Solving SDP moment problems for polynomial equations *

2 Greg Reid [†] Dmitriy Drusvyatskiy [‡] Fei Wang [§] Henry Wolkowicz [¶]

July 21, 2014

Proposition 0.1. Let $x = (x_1 \ x_2 \ \dots \ x_{2n+1})^T \in \mathbb{R}^{2n+1}$. Define the index set $\mathcal{E} := \{ij : i+j = k+1, i > 1, j < n+1, k = 3, 4, \dots, 2n-1\}$ (0.1) {?}

and, for all $ij \in \mathcal{E}, k = i + j - 1$, let

$$A_{ij} := \begin{cases} E_{ij} - E_{1k}, & \text{if } i \neq j, k \leq n+1, \\ E_{ii} - \frac{1}{\sqrt{2}} E_{1k}, & \text{if } i = j, k \leq n+1, \\ E_{ij} - E_{(k-n)(n+1)}, & \text{if } i \neq j, k > n+1, \\ E_{ii} - \frac{1}{\sqrt{2}} E_{(k-n)(n+1)}, & \text{if } i = j, k > n+1. \end{cases}$$

Then $P = \mathcal{H}(x) = \mathcal{M}(x) \in \mathcal{S}^{n+1}$, is a Hankel/moment matrix if, and only if,

$$P_{11} = x_1, P_{12} = x_2, P_{n,n+1} = x_{2n}, P_{n+1,n+1} = x_{2n+1},$$

 $\operatorname{trace} A_{ij}P = 0, \forall ij \in E,$
 $P \in \mathcal{S}^{n+1}.$

Let n=2, so we have the following 3×3 matrices:

$$A_{1,2} = A_{2,1} = A_{3,2} = A_{1,3} = \dots = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

Also,

3

$$A_{2,2} = \begin{pmatrix} 0 & 0 & -\frac{1}{2} \\ 0 & 1 & 0 \\ -\frac{1}{2} & 0 & 0 \end{pmatrix}$$

Therefore, trace $A_{ij}P = 0$ does not always generate the correct constraints (except $A_{2,2}$). I think if

$$A_{1,2} = A_{2,1} = \begin{pmatrix} 0 & \frac{1}{2} & 0 \\ -\frac{1}{2} & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

^{*}Department of Combinatorics and Optimization, Waterloo, Ontario N2L 3G1, Canada, Research Report CORR 2010-01.

[†]Appl. Math., University of Western Ontario

[‡]AFOSR ???

[§]Appl. Math., University of Western Ontario

[¶]Research supported by The Natural Sciences and Engineering Research Council of Canada and AFOSR???.

 $\quad \text{and} \quad$

$$A_{3,2} = A_{2,3} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & \frac{1}{2} \\ 0 & -\frac{1}{2} & 0 \end{pmatrix}$$

 $_{\scriptscriptstyle{5}}$ $\,$ it will likely generate the correct constraints for the moment matrix.