∆ρ + ∆Zρ

]
= −

F d
µ

F
p
µ

F c
µ

 .

We use projected Gauss-Newton direction for computational efficiency (e.g., ∆Z is eliminated)

Bounding: Our Approach

The main goal of (QKD): Obtain a provable, tight lower bound to the optimal value p∗

The dual problem

d∗ = max
y,Z�0

min
ρ∈Hn

L(ρ, y)− 〈Z, ρ〉.

We can always find a dual feasible point that minimizes the dual functional

Z̄ = ∇f (ρ̂) + Γ∗(ŷ) � 0.

Lower Bound via Lagarangian dual

p∗ = d∗ (strong duality)
≥ minρ L(ρ, y)− 〈Z̄, ρ〉 (Z̄ = ∇f (ρ̂) + Γ∗(ŷ) � 0)
= f (ρ̂) + 〈ŷ, Γ(ρ̂)− γ〉 − 〈ρ̂, Z̄〉 (ρ̂ = argminρ L(ρ, ŷ)− 〈Z̄, ρ〉)

Upper Bound via Projection

ρ̄ = argminρ

{1
2
‖ρ− ρ̂‖2 : Γ(ρ) = γ

}
, ρ̄ � 0 =⇒ p∗ ≤ f (ρ̄).
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