Solving SDP moment problems for polynomial equations *

Greg Reid $^{\dagger} \quad$ Dmitriy Drusvyatskiy $^{\ddagger} \quad$ Fei Wang ${ }^{\S} \quad$ Henry Wolkowicz

July 21, 2014

Proposition 0.1. Let $x=\left(\begin{array}{llll}x_{1} & x_{2} & \ldots & x_{2 n+1}\end{array}\right)^{T} \in \mathbb{R}^{2 n+1}$. Define the index set

$$
\begin{equation*}
\mathcal{E}:=\{i j: i+j=k+1, i>1, j<n+1, k=3,4, \ldots, 2 n-1\} \tag{0.1}
\end{equation*}
$$

and, for all $i j \in \mathcal{E}, k=i+j-1$, let

$$
A_{i j}:=\left\{\begin{array}{cl}
E_{i j}-E_{1 k}, & \text { if } i \neq j, k \leq n+1, \\
E_{i i}-\frac{1}{\sqrt{2}} E_{1 k}, & \text { if } i=j, k \leq n+1, \\
E_{i j}-E_{(k-n)(n+1)}, & \text { if } i \neq j, k>n+1, \\
E_{i i}-\frac{1}{\sqrt{2}} E_{(k-n)(n+1)}, & \text { if } i=j, k>n+1 .
\end{array}\right.
$$

Then $P=\mathcal{H}(x)=\mathcal{M}(x) \in \mathcal{S}^{n+1}$, is a Hankel/moment matrix if, and only if,

$$
\begin{gathered}
P_{11}=x_{1}, P_{12}=x_{2}, P_{n, n+1}=x_{2 n}, P_{n+1, n+1}=x_{2 n+1}, \\
\operatorname{trace} A_{i j} P=0, \forall i j \in E, \\
P \in \mathcal{S}^{n+1} .
\end{gathered}
$$

Let $n=2$, so we have the following 3×3 matrices:

$$
A_{1,2}=A_{2,1}=A_{3,2}=A_{1,3}=\cdots=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

Also,

$$
A_{2,2}=\left(\begin{array}{ccc}
0 & 0 & -\frac{1}{2} \\
0 & 1 & 0 \\
-\frac{1}{2} & 0 & 0
\end{array}\right)
$$

Therefore
I think if

$$
A_{1,2}=A_{2,1}=\left(\begin{array}{ccc}
0 & \frac{1}{2} & 0 \\
-\frac{1}{2} & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

[^0]and
\[

A_{3,2}=A_{2,3}=\left($$
\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & \frac{1}{2} \\
0 & -\frac{1}{2} & 0
\end{array}
$$\right)
\]

5 it will likely generate the correct constraints for the moment matrix.

[^0]: *Department of Combinatorics and Optimization, Waterloo, Ontario N2L 3G1, Canada, Research Report CORR 2010-01.
 ${ }^{\dagger}$ Appl. Math., University of Western Ontario
 ${ }^{\ddagger}$ AFOSR ???
 ${ }^{\text {§ Appl. Math., University of Western Ontario }}$
 ${ }^{\text {T}}$ Research supported by The Natural Sciences and Engineering Research Council of Canada and AFOSR???.

