NOISY EUCLIDEAN DISTANCE REALIZATION: ROBUST FACIAL REDUCTION AND THE PARETO FRONTIER

D. DRUSVYATSKIY†, N. KRISLOCK‡, Y.-L. VORONIN§, AND H. WOLKOWICZ¶

Abstract. We present two algorithms for large-scale noisy low-rank Euclidean distance matrix completion problems, based on semidefinite optimization. Our first method works by relating cliques in the graph of the known distances to faces of the positive semidefinite cone, yielding a combinatorial procedure that is provably robust and partly parallelizable. Our second algorithm is a first-order method for maximizing the trace—a popular low-rank inducing regularizer—in the formulation of the problem with a constrained misfit. Both of the methods output a point configuration that can serve as a high-quality initialization for local optimization techniques. Numerical experiments on large-scale sensor localization problems illustrate the two approaches.

Key words. Euclidean distance matrices, sensor network localization, convex optimization, facial reduction, Frank–Wolfe algorithm, semidefinite programming

AMS subject classifications. 90C22, 90C25, 52A99

DOI. 10.1137/15M103710X

1. Introduction. A pervasive task in distance geometry is the inverse problem: given only local pairwise Euclidean distances among a set of points, recover their locations in space. More precisely, given a weighted undirected graph \(G = (V, E, d) \), on a vertex set \(V = \{1, \ldots, n\} \) with edge set \(E \) and squared distances \(d \in \mathbb{R}^E \), and an integer \(r \), find (if possible) a set of points \(x_1, \ldots, x_n \) in \(\mathbb{R}^r \) satisfying

\[
\|x_i - x_j\|^2 = d_{ij} \quad \forall \text{ edges } ij \in E,
\]

where \(\| \cdot \| \) denotes the usual Euclidean norm on \(\mathbb{R}^r \). In most applications, the given squared distances \(d_{ij} \) are inexact, and one then seeks points \(x_1, \ldots, x_n \) satisfying the distance constraints only approximately. This problem appears under numerous names in the literature, such as Euclidean distance matrix (EDM) completion and graph realization [3, 14, 37], and is broadly applicable, for example, in wireless networks, statistics, robotics, protein reconstruction, and dimensionality reduction in data analysis; the recent survey [38] has an extensive list of relevant references. Fixing notation, we will refer to this problem as EDM completion throughout.

The EDM completion problem can be modeled as the nonconvex feasibility problem: find a symmetric \(n \times n \) matrix \(X \) satisfying...
where e stands for the vector of all ones. Indeed, if $X = PP^T$ is a maximal rank factorization of a matrix X solving (2), then the rows of P yield a solution to the EDM completion problem. The constraint $Xe = 0$ simply ensures that the rows of P are centered around the origin. Naturally a convex relaxation is obtained by simply ignoring the rank constraint (2b). The resulting problem (2a) is convex (in fact, a semidefinite program (SDP)) and thus is more tractable. For many instances, particularly coming from dense wireless networks, this relaxation is exact, that is, the solution of the convex rank-relaxed problem automatically has the desired rank r. Consequently, SDP techniques have proven to be extremely useful for this problem; notable works include [7, 8, 10, 11, 33, 39, 42, 45, 55]. For large networks, however, the SDPs involved can become intractable for off-the-shelf methods. Moreover, this difficulty is compounded by the inherent ill-conditioning in the SDP relaxation (2a) if the structure is not exploited—a key theme of this paper. For example, one can show that each clique in G on more than $r + 1$ vertices certifies that the SDP is not strictly feasible, provided the true points of the clique were in general position in \mathbb{R}^r.

In this current work, we attempt to close the gap between what can be done with exact data and what can be done in practice with noisy data for large-scale problems. We do this for the EDM completion problem with two approaches: a combinatorial algorithm and an efficient first-order method. The starting point is the observation that the cliques in G play a special role in the completion problem. Indeed, from each sufficiently large clique in the graph G, one can determine a face of the positive semidefinite (PSD) cone containing the entire feasible region of (2a). This observation immediately motivated the algorithm of [33]. This primal procedure proceeds by collecting a large number of cliques in the graph and intersecting the corresponding faces two at a time, each time causing a dimensional decrease in the problem. If the SDP relaxation is exact and the graph is sufficiently dense, the method often terminates with a unique solution without having to invoke an SDP solver. An important caveat of this geometric approach is that near-exactness of the distance measurements is essential for the algorithm to work, both in theory and in practice, for the simple reason that randomly perturbed faces of the PSD cone typically intersect only at the origin. Remarkably, using dual certificates, we are able to design a dual procedure complementary to [33] for the problem (2a) that under reasonable conditions is provably robust to noise in the distance measurements, in the sense that the output error is linearly proportional to the noise level. The method has two expensive parts, finding the dual certificates and finding the facial reduction from the eigendecomposition of the final exposing vector. In contrast to the algorithm [33], finding the dual certificates in the new method is conceptually easy to parallelize. This is discussed briefly in section 3.2.1 on clique and exposing vector selection.

In the late stages of writing the current paper, we became aware of the related work [44]. There the author proposes the locally rigid embedding (LRE) method for the EDM completion problem. The LRE method is in the same spirit as our algorithm but is stated in the language of rigidity theory; see also [2, 13, 24, 36]. As a byproduct, our current work yields an interpretation of the LRE algorithm in terms of SDP facial reduction. Moreover, in contrast to [44], we formally justify the robustness of our proposed method and perform extensive numerical tests, justifying
its guarantees. We also discuss important implementation issues, not covered in [44]. The LRE method requires the local neighborhood around each node to be rigid—any missing distances in each neighborhood are found by solving an SDP. In our proposed method, we find a clique around each node, thus avoiding introducing errors from completing locally missing distances. In addition, we form the final exposing vector as a *simple weighted sum*, in contrast to [44], where all weights are equal, and then it is required to solve a resulting small least squares problem for the final Gram matrix that yields the final positions of nodes. We observe that the appearance of weights can greatly help when the noise is unevenly distributed across the distance measurements.

The clique-based algorithm discussed above is most powerful when the graph G is fairly dense. In contrast, in the second part of the paper, we propose a first-order method for solving the noisy EDM completion problem that is most powerful when the graph G is sparse. We consider the following *max-trace heuristic*—a popular low-rank inducing regularizer [5, 56]—given in the formulation of the problem:

$$\max \; \mathrm{tr} \; X$$

subject to:

$$\sum_{ij \in E} |X_{ii} + X_{jj} - 2X_{ij} - d_{ij}|^2 \leq \sigma,$$

$$Xe = 0,$$

$$X \succeq 0.$$ \hspace{1cm} (3)

Here σ is an a priori chosen tolerance reflecting the total noise level. Notice that this formulation directly contrasts the usual min-trace regularizer in compressed sensing; nonetheless it is very natural. An easy computation shows that in terms of the factorization $X = PP^T$, the equality $\mathrm{tr}(X) = \frac{1}{2n} \sum_{i,j=1}^n \|p_i - p_j\|^2$ holds, where p_i are the rows of P. Thus trace maximization serves to “flatten” the realization of the graph. The fact that trace maximization is empirically superior to trace minimization is well known. In contrast, to the best of our knowledge, no theoretical justification for trace maximization is available, while some robustness of trace minimization has been shown in [29].

We note in passing that we advocate using (3) instead of perhaps the more usual regularized problem

$$\min \sum_{ij \in E} |X_{ii} + X_{jj} - 2X_{ij} - d_{ij}|^2 - \lambda \mathrm{tr} \; X$$

subject to:

$$Xe = 0, \quad X \succeq 0.$$ \hspace{1cm} (3)

The reason is that choosing a reasonable value of the trade-off parameter λ can be difficult, whereas an estimate of σ is typically available from a priori known information on the noise level.

As was observed above, for $\sigma = 0$ the problem formulation (3) notoriously fails strict feasibility. In particular, for small $\sigma \geq 0$ the feasible region is very thin and the solution to the problem is unstable. As a result, iterative methods that maintain feasibility are likely to exhibit difficulties. Keeping this in mind, we propose an *infeasible* first-order method, which is not directly affected by the poor conditioning of the underlying problem.

To this end, consider the following parametric *flipped problem*, obtained by “flipping” the objective and the quadratic constraint in (3):

$$\max \; \mathrm{tr} \; X$$

subject to:

$$\sum_{ij \in E} |X_{ii} + X_{jj} - 2X_{ij} - d_{ij}|^2 \leq \sigma,$$

$$Xe = 0,$$

$$X \succeq 0.$$ \hspace{1cm} (3)
\[v(\tau) := \min \sum_{ij \in E} |X_{ii} + X_{jj} - 2X_{ij} - d_{ij}|^2 \]
\[\text{s.t. } \begin{align*}
\text{tr } X &= \tau, \\
X e &= 0, \\
X &\succeq 0.
\end{align*} \]

Notice that the problem of evaluating \(v(\tau) \) is readily amenable to first-order methods, in direct contrast to (3). Indeed, the feasible region is geometrically simple. In particular, linear optimization over the region only requires computing a maximal eigenvalue. Hence the evaluation of \(v(\tau) \) is well adapted for the Frank–Wolfe method, a projection-free first-order algorithm. Indeed, the gradient of the objective function is structurally very sparse (as sparse as the edge set \(E \)) and therefore optimizing the induced linear functional over the feasible region then becomes a cheap operation. Now, solving (3) amounts to finding the largest value of \(\tau \) satisfying \(v(\tau) \leq \sigma \), a problem that can be solved by an approximate Newton method. A discussion of this general strategy can be found in [4] and originates in [6, 51, 52, 53]. Using this algorithm, we investigate the apparent superiority of the max-trace regularizer over the min-trace regularizer with respect to both low-rank recovery and efficient computation. It is worthwhile to mention that numerous splitting/proximal methods can be applied directly to the formulations (3) or (4); the alternating direction method of multipliers scheme described in the recent manuscript [19] is a good example. The bottleneck of such methods is the projection of the primal iterates onto the PSD cone—an operation that can require full eigenvalue decompositions of dense matrices. In contrast, the algorithm we consider only requires computing a few eigenvalues of sparse matrices.

The outline of the paper is as follows. Section 2 collects some preliminaries on the facial structure of the PSD cone and the SDP relaxation of the EDM completion problem. Section 3 presents the proposed robust facial reduction algorithm and provides some numerical illustrations. Comparisons are made with both the primal procedure in [33] and the more recent edge-based approach in [42]. Our results significantly improve on those in both papers. Section 4 describes the proposed Pareto search technique with Frank–Wolfe iterations and presents numerical experiments on sparse graphs.

2. Preliminaries. In this section, we record some preliminaries and formally state the EDM completion problem.

2.1. Geometry of the positive semidefinite cone. The main tool we use in the current work, even if indirectly, is semidefinite programming. To this end, let \(\mathcal{S}^n \) denote the Euclidean space of \(n \times n \) real symmetric matrices endowed with the trace inner product \(\langle A, B \rangle = \text{tr } AB \) and the Frobenius norm \(\|A\|_F = \sqrt{\text{tr } A^2} \). The convex cone of \(n \times n \) PSD matrices will be denoted by \(\mathcal{S}^n_+ \). This cone defines a partial ordering: for any \(A, B \in \mathcal{S}^n \) the binary relation \(A \succeq B \) means \(A - B \in \mathcal{S}^n_+ \). A convex subset \(\mathcal{F} \) of \(\mathcal{S}^n_+ \) is a face of \(\mathcal{S}^n_+ \) if \(\mathcal{F} \) contains any line segment in \(\mathcal{S}^n_+ \) whose relative interior intersects \(\mathcal{F} \), and a face \(\mathcal{F} \) of \(\mathcal{S}^n_+ \) is proper if it is neither \(\{0\} \) nor all of \(\mathcal{S}^n_+ \). All faces of \(\mathcal{S}^n_+ \) have the (primal) form

\[\mathcal{F} = \left\{ U \begin{bmatrix} A & 0 \\ 0 & 0 \end{bmatrix} U^T : A \in \mathcal{S}_+^k \right\} \]

for some \(n \times n \) orthogonal matrix \(U \) and some integer \(k \in \{0, 1, \ldots, n\} \). Any face \(\mathcal{F} \) of \(\mathcal{S}^n_+ \) can also be written in dual form as \(Y^\perp \cap \mathcal{S}^n_+ \) for some PSD matrix \(Y \in \mathcal{S}^n_+ \).
Indeed, suppose that \mathcal{F} has the representation (5). Then we may equivalently write $\mathcal{F} = Y^\perp \cap S^n_\perp$ with $Y := U [I \circ B] U^T$ for any nonsingular matrix B in S^{n-k}_+. In general, if a face has the form $\mathcal{F} = Y^\perp \cap S^n_\perp$ for some PSD matrix Y, then we say that Y exposes \mathcal{F}. Finally, for any convex subset $\Omega \subset S^n_+ \cap S^n_\perp$, the symbol face($\Omega; S^n_+ \cap S^n_\perp$) will denote the minimal face of S^n_+ containing Ω. The cone face($\Omega; S^n_+ \cap S^n_\perp$) coincides with face($X; S^n_+ \cap S^n_\perp$), where X is any maximal rank matrix in Ω.

2.2. EDM completion problem. Throughout, we fix a positive integer $r \geq 1$ and a weighted undirected graph $G = (V, E, d)$ on a node set $V = \{1, \ldots, n\}$ with an edge set $E \subseteq \{ij : 1 \leq i < j \leq n\}$ and a vector $d \in \mathbb{R}^E$ of positive weights.\footnote{We assume that the weights are sufficiently positive so they can be numerically distinguished from zero.} The vertices represent points in an r-dimensional space \mathbb{R}^r, while the presence of an edge ij joining the vertices i and j signifies that the physical distance between the points i and j is available.

The EDM completion problem is to find a set of points $x_1, \ldots, x_n \in \mathbb{R}^r$ satisfying (1). Such a collection of points x_1, \ldots, x_n is said to realize the graph G in \mathbb{R}^r. Notice that without loss of generality, such points x_1, \ldots, x_n can always be translated so that they are centered around the origin, meaning $\sum_i x_i = 0$. This problem is equivalent to finding a matrix $X \in S^n$ satisfying the nonconvex system (2). Given the realizing points x_i and defining $P = [x_1:\ldots:x_n]^T \in \mathbb{R}^{n \times r}$, the matrix $X := PP^T$, called the Gram matrix, is feasible for (2). For more details, see, e.g., [33].

As mentioned above, the EDM completion problem (2) is nonconvex and is NP-hard in general [43, 57]. A convex relaxation is obtained simply by ignoring the rank constraint in (2) yielding the convex SDP feasibility problem (2a). For many EDM completion problems on fairly dense graphs, this convex relaxation is “exact” [45]. For example, the following is immediate.

Observation 2.1 (exactness of the relaxation). If the EDM completion problem (2) is feasible, then the following are equivalent:

1. No realization of G in \mathbb{R}^l, for $l > r$, spans the ambient space \mathbb{R}^l.
2. Any solution of the relaxation (2a) has rank at most r and consequently any solution of (2a) yields a realization of G in \mathbb{R}^r.

In theory, the exactness of the relaxation is a great virtue. From a computational perspective, however, exactness implies that the SDP formulation (2a) does not admit a positive definite solution, i.e., that strict feasibility fails. Moreover, it is interesting to note that a very minor addition to the assumptions of Observation 2.1 implies that the SDP (2a) admits a unique solution [45]. We provide a quick proof for completeness, though the reader can safely skip it.

Observation 2.2 (uniqueness of the solution). If the EDM completion problem (2) is feasible, then the following are equivalent:

1. The graph G cannot be realized in \mathbb{R}^{r-1}, and moreover for any $l > r$ no realization in \mathbb{R}^l spans the ambient space \mathbb{R}^l.
2. The relaxation (2a) has a unique solution.

Proof. The implication $2 \Rightarrow 1$ is immediate. To see the converse implication $1 \Rightarrow 2$, suppose that the SDP (2a) admits two solutions X and Y. Define \mathcal{F} now to be the minimal face of S^n_+ containing the feasible region. Note that by Observation 2.1, any solution of the SDP has rank at most r, and hence every matrix in \mathcal{F} has rank at most r. Consider now the line $L := \{X + \lambda(Y - X) : \lambda \in \mathbb{R}\}$. Clearly L is contained
in the linear span of F and the line segment $L \cap F$ is contained in the feasible region. Since F is pointed, the intersection $L \cap F$ has at least one endpoint Z, necessarily lying in the relative boundary of F. This matrix Z therefore has rank at most $r - 1$, a contradiction since Z yields a realization of G in \mathbb{R}^{r-1}.

In principle, one may now apply any off-the-shelf SDP solver to solve problem (2a). The effectiveness of such methods, however, depends heavily on the “conditioning” of the SDP system. In particular, if the system admits no feasible positive definite matrix, as is often the case (Observation 2.1), then no standard method can be guaranteed to perform very well nor be robust to perturbations in the distance measurements.

2.3. Constraint mapping and the centering issue. To simplify notation, we will reserve some symbols for the mappings and sets appearing in the formulation (2). To this end, define the mapping $K : S^n \to S^n$ by

$$K(X)_{ij} := X_{ii} + X_{jj} - 2X_{ij}.$$

The adjoint $K^* : S^n \to S^n$ is given by

$$K^*(D) = 2(\text{Diag}(De) - D).$$

The Moore–Penrose pseudoinverse of K is easy to describe: for any matrix $D \in S^n$ having all-zeros on the diagonal, we have

$$K^\dagger(D) = -\frac{1}{2}J \cdot D \cdot J,$$

where $J := I - \frac{1}{n}ee^T$ is the projection onto e^\perp.

These and other related constructions have appeared in a number of publications; see, e.g., [1, 26, 27, 34, 35, 46, 47, 48, 49].

Consider now the sets of centered symmetric, centered PSD, and centered PSD low-rank matrices

$$S^n_c := \{X \in S^n : Xe = 0\},$$
$$S^n_{c,+} := \{X \in S^n_+ : Xe = 0\},$$
$$S^n_{c,+}^{n,r} := \{X \in S^n_{c,+} : \text{rank } X \leq r\}.$$

Define the coordinate projection $\mathcal{P} : S^n \to \mathbb{R}^E$ by setting $\mathcal{P}(X)_{ij} = X_{ij} \forall ij \in E$. In this notation, the feasible set (2) can equivalently be written as

$$\{X \in S^n_{c,+}^{n,r} : \mathcal{P} \circ K(X) = d\},$$

while the relaxation (2a) is then

$$\{X \in S^n_{c,+} : \mathcal{P} \circ K(X) = d\}.$$

It is easy to see that $S^n_{c,+}$ is a face of S^n_+ and is linearly isomorphic to $S^n_{c,+}^{n-1}$. Indeed, the matrix ee^T exposes $S^n_{c,+}$. More specifically, for any $n \times n$ orthogonal matrix $[\frac{1}{\sqrt{n}}e \ 0]$, we have the representation

$$S^n_{c,+} = US^n_{c,+}^{n-1}U.$$

\footnote{This definition of the Moore–Penrose pseudoinverse easily extends to general $D \in S^n$ by first orthogonally projecting D onto the space of symmetric matrices with zero diagonal.}
Consequently, we now make the following important convention: the ambient space of $S_{n,c}^+$ will always be taken as $S_{n,c}^+$. The notion of faces of $S_{n,c}^+$ and the corresponding notion of exposing matrices naturally adapts to this convention by appealing to (6) and the respective standard notions for $S_{n-1,+}$. Namely, we will say that F is a face of $S_{n,c}^+$ if it has the form $F = U \hat{F} U^T$ for some face \hat{F} of $S_{n-1,+}^+$ and that a matrix Y exposes F whenever it has the form $U \hat{Y} U^T$ for some matrix \hat{Y} exposing \hat{F}.

3. Robust facial reduction for EDM completions. In this section, we propose the use of robust facial reduction for solving the least squares formulation of the nonconvex EDM completion problem (2):

\begin{equation}
\begin{aligned}
\text{minimize} & \quad \sum_{ij \in E} |X_{ii} + X_{jj} - 2X_{ij} - d_{ij}|^2 \\
\text{s.t.} & \quad X \in S_{n,r,c}^+.
\end{aligned}
\end{equation}

The main idea is to use the dual certificates arising from cliques in the graph to construct a PSD matrix Y of rank at least $n-r$, and then solve the convex optimization problem:

\begin{equation}
\begin{aligned}
\text{minimize} & \quad \sum_{ij \in E} |X_{ii} + X_{jj} - 2X_{ij} - d_{ij}|^2 \\
\text{s.t.} & \quad X \in S_{n,+}^c \cap Y^+.
\end{aligned}
\end{equation}

Before describing our algorithmic framework for tackling (7), it is instructive to put it into context. The authors of [33] found a way to use the degeneracy of the system (2) explicitly to design a combinatorial algorithm for solving (2), under reasonable conditions. The authors observed that each k-clique in the graph G, with $k > r$, certifies that the entire feasible region of the convex relaxation (2a) lies in a certain proper face F of the PSD cone $S_{n,+}^c$. Therefore, the facial reduction technique of replacing $S_{n,+}^c$ by the smaller set F can be applied on (2a) to obtain an equivalent problem involving fewer variables. On a basic level, their method explores cliques in the graph and intersects pairwise such faces in a computationally efficient way. The algorithm is surprisingly fast and accurate for huge problems where the noise is small.

An important computational caveat of the (primal) facial reduction algorithm of [33] is that the algorithm is highly unstable when the distance measurements are corrupted by significantly large noise—a ubiquitous feature of the EDM completion problem in virtually all applications. The reason is simple: randomly perturbed faces of the semidefinite cone typically intersect only at the origin. Hence small perturbations in the distance measurements will generally lead to poor guesses of the face intersection arising from pairs of cliques. Moreover, even if pairs of cliques can robustly yield some facial information, the error dramatically accumulates as the algorithm iteratively intersects faces. Remarkably, we show that this difficulty can be overcome by using “dual” representations of faces to aggregate the noise. Indeed, the salient feature of the dual representation is that it is much better adapted to handling noise. We see this in the comparison of the primal facial reduction algorithm and the dual exposed vector approach in section 3.3.1. Further details are provided in Appendix C.

Before proceeding with the details of the proposed algorithmic framework, we provide some intuition. To this end, an easy computation shows that if Y_i exposes a face F_i of $S_{n,+}^c$ (for $i = 1, \ldots, m$), then the sum $\sum_i Y_i$ exposes the intersection $\bigcap_i F_i$. Thus the faces F_i intersect trivially if and only if the sum $\sum_i Y_i$ is positive definite. If the true exposing vectors arising from the cliques are corrupted by noise, then one can round off the small eigenvalues of $\sum_i Y_i$ (due to noise) to guess at the true intersection of the faces arising from the noiseless data.
3.1. The algorithmic framework. To formalize the outlined algorithm, we will need the following basic result, which in a primal form was already the basis for the algorithm in [33]. The dual form, however, is essential for our purposes. For easy similar alternative proofs, see [20, Theorem 4.9] and [32, Theorem 4.1]. Henceforth, given a clique $\alpha \subseteq V$ (meaning a subset of vertices such that every two are adjacent), we use $d_{\alpha} \in S_{|\alpha|}$ to denote the symmetric matrix formed from restricting d to the edges between the vertices in α.

Theorem 3.1 (single clique facial reduction [20, Theorem 4.13]). Suppose that the subset of vertices $\alpha := \{1, \ldots, k\} \subset V$ is a clique in G. Define the set

\[\hat{\Omega} := \{ X \in S_{c,+}^n : [K(X)]_{ij} = d_{ij} \quad \forall \quad 1 \leq i < j \leq k \}. \]

Then for any matrix \hat{Y} exposing face($K^\dagger d_{\alpha}; S_{c,+}^k$),

\[
\begin{pmatrix}
\hat{Y} & 0 \\
0 & 0
\end{pmatrix}
\]

exposes face($\hat{\Omega}; S_{c,+}^n$).

In particular, under the assumptions of the theorem, the entire feasible region of (2a) is contained in the face of $S_{c,+}^n$ exposed by $[\hat{Y} \quad 0 \quad 0]^T$. The assumption that the first k vertices formed a clique is of course made without loss of generality. We state our proposed algorithmic framework in Algorithm 1.

Algorithm 1 Basic strategy for EDM completion

INPUT: A weighted graph $G = (V, E, d)$ and a target rank $r \geq 1$;

PREPROCESSING:
1. generate a set of cliques Θ in G using Algorithm 2;
2. generate a set of positive weights $\{\omega_\alpha\}_{\alpha \in \Theta} \subset \mathbb{R}^+$;
3. sort the cliques so the weights are in nondecreasing order;

for each clique α in Θ do

$k \leftarrow |\alpha|$;

$X_\alpha \leftarrow$ a nearest matrix in $S_{c,+}^{k,r}$ to $K^\dagger d_{\alpha}$;

$W_\alpha \leftarrow$ exposing vector of face($X_\alpha, S_{c,+}^k$) extended to $S_{c,+}^n$ by adding zeros;

end for

$W \leftarrow \sum_{\alpha \in \Theta} \omega_\alpha W_\alpha$; (note $W \in S_{c,+}^n, W e = 0$)

Let $U \in \mathbb{R}^{n \times r}$ be a matrix satisfying $U^T e = 0$ and whose columns are eigenvectors of W corresponding to r smallest eigenvalues;

$X \leftarrow UZU^T$, where Z is an optimal solution of

\[
val_{\min} := \min_{Z \in S_{c,+}^r} \|P \circ K(UZU^T) - d\|
\]

return X;

Finding the eigenvectors in U is equivalent to finding a nearest matrix to $S_{c,+}^{k,r}$ or to $S_{c,+}^{n,n-r}$. This is easy as a result of the classical Eckart–Young theorem [21]. It requires finding the $r+1$ smallest eigenvalues of W where we know the smallest is 0 with eigenvector e, the ones vector. Therefore, we can shift the eigenvalue 0 to a sufficiently positive eigenvalue and use eigs in MATLAB to find the eigenvectors U corresponding...
Algorithm 2 Clique generation

INPUT: A graph $G = (V, E)$ and a maximum clique size K;

Initialize set of cliques $\Theta \leftarrow \emptyset$;

for each node $v \in V$ do

 Initialize clique $\alpha \leftarrow \{v\}$;

 while $|\alpha| < K$ and there is a $w \in V$ that is connected to every node in α do

 $\alpha \leftarrow \alpha \cup \{w\}$;

 end while

 $\Theta \leftarrow \Theta \cup \{\alpha\}$;

end for

return Θ;

3.2. Implementing facial reduction for noisy EDM. In the following, we elaborate on some of the main ingredients of Algorithm 1:

- the choice of the clique set Θ and set of weights $\{\omega_\alpha\}_{\alpha \in \Theta}$ (in section 3.2.1);
- the nearest-point mapping to S^k_{c+r} (in Appendix A);
- the solution of the least squares problem (8) (in Appendix B).

To improve the solution quality of Algorithm 1, we perform a postprocessing local refinement step: we use the solution X from Algorithm 1 as an initial point for existing nonlinear optimization methods to find a local solution of (7). While general nonlinear optimization methods often fail to find a global optimal solution, when used as a local refinement procedure they can greatly improve the solution quality of Algorithm 1. This emphasizes that our algorithm provides a good initialization for nonlinear solvers.

3.2.1. Choosing clique sets and exposing vectors. We first discuss the choice of the clique set Θ that we use for finding the exposing vector Y; see Algorithm 2. We want to emphasize that we find only relatively small sized cliques. Finding large cliques is expensive and results in a large eigenvalue problem for the exposing vector. Finding many small cliques is theoretically equivalent as adding exposing vectors generally results in a higher rank exposing vector which is equivalent to a large clique. We have combined our approach with the primal facial reduction algorithm and code in [33]. Each time this code uses a new clique, we add it to the set Θ and find a corresponding exposing vector and a weight. We emphasize that the step of
finding cliques and the corresponding exposing vectors and weights can be parallelized since the work on the cliques is independent even if the cliques intersect.

Now we discuss the set of positive weights \(\{ \omega_\alpha \} \) \(\alpha \in \Theta \). In Algorithm 1, we do not treat each clique in \(\Theta \) equally, given that the noise in the distance measurements does not have to be uniform and it may not be possible to recover all the cliques with the same level of accuracy. We gauge the amount of noise present in the distance measurements of cliques as follows: for each clique \(\alpha \in \Theta \), as before letting \(d_\alpha \) be the restriction of the distance measurements \(d \) to the clique, we estimate the noise present in \(d_\alpha \) by considering the following measure of distance of the matrix \(K^\dagger d_\alpha \) to the set of rank \(r \) PSD matrices:

\[
\nu_\alpha(d) := \sum_{j=1}^{\vert \alpha \vert-r} \frac{\lambda_j(K^\dagger d_\alpha)}{0.5\vert \alpha \vert (\vert \alpha \vert - 1)} + \sum_{j=\vert \alpha \vert-r+1}^{\vert \alpha \vert} (\min\{0, \lambda_j(K^\dagger d_\alpha)\})^2.
\]

Here \(\lambda_j(K^\dagger d_\alpha) \) refers to the \(j \)th smallest eigenvalue of the matrix \(K^\dagger d_\alpha \).

In the case where no noise is present in the distance measurements \(d \), we have \(\nu_\alpha(d) = 0 \) since the matrix \(K^\dagger d_\alpha \in S^{\vert \alpha \vert} \) is of rank at most \(r \). To each clique \(\alpha \), we assign the weight

\[
\omega_\alpha(d) := 1 - \frac{\nu_\alpha(d)}{\sum_{\beta \in \Theta} \nu_\beta(d)}.
\]

This choice of weights reflects the contribution of noise in the clique \(\alpha \) to the total noise of all cliques. If a clique \(\alpha \) is relatively noisy compared to other cliques in \(\Theta \) or contains an outlier, the weight \(\omega_\alpha(d) \) would be significantly smaller than \(\omega_\beta(d) \) for most \(\alpha \neq \beta \in \Theta \). In addition, we add up the weighted exposing vectors in order from the smallest weight to the largest weight for improved numerical accuracy.

3.2.2. Postprocessing: Local refinement.

Following Algorithm 1, we apply a local refinement method to improve the solution quality. By local refinement, we mean the use of a nonlinear optimization algorithm for solving the nonconvex problem (7) (which has a lot of local minima) using the output of Algorithm 1 as the initial point. Local refinement has been commonly used for SDP-based algorithms for sensor network localization (SNL) problems and noisy EDM completion problem; see [7, 10].

For local refinement, we use the steepest descent subroutine from the SNL-SDP package [8]. Suppose that \(X_\approx = P_\approx (P_\approx)^T \) is the solution of (8) found at the end of Algorithm 1. We use \(P_\approx \) as an initial point for the steepest descent method to solve the nonlinear optimization problem

\[
\min_{P \in \mathbb{R}^{n \times r}} \| P \circ K (PP^T) - d \|^2.
\]

From an arbitrary initial point, the steepest descent method usually fails to find a global optimal solution of (10) and instead gets trapped at one of the many critical points, since the problem is highly nonconvex. On the other hand, we observe that Algorithm 1 typically produces excellent initial points for such nonlinear optimization schemes.

3.3. Application on the sensor network localization problem.

In this section, we apply the robust facial reduction in Algorithm 1 to the SNL problem in \(\mathbb{R}^2 \). The task is to locate \(n \) wireless sensors in \(\mathbb{R}^2 \) given the noisy Euclidean distances between sensors that are within a given radio range, \(R \), of each other. Often some
of the sensors are anchors whose positions are known. Semidefinite programming techniques have been used extensively for the SNL problem; see, e.g., [7, 8, 10, 11, 33, 42, 45, 55].

We look at the quality of the approximation of our data d, the resulting approximate EDM, and the error in the found sensor positions P.

3.3.1. Preliminary look at quality of solutions.

Suppose that we are given an anchor-free instance with data $d + \delta d$, where δd is the noise. We consider our algorithm as a **black box** transformation that takes $d + \delta d$ as input and outputs: approximate distance matrix $D_{\approx} \in \mathbb{R}^{n \times n}$, its restriction to the graph $d_{\approx} \in \mathbb{R}^{E}$, and approximate localized sensors $P_{\approx} \in \mathbb{R}^{n \times r}$. We now see empirically that the relative error and condition number estimates for this transformation are, surprisingly, similar for all three outputs and that the exposed vector approach is consistently better.

The condition number estimates show empirically that the instances we solved are well-conditioned and the relative residual error estimates show empirically that our algorithm is backward stable on these instances; see, e.g., [23, section 3.4.10]. Recall that a computation is backward stable if it produces the exact solution to a nearby problem. We provide more details and justification in Appendix B.

1. **Quality of solution in d and D.** The best approximation we find is

 $$d_{\approx} := \mathcal{P} \circ \mathcal{K}(UBU^T) \approx (d + \delta d).$$

 The relative residual error in d for our found approximate distances is given by

 $$[\text{relative error}]_d := \frac{\|d_{\approx} - d\|}{\|d\|}.$$

 The derivative type condition number for d of the problem instance can then be estimated from below by using the ratios of the relative errors

 $$[\text{condition number}]_d \approx \left(\frac{\|d_{\approx} - d\|}{\|d\|} \right) / \left(\frac{\|\delta d\|}{\|d\|} \right) = \frac{\|d_{\approx} - d\|}{\|\delta d\|};$$

 see, e.g., [23, section 3.4.10].

 The (nonlinear) equation we next look at is the solution of the distance matrix D found from the given data d with noise δd. The corresponding relative residual error in D is

 $$D_{\approx} := D + \delta D = \text{Alg}(d + \delta d), \quad [\text{relative error}]_D := \frac{\|\delta D\|}{\|D\|}.$$

 We note that the distances $(D + \delta D)_{ij}, \; ij \notin E$, have no direct constraints on them, just implicit constraints from nearby cliques.

 As discussed above, the condition number of the problem instances for finding D_{\approx} can then be estimated from below by using the ratios of the relative errors

 $$[\text{condition number}]_D \approx \left(\frac{\|\delta D\|}{\|D\|} \right) / \left(\frac{\|\delta d\|}{\|d\|} \right).$$

 Figure 1 presents the relative error and condition number estimates for 40 random anchor-free instances with increasing noise factors; these instances use the primal facial reduction algorithm in [33], the exposed vector algorithm (Algorithm 1), and the amalgam that takes the output of primal facial reduction algorithm X and projects it onto $W^\perp \cap S_{E_{\approx}^+,r}^k$, where W is the aggregate...
exposing vector in Algorithm 1. The consistent improvement for Algorithm 1 is clear. The exposed vector approach advantage is further emphasized by noting the improvement over the amalgam strategy. The condition number estimates obtained from the exposed vector computations are surprisingly low for both finding d and the complete EDM D.

2. Quality of Solution with root-mean-square deviation estimates. Though the objective function involves only an approximation of d, the end objective of the algorithm is a good localization for the matrix of points P. We measure the error using the root-mean-square deviation (RMSD) values. Suppose that the true centered locations of the sensors are stored in the rows of the matrix $P \in \mathbb{R}^{n \times 2}$, and $X \in S_{c+r}^{n,r}$ is the output of Algorithm 1. Then we may factor $X = \tilde{P}\tilde{P}^T$ for some matrix $\tilde{P} \in \mathbb{R}^{n \times 2}$, whose rows store the estimated centered locations. Before comparing \tilde{P} and P, however, we must allow isometries to act on the points. As a result, the RMSD of the estimated \tilde{P} relative to the true centered locations P is defined as

\begin{equation}
\text{RMSD} := \min \left\{ \frac{1}{\sqrt{n}} \| \tilde{P}U - P \|_F : U^TU = I, \ U \in \mathbb{R}^{r \times r} \right\}.
\end{equation}

Computing RMSD is an instance of the orthogonal procrustes problem, which can be solved using [23, Algorithm 6.4.1]. The condition number for the problem of finding X_∞ can then be estimated from below by using the ratios of the relative errors

\[[\text{condition number}]_{\text{RMSD}} \approx (\text{RMSD}) \left/ \left(\| \delta d \| / \| d \| \right) \right. \]

The results for the same 40 instances as above are given in Figure 2.

3Details on how the instances are generated are given in Algorithm 3.
Remark 3.2. Though the exposed vector approach is clearly significantly better than the primal approach in [33], we see above that the latter still has consistently better results than those reported in [33]. This is because the RMSD values found in [33] used only the anchor positions in the Procrustes problem, whereas here we have anchor-free problems and use all the known original sensor positions.

3.3.2. Numerics. We now provide comprehensive numerical tests. We generate random instances of the SNL problem based on a modified *multiplicative noise model* from, e.g., [7, 8, 42]. This multiplicative noise model is the one most commonly considered in SNL e.g., [9, 12, 30, 31, 41, 50, 54]. The perturbations ϵ_{ij} are from the standard normal distribution $\epsilon_{ij} \sim N(0,1)$. We truncate the tails of the distribution to ensure that the multiplicative perturbation is nonnegative $0 \leq 1 + \sigma \epsilon_{ij}$. We outline the details in Algorithm 3.

We gauge the performance of the robust facial reduction on random instances from the multiplicative noise model using first the relative residual values for the perturbed given data and second the RMSD values defined in (11). As would be expected, the RMSD values can be very large when R is small and we may have nonunique solutions. However, we see that the much more revealing residual values still stay small.

Section 3.3.1 showed that the quality of the solutions from the algorithm using the exposed vectors significantly and consistently improves on the primal clique approach in [33] for anchorless problems with $n = 1000$ and increasing noise factor. Table 1 further shows the details with times, residuals, and RMSD values before and after refinement. We can see that when we have the small $R = .10$ and resulting low density for the graph, then the residual value does not increase substantially but the RMSD value indicates that the location of the points found are not reasonable. Table 2 presents similar results but in addition with increasing numbers of nodes. For comparison, Table 3 presents results using the code from [42]. We see the dramatic improvement both in time and in the RMSD values. Table 4 presents numerical results.
Algorithm 3 Multiplicative noise model

INPUT: # sensors .9n, # anchors .1n, noise factor \(\sigma \), radio range \(R \), machine \(\epsilon \);

Generate n centered nodes:
1. pick \(n \) uniformly i.i.d. nodes, \(p_i \in [-0.5, 0.5]^2 \subset \mathbb{R}^2 \);
2. center nodes around the origin: \(\bar{p} = \frac{1}{n} \sum_{i=1}^{n} p_i \) and \(p_i \leftarrow p_i - \bar{p} \forall i \);
3. ensure that the final distances are significantly positive,
 \[
p_i \leftarrow (1 + \max\{2\sigma, 100\epsilon\})p_i,
 \]
 and center the nodes around the origin again;

Perturb the known sensor-sensor distances:
1. pick i.i.d. \(\epsilon_{ij} \in \mathcal{N}(0, 1) \forall ij \) (standard normal distribution);
2. randomly truncate the tails to ensure nonnegativity of the distances and error mean 0;
3. compute \(D \in S^n \) by
 \[
 D_{ij} = \begin{cases}
 (1 + \sigma \epsilon_{ij})^2 \|p_i - p_j\|^2 & \text{if } \min\{i,j\} \leq .9n, \\
 \|p_i - p_j\|^2 & \text{otherwise}
 \end{cases}
 \]

Construct the graph:
1. graph \(G \leftarrow (V, E, d) \) with \(V = \{1, \ldots, n\} \), \(E = \{ij : \|p_i - p_j\| < R \text{ or } \min\{i,j\} > .9n\} \).
2. vector \(d \leftarrow (D_{ij})_{ij \in E, i < j} \in \mathbb{R}^E \).

OUTPUT: noisy distance measurements \(d \in \mathbb{R}^E \) and graph \(G \).

using instances with \(n = 1000 \) to 15,000 nodes and with varying radio range and noise factor. We include 10\% anchors so as to be able to compare to the results in [42]. As mentioned above our results are significantly better than those in [42]. We solve larger problems in a fraction of the time and to low RMSD. The tests were run on MATLAB version R2016a, on a Dell Optiplex 9020, with Windows 7, Intel Core i7-4770 CPU @ 3.40 GHz and 16 GB RAM. We show the RMSD (as a percentage of the radio range) of the solutions provided by Algorithm 1 and also the RMSD of the solution after the local refinement using the steepest descent subroutine from SNL-SDP. We see that using Algorithm 1 together with local refinement gives excellent results. The time used by Algorithm 1 includes the selection of cliques and computation of the exposing vectors.

4. The Pareto frontier of the unfolding heuristic. The facial reduction algorithm presented in the previous section is effective when \(G \) is fairly dense (so that many cliques are available) and the SDP relaxation of the EDM completion problem without noise is exact. In this section, we consider problems at the opposite end of the spectrum. We will suppose that \(G \) is sparse and we will seek a low-rank solution approximately solving the SDP \((2a)\). To this end, we rewrite the flipped problem in \((4)\).

\[
\begin{align*}
\max \quad & \text{tr} \ X \\
\text{s.t.} \quad & \|P \circ K(X) - d\| \leq \sigma, \\
& Xe = 0, \\
& X \succeq 0.
\end{align*}
\]

(12)
NOISY EDM COMPLETION

Table 1

Robust facial reduction; small instances generated using multiplicative noise model on a $[-0.5,0.5]^2$ grid; n-number of sensors/vertices; $m=0$ anchors; R-radio range. CPU seconds, percent residuals, and percent RMSD for (1) the exposed facial algorithm and (2) the refinement.

<table>
<thead>
<tr>
<th>Specifications</th>
<th>Time (s)</th>
<th>Residual (%R)</th>
<th>RMSD (%R)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Initial</td>
<td>Refine</td>
<td>Initial</td>
</tr>
<tr>
<td>1000 0 0.25 15.7</td>
<td>0.7 0.0</td>
<td>0.0 0.0</td>
<td>0.0 0.0</td>
</tr>
<tr>
<td>1000 10 0.25 15.7</td>
<td>0.6 1.5</td>
<td>4.5 2.8</td>
<td>17.5 1.2</td>
</tr>
<tr>
<td>1000 20 0.25 15.7</td>
<td>0.6 1.7</td>
<td>8.7 5.6</td>
<td>38.2 2.4</td>
</tr>
<tr>
<td>1000 30 0.25 15.7</td>
<td>0.6 2.6</td>
<td>12.4 8.5</td>
<td>56.5 3.6</td>
</tr>
<tr>
<td>1000 40 0.25 15.7</td>
<td>0.6 2.9</td>
<td>15.3 11.1</td>
<td>67.6 17.1</td>
</tr>
<tr>
<td>1000 5 0.30 21.6</td>
<td>0.8 1.1</td>
<td>2.2 1.6</td>
<td>4.1 0.5</td>
</tr>
<tr>
<td>1000 5 0.25 15.7</td>
<td>0.6 1.4</td>
<td>2.1 1.4</td>
<td>6.4 0.6</td>
</tr>
<tr>
<td>1000 5 0.20 10.6</td>
<td>0.4 0.7</td>
<td>1.9 1.1</td>
<td>9.5 0.7</td>
</tr>
<tr>
<td>1000 5 0.15 6.2</td>
<td>0.3 1.0</td>
<td>2.9 0.8</td>
<td>39.8 1.4</td>
</tr>
<tr>
<td>1000 5 0.10 2.9</td>
<td>1.0 0.6</td>
<td>5.2 2.1</td>
<td>311.7 286.3</td>
</tr>
</tbody>
</table>

Table 2

Robust facial reduction (Algorithm 1); large instances generated using multiplicative noise model on a $[-0.5,0.5]^2$ grid; n-number of sensors/vertices; $m=0$ anchors; R-radio range. CPU seconds, percent residuals, and percent RMSD for (a) the exposed facial algorithm and (b) the refinement.

<table>
<thead>
<tr>
<th>Specifications</th>
<th>Time (s)</th>
<th>Residual (%R)</th>
<th>RMSD (%R)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Initial</td>
<td>Refine</td>
<td>Initial</td>
</tr>
<tr>
<td>2000 0 0.20 10.5</td>
<td>2.4 0.1</td>
<td>0.0 0.0</td>
<td>0.0 0.0</td>
</tr>
<tr>
<td>2000 10 0.20 10.5</td>
<td>2.0 4.8</td>
<td>3.5 2.2</td>
<td>13.3 1.0</td>
</tr>
<tr>
<td>2000 20 0.20 10.5</td>
<td>1.7 5.2</td>
<td>7.1 4.5</td>
<td>34.1 2.0</td>
</tr>
<tr>
<td>2000 30 0.20 10.5</td>
<td>1.7 5.3</td>
<td>10.1 6.8</td>
<td>55.8 3.1</td>
</tr>
<tr>
<td>3000 0 0.18 8.7</td>
<td>4.2 0.2</td>
<td>0.0 0.0</td>
<td>0.0 0.0</td>
</tr>
<tr>
<td>3000 10 0.18 8.7</td>
<td>3.6 13.2</td>
<td>3.5 2.0</td>
<td>16.6 0.9</td>
</tr>
<tr>
<td>3000 20 0.18 8.7</td>
<td>3.1 14.2</td>
<td>7.0 4.1</td>
<td>50.3 1.8</td>
</tr>
<tr>
<td>3000 30 0.18 8.7</td>
<td>2.9 19.7</td>
<td>9.7 6.2</td>
<td>77.9 2.7</td>
</tr>
<tr>
<td>4000 0 0.16 7.0</td>
<td>6.0 0.3</td>
<td>0.0 0.0</td>
<td>0.0 0.0</td>
</tr>
<tr>
<td>4000 10 0.16 7.0</td>
<td>5.5 22.5</td>
<td>3.3 1.8</td>
<td>19.0 0.9</td>
</tr>
<tr>
<td>4000 20 0.16 7.0</td>
<td>4.4 25.0</td>
<td>6.2 3.6</td>
<td>45.9 1.8</td>
</tr>
<tr>
<td>4000 30 0.16 7.0</td>
<td>4.2 26.9</td>
<td>8.5 5.5</td>
<td>74.9 2.6</td>
</tr>
<tr>
<td>6000 5 0.14 5.4</td>
<td>11.0 58.2</td>
<td>1.5 0.8</td>
<td>11.0 0.4</td>
</tr>
<tr>
<td>8000 5 0.12 4.1</td>
<td>15.6 100.2</td>
<td>1.6 0.7</td>
<td>16.5 0.4</td>
</tr>
<tr>
<td>10000 5 0.10 2.9</td>
<td>21.7 145.0</td>
<td>1.5 0.6</td>
<td>22.3 0.4</td>
</tr>
<tr>
<td>15000 5 0.10 2.9</td>
<td>36.0 161.2</td>
<td>1.5 0.6</td>
<td>21.8 0.4</td>
</tr>
<tr>
<td>20000 5 0.10 2.9</td>
<td>53.9 546.7</td>
<td>1.4 0.6</td>
<td>19.6 0.3</td>
</tr>
</tbody>
</table>

Here, an estimate of the tolerance $\sigma > 0$ on the misfit is typically available based on the physical source of the noise. Trace maximization encourages the solution X to have a lower rank. This is in contrast to the usual min-trace strategy in compressed sensing; see [6, 52, 53] for a discussion. Indeed, as mentioned in the introduction in terms of the factorization $X = PP^T$, the equality $\text{tr}(X) = \frac{1}{m} \sum_{i,j=1}^n \|p_i - p_j\|^2$ holds, where p_i are the rows of P. Thus trace maximization serves to “flatten” the
Table 3

<table>
<thead>
<tr>
<th>Specifications</th>
<th></th>
<th>Time (s)</th>
<th></th>
<th>RMSD (%R)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n</td>
<td>% noise</td>
<td>R</td>
<td>% dens.</td>
</tr>
<tr>
<td>2000</td>
<td>0</td>
<td>0.20</td>
<td>11.4</td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td>10</td>
<td>0.20</td>
<td>11.4</td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td>20</td>
<td>0.20</td>
<td>11.4</td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td>30</td>
<td>0.20</td>
<td>11.4</td>
<td></td>
</tr>
</tbody>
</table>

Table 4

<table>
<thead>
<tr>
<th>Specifications</th>
<th></th>
<th>Time (s)</th>
<th></th>
<th>Residual (%R)</th>
<th></th>
<th>RMSD (%R)</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n</td>
<td>% noise</td>
<td>R</td>
<td>% dens.</td>
<td>Initial</td>
<td>Refine</td>
<td>Initial</td>
<td>Refine</td>
</tr>
<tr>
<td>2000</td>
<td>0</td>
<td>0.20</td>
<td>11.4</td>
<td></td>
<td>1.3</td>
<td>0.1</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>2000</td>
<td>10</td>
<td>0.20</td>
<td>11.4</td>
<td></td>
<td>1.3</td>
<td>1.8</td>
<td>2.3</td>
<td>2.1</td>
</tr>
<tr>
<td>2000</td>
<td>20</td>
<td>0.20</td>
<td>11.4</td>
<td></td>
<td>1.3</td>
<td>1.9</td>
<td>4.7</td>
<td>4.3</td>
</tr>
<tr>
<td>2000</td>
<td>30</td>
<td>0.20</td>
<td>11.4</td>
<td></td>
<td>1.3</td>
<td>1.8</td>
<td>7.2</td>
<td>6.5</td>
</tr>
</tbody>
</table>

realization of the graph. We focus on the max-trace regularizer, though an entirely analogous analysis holds for min-trace. At the end of the section we compare the two.

We propose a first-order method for this problem using a Pareto search strategy originating in portfolio optimization. This technique has recently garnered much attention in wider generality; see, e.g., [51, 52, 53] or the survey [4]. The idea is simple: exchange the objective and the difficult constraint, and then use the easier flipped problem to solve the original. Thus we are led to consider the parametric optimization problem

\[
\varphi(\tau) := \min \|P \circ K(X) - d\| \\
s.t. \quad \text{tr } X = \tau, \\
X_e = 0, \\
X \succeq 0.
\]
See Figure 3 for an illustration.

Observe that the evaluation of $\varphi(\tau)$ is well adapted to first-order methods, since the feasible region is so simple. It is well known that φ is a convex function, and therefore to solve the original problem (12), we simply need to find the largest τ satisfying $\varphi(\tau) \leq \sigma$. We note that the smallest value of τ satisfying $\varphi(\tau) \leq \sigma$ corresponds instead to minimizing the trace. We propose to evaluate $\varphi(\tau)$ by the Frank–Wolfe algorithm and then solve for the needed value of τ by an inexact Newton method. We will see that this leads to an infeasible method that is unaffected by the inherent ill-conditioning of the underlying EDM completion problem discussed in the previous sections.

4.1. An inexact Newton method. We now describe an inexact Newton method for finding the largest value τ satisfying $\varphi(\tau) \leq \sigma$. To this end, we introduce the following definition.

DEFINITION 4.1 (affine minorant oracle). Given a function $v: I \to \mathbb{R}$ on an interval $I \subset \mathbb{R}$, an affine minorant oracle is a mapping \mathcal{O}_v that assigns to each pair $(t, \alpha) \in I \times [1, \infty)$ real numbers (l, u, s) such that $0 \leq l \leq v(t) \leq u$, $\frac{u}{l} \leq \alpha$, and the affine function $t' \mapsto l + s(t' - x)$ minorizes v.

For the EDM completion problem, the function v is given by $v(t) = \varphi(t) - \sigma$. The inexact Newton method based on an affine minorant oracle is described in Algorithm 4.

It can be shown that the iterates t_k generated by the inexact Newton method (Algorithm 4), when applied to a convex function $v: I \to \mathbb{R}$ having a root on the interval I, converge to the root \bar{t} of v closest to t_0. Moreover, the convergence is linear in function value: the algorithm is guaranteed to terminate after at most

$$K \leq \max \left\{ 1 + \log_{2/\alpha} \left(\frac{2R}{\beta} \right), 2 \right\}$$

iterations, where we set $R = \max\{|s_0|(\bar{t} - t_0), l_0\}$. For a proof and a discussion, see [4, Theorem 2.4].

Thus to implement this method, for the problem (12), we must describe an affine minorant oracle for $v(t) = \varphi(t) - \sigma$. Then, after the number of iterations given above,
Algorithm 4 Inexact Newton method

Input: Convex function \(v : I \to \mathbb{R} \) on an interval \(I \subset \mathbb{R} \) via an affine minorant oracle \(O_v \), target accuracy \(\beta > 0 \), initial point \(t_0 \in I \) with \(v(t_0) > 0 \), and a constant \(\alpha \in (1, 2) \).

\[
(l_0, u_0, s_0) := O_v(t_0, \alpha); \\
k \leftarrow 0; \\
l_0 \leftarrow 0; \\
u_0 \leftarrow +\infty; \\
\text{while } \frac{u_k}{l_k} > \alpha \text{ and } u_k > \beta \text{ do} \\
\quad t_{k+1} \leftarrow t_k - \frac{l_k}{s_k}; \\
\quad (l_{k+1}, u_{k+1}, s_{k+1}) := O_v(t_{k+1}, \alpha); \\
\quad k \leftarrow k + 1; \\
\text{end while} \\
\text{return } t_k;
\]

we can obtain a centered PSD matrix \(X \) satisfying

\[
\|P \circ K(X) - d\| \leq \sigma + \beta \quad \text{and} \quad \operatorname{tr}(X) \geq \text{OPT},
\]

where \(\text{OPT} \) denotes the optimal value of (12). A key observation is that the derivative of \(v \) at the root does not appear in the iteration bound. This is important because for the function \(v(t) = \varphi(t) - \sigma \), the inherent ill-conditioning of (12) can lead to the derivative of \(v \) at the root being close to zero.

4.2. Solving the inner subproblem with the Frank–Wolfe algorithm.

In this subsection, we describe an affine minorant oracle for \(\varphi(\tau) \) based on the Frank–Wolfe algorithm [22], which has recently found many applications in machine learning (see, e.g., [25, 28]). Throughout, we fix a value \(\tau \) satisfying \(\varphi(\tau) > \sigma \). To apply the Frank–Wolfe algorithm, we must first square the objective in (12) to make it smooth. To simplify notation, define

\[
A := P \circ K, \quad f(X) := \frac{1}{2} \|A(X) - d\|^2, \quad \text{and} \quad \mathcal{D} := \{X \succeq 0 : \operatorname{tr}X = 1, Xe = 0\}.
\]

Thus we seek a solution to

\[
\min \{f(X) : X \in \tau \mathcal{D}\}.
\]

The Frank–Wolfe scheme is described in Algorithm 5.

The computational burden of the method is the minimization problem (14) in Algorithm 5. To elaborate on this, observe first that

\[
\nabla f(X) = K^* \circ P^* (P \circ K(X) - d).
\]

Notice that the matrix \(K^* \circ P^* (P \circ K(X) - d) \) has the same sparsity pattern, modulo the diagonal, as the adjacency matrix of the graph. As a result, when the graph \(G \) is sparse, we claim that the linear optimization problem (14) is easy to solve. Indeed, observe \(\nabla f(X)e = 0 \) and consequently an easy computation shows that \(\min_{S \in \tau \mathcal{D}} \langle \nabla f(X), S \rangle \) equals \(\tau \) times the minimal eigenvalue of the restriction of \(\nabla f(X) \) to \(e^T \); this minimum in turn is attained at the matrix \(\tau vv^T \), where \(v \) is the
Algorithm 5 Affine minorant oracle based on the Frank–Wolfe algorithm

Input: \(\tau \geq 0 \), relative tolerance \(\alpha > 1 \), and \(\beta > 0 \).
Let \(k \leftarrow 0 \), \(k_0 \leftarrow \frac{1}{2} \sigma^2 \), and \(u_0 \leftarrow + \infty \). Pick any point \(X_0 \) in \(\tau \mathcal{D} \).

while \(\sqrt{2u_k} - \sigma > \alpha (\sqrt{2u_k} - \sigma) \) and \(\sqrt{2u_k} - \sigma > \beta \) **do**

- Choose a direction
 \[
 S_k \in \arg \min_{S \in \tau \mathcal{D}} \langle \nabla f(X_k), S \rangle ;
 \]
- Set the stepsize: \(\gamma_k \in \arg \min_{[0, 1]} f(X_k + \gamma_k (S_k - X_k)) \);
- Update the iterate: \(X_{k+1} \leftarrow X_k + \gamma_k (S_k - X_k) \);
- Update the upper bound: \(u_{k+1} \leftarrow f(X_{k+1}) \);
- Update the lower bound:
 \[
 l_{k+1} \leftarrow \max \{ l_k, f(X_k) + \langle \nabla f(X_k), S_k - X_k \rangle \} ;
 \]
- Increment the iterate: \(k \leftarrow k + 1 \);
- **if** \(l_{k+1} > l_k \) **then**
 - \(y \leftarrow d - P \circ K(X_k) \);
 - \(X \leftarrow X_k \)
 - \(S \leftarrow S_k \)
- **end if**

end while

\[
 l \leftarrow \frac{l_k + \frac{1}{2} \|y\|^2}{\|y\|^2} - \sigma ;
 u \leftarrow \sqrt{2u_k} - \sigma ;
 s = \frac{1}{\tau \|y\|^2} \langle \nabla f(X), S \rangle ;
\]

return \((l, u, s)\);

The corresponding unit-length eigenvector. Thus to solve (14) we must find only the minimal eigenvalue-eigenvector pair of \(\nabla f(X) \) on \(e^\perp \), which can be done fairly quickly by a Lanczos method and, in particular, by orders of magnitude faster than the full eigenvalue decomposition. Thus, the Frank–Wolfe method is perfectly adapted to our problem instance.

Theorem 4.2 (affine minorant oracle). Algorithm 5 is an affine minorant oracle for the function \(v(\tau) := \varphi(\tau) - \sigma \).

Proof. We first claim that upon termination of Algorithm 5, the line \(t' \mapsto l + s(\tau - \tau') \) is a lower minorant of \(v(\tau') - \sigma \). To see this, observe that the dual of the problem

\[
\varphi(\tau) = \min_{X \in \tau \mathcal{D}} \| A(X) - d \|
\]

is given by

\[
\max_{z \in \mathbb{R}^n : \|z\| \leq 1} h_\tau(z) := \langle d, z \rangle - \tau \delta_\mathcal{D}^*(A^* z) ,
\]

where \(\delta_\mathcal{D}^* \) denotes the support function of \(\mathcal{D} \). Then by weak duality for any vector \(z \) with \(\|z\| \leq 1 \) and any \(\tau' \), we have the inequality

\[
\varphi(\tau') \geq h_{\tau'}(z) = \langle d, z \rangle - \tau' \delta_\mathcal{D}^*(A^* z) = h_\tau(z) - (\tau' - \tau) \delta_\mathcal{D}^*(A^* z) .
\]
Hence the affine function \(\tau' \mapsto h_\tau(z) - (\tau' - \tau)\delta^*_D(A^*z) \) minorizes the value function \(\varphi(\tau') \). Now a quick computation shows that upon termination of Algorithm 5, we have

\[
(16) \quad l_k + \frac{1}{2}\|y\|^2 = h_\tau(y).
\]

Setting \(z = \frac{u}{\|y\|^2} \) in inequality (15) and using the identity (16), we obtain \(\forall \tau' \in \mathbb{R} \) the inequality

\[
\varphi(\tau') \geq \frac{l_k + \frac{1}{2}\|y\|^2 - (\tau' - \tau)\delta^*_D(A^*y)}{\|y\|}
= l + \sigma + s(\tau' - \tau).
\]

Hence the line \(\tau' \mapsto l + s(\tau - \tau') \) is a lower minorant of \(v(\tau') - \sigma \), as claimed. Next, we show that upon termination, the inequality \(\frac{u}{l} \leq \alpha \) holds. To see this, observe that

\[
u = \frac{2\|y\|u}{2l_k + \|y\|^2 - 2\sigma\|y\|} \leq \frac{2\|y\|u}{(u + \alpha\sigma)^2 + \|y\|^2 - 2\sigma\|y\|}
= \frac{2\|\alpha y\|u}{(u + \alpha\sigma)^2 + \|\alpha y\|^2 - 2\alpha\sigma\|\alpha y\|}.
\]

Now, observe that the numerator of the rightmost expression is always less than the denominator:

\[
(u + \alpha\sigma)^2 + \|\alpha y\|^2 - 2\alpha\sigma\|\alpha y\| - 2\|\alpha y\|u = (u + \alpha\sigma)^2 + \|\alpha y\|^2 - 2\|\alpha y\|(u + \alpha\sigma)
= (u + \alpha\sigma - \|\alpha y\|)^2 \geq 0.
\]

We conclude that \(\frac{u}{l} \leq \alpha \), as claimed. This completes the proof.

Thus Algorithm 5 is an affine minorant oracle for \(\varphi - \sigma \), and linear convergence guarantees of the inexact Newton method (Algorithm 4) apply.

Finally let us examine the iteration complexity of the Frank–Wolfe algorithm itself. Suppose that that for some iterate \(k \), we have \(\frac{\sqrt{2u} - \sigma}{\sqrt{2u} - \sigma} > \alpha \) and \(\sqrt{2u} - \sigma > \beta \). Dropping the subscripts \(k \) for clarity, observe that

\[
\frac{\sqrt{2u} - \sigma}{\sqrt{2u} - \sigma} > (\frac{\sqrt{2u} - \sigma}{\sqrt{2u} - \sigma}) > 1 - \frac{1}{\alpha}.
\]

Consequently in terms of the duality gap \(\epsilon := u - l \), we have

\[
2\epsilon \geq (\sqrt{2u} - \sqrt{2l})^2 > \beta^2 \left(1 - \frac{1}{\alpha}\right)^2.
\]

Hence Algorithm 5 terminates provided \(\epsilon \leq \frac{1}{2}\beta^2 \left(1 - \frac{1}{\alpha}\right)^2 \). Standard convergence guarantees of the Frank–Wolfe method (e.g., \cite{18, 22, 28}) therefore imply that the method terminates after \(\mathcal{O}(\frac{L^2}{\beta^2}) \) iterations, where \(L \) is the Lipschitz constant of the gradient \(\nabla f \).

Summarizing, consider an instance of the problem (12) with optimal value \(OPT \). Then given a target accuracy \(\beta > 0 \) on the misfit \(\|P \circ K(\cdot) - d\| \), we can find a matrix \(X \geq 0 \) with \(Xe = 0 \) that is superoptimal and nearly feasible, meaning

\[
\text{tr}(X) \geq OPT \quad \text{and} \quad \|P \circ K(X) - d\| \leq \sigma + \beta.
\]
using at most \(\max\{1 + \log_{2/\alpha}(2R/\beta), 2\} \) inexact Newton iterations\(^4\) with each inner Frank–Wolfe algorithm terminating in at most \(O(n_f L^2) \) many iterations. Finally, we mention that in the implementation of the method, it is essential to warm start the Frank–Wolfe algorithm using iterates from previous Newton iterations.

4.3. Comparison of minimal and maximal trace problems. It is interesting to compare the properties of the minimal trace solution
\[
\min \; \text{tr} \; X
\]
\[
\text{s.t.} \; \|P \circ K(X) - d\| \leq \sigma, \quad X e = 0, \quad X \succeq 0,
\]
and the maximal trace solution
\[
\max \; \text{tr} \; X
\]
\[
\text{s.t.} \; \|P \circ K(X) - d\| \leq \sigma, \quad X e = 0, \quad X \succeq 0.
\]
In this section, we illustrate the difference using the proposed algorithm. Consider the following EDM completion problem coming from wireless sensor networks (Figure 4). The iterates generated by the inexact Newton method are plotted in Figure 5.

Let us consider first the maximal trace solution \(X \). In Figure 6, the asterisks (*) indicate the true locations of points in both pictures. In the picture on the left, the pluses (+) indicate the points corresponding to the maximal trace solution \(X \) after projecting \(X \) onto rank 2 PSD matrices, while in the picture on the right they denote the locations of these points after local refinement. The edges indicate the deviations.

In contrast, we now examine the minimal trace solution, Figure 7. Notice that even after a local refinement stage, the realization is very far from the true realization that we seek, an indication that a local search algorithm has converged to an extraneous critical point of the least squares objective. We have found this type of behavior to be very typical in our numerical experiments.

\(^4\)As before \(|s_0|\) is the slope of the value function \(v \) at \(\tau_0 \) and \(R = \tau_0 - \text{OPT} \).
Finally we mention an interesting difference between the maximal trace and the minimal trace solutions as far the as the value function φ is concerned. When $\sigma = 0$, the typical picture of the graph of φ is illustrated in Figure 8. The different shapes of the curve left and right sides are striking. To elucidate this phenomenon, consider the primal problem

$$
\begin{align*}
\text{minimize} \quad & \text{tr } X \\
\text{s.t.} \quad & \mathcal{P} \circ K(X) = d, \quad Xe = 0, \quad X \succeq 0,
\end{align*}
$$
and its dual

$$\text{maximize } y^T d$$

$$\text{s.t. } K^* \circ P^*(y) + \beta ee^T \preceq I,$$

In particular, the dual is strictly feasible and hence there is no duality gap. On the other hand, suppose that the dual optimal value is attained by some pair \((y, \beta)\) and suppose without loss of generality that \(K^* \circ P^*(y)\) has an eigenvalue equal to one corresponding to an eigenvector orthogonal to \(e\). Then letting \(\tau\) be the optimal value (the minimal trace) and appealing to (15) we deduce

$$\varphi(\tau') \geq \frac{1}{\|y\|} \left(d^T y - \tau \delta_D (K^* \circ P^*(y)) - (\tau' - \tau) \delta_D^* (K^* \circ P^*(y)) \right)$$

$$\geq - \frac{(\tau' - \tau)}{\|y\|} \quad \forall \tau'.$$
Hence the fact that slope \(\varphi'(\tau) \) is close to zero in Figure 8 indicates that the dual problem is either unattained (not surprising since the primal fails the Slater condition) or that the dual is attained only by vectors \(y \) of very large magnitude. The reason why such a phenomenon does not occur for the max-trace problem is an intriguing subject for further investigation.

4.4. Numerical illustration.

In this section, we illustrate the proposed method on SNL instances. The data was generated in the same manner as the numerical experiments in section 3.3. Tables 5 illustrates the outcome of the method by varying the noise. Throughout we have fixed the tolerance on the misfit \(\|P \circ K(X) - d\| \leq \sigma + 0.1 \). As above, the tests were run on MATLAB version R2016a, on a Dell Optiplex 9020, with Windows 7, Intel Core i7-4770 CPU @ 3.40 GHz and 16 GB RAM.

5. Conclusion and work in progress.

In this paper, we described two algorithms (robust facial reduction and a search along the Pareto frontier) to solve the EDM completion problem with possibly inaccurate distance measurements, which has important applications and is numerically challenging. The two algorithms are intended for EDM completion problems of different densities: the Pareto frontier algorithm discussed in section 4 is designed for sparse graphs, whereas the robust facial reduction outlined in Algorithm 1 in section 3 tends to work better for denser graphs. Though not studied in this work, it is possible to develop a distributed implementation.
of the robust facial reduction technique in order to solve even larger-scale completion problems. Moreover, instead of identifying cliques, which is computationally heavy, one can try to use other universally rigid components in the graph, which are easier to identify (e.g., [58]). The difficulty, however, is that this strategy would require an SDP solve for every such component due to noise in the data. The Pareto frontier estimation technique is promising for handling large-scale EDM completion problems, since first-order methods become immediately applicable and sparsity of the underlying graph can be exploited when searching for a maximum eigenvalue-eigenvector pair via a Lanczos procedure. Numerical experiments have illustrated the effectiveness of both strategies.

Appendix A. Nearest-point mapping to $S_{k,r}^{k,r}$. We now describe how to evaluate the nearest-point mapping to the set $S_{k,r}^{k,r}$—an easy and standard operation due to the Eckart–Young theorem [21]. To describe this operation, consider any matrix $X \in S^n$ and a set $Q \subset S^n$. The projection mapping $\text{proj}(\cdot)$ is

$$\text{proj}(X; Q) := \arg\min_{Y \in Q} \|X - Y\|_F.$$

It is well known that $\text{proj}(X; Q)$ is a singleton for every nonempty closed convex set Q. Let $[U \ e]$ be any $k \times k$ orthogonal matrix. First dealing with the centering constraint, one can verify

$$\text{proj} (X; S_{k,r}^{k,r}) = U \left[\text{proj} (U^T X U; S_{k-r}^{k-r}) \right] U^T.$$

On the other hand, we have

$$\text{proj} (Z; S_{k-1,r}^{k-1,r}) = U \text{Diag} \left(0, \ldots, 0, \lambda^{+}_{k-r}(Z), \ldots, \lambda^{+}_{k-1}(Z) \right) U^T,$$

where $\lambda_1(Z) \leq \cdots \leq \lambda_{k-1}(Z)$ are the eigenvalues of Z and the superscript $\lambda^{+}_{i}(Z)$ refers to their positive part, and U is an orthogonal matrix of eigenvectors in the orthogonal spectral decomposition $Z = U \text{Diag}(\lambda(Z)) U^T$.

Thus computing the matrix $\text{proj}(X; S_{k,r}^{k,r})$ requires no more than an eigenvalue decomposition. Moreover, if the embedding dimension r is small, then we can take advantage of special routines that find a few (r) eigenpairs. In MATLAB we first shift away from 0 and find the Cholesky factorization of $Y = W + I$: $[R_y, \gamma, S] = \text{chol}(W + \text{speye}(n))$; the smallest eigenvalue 0 is shifted to 1, $Y e = e$ and $Y^{-1} e = e$. Moreover, $\text{tr}(W) + 1$ is now a valid upper bound for the $r + 1$ smallest eigenvalue. We can deflate the eigenvalue for the normalized e by shifting with

$$\sigma = \frac{\text{tr}(W) + 1}{n}, \quad Y + \sigma e e^T.$$

This deflation means that we now need to find only the smallest r eigenpairs of $Y + \sigma e e^T$ rather than $r + 1$ for W. The MATLAB eigs routine requires repeated evaluations of

$$(Y + \sigma e e^T)^{-1} y = (Y + \sigma e e^T) \backslash y.$$

We can apply the Sherman–Morrison–Woodbury formula with the rank one perturbation of Y and take advantage of the fact that $Y^{-1} e = e$. With $\alpha = \frac{2}{1 + \sigma n}$ we get that the matrix division is equivalent to

$$(Y + \sigma e e^T)^{-1} y = S(Ry \backslash (Ry^T \backslash (S^T y))) - \alpha e^T y.$$
In addition, we can take advantage of the structure of K in the SNL application. In each step we find $B = K^\dagger(D)$ for some nonnegative $D \in S^k_h$. Since D is a noisy EDM, we do not necessarily have $B \succeq 0$. However, $B \in S_+$. Therefore we deflate the eigenvector of ones. This is equivalent to using the matrix U above. We now find the $k - r$ smallest eigenpairs of $B + \alpha e e^T$ for an $\alpha < \min\{-1, \lambda_1(B)\}$, where we zero out any negative eigenvalues to get the nearest matrix in $S^k_{h,c}$.

Appendix B. Solving the small least squares problem. We now describe how to easily solve the least squares system (8). We are interested in solving an optimization problem of the form

\[
\min_Z \| A(Z) - d \|_2^2 \\
\text{s.t.} \ Z \in S^r_+,
\]

where the linear operator $A : \mathbb{S}^n \to \mathbb{R}^E$ is defined by $[A(Z)]_{ij} = [K(UZU^T)]_{ij} \forall ij \in E$. Let $\text{svec}(Z)$ be the vectorization of Z and let A be a $|E| \times \frac{r(r+1)}{2}$ matrix representation of the operator A. Thus we are interested in solving the overdetermined system

\[
(17) \quad \min_Z \| A(\text{svec} Z) - d \|_2^2 \\
\text{s.t.} \ Z \in S^r_+.
\]

One approach now is simply to expand the objective

\[
\| A(\text{svec} Z) - d \|_2^2 = (A^T A)(\text{svec} Z) - 2(A^T d, \text{svec} Z) + \| d \|_2^2,
\]

and then apply any standard iterative method to solve the problem (17). Alternatively, one may first form an economic QR factorization $A = QR$ (where $Q \in \mathbb{R}^{E \times \frac{r(r+1)}{2}}$ has orthonormal columns and $R \in \mathbb{R}^{\frac{r(r+1)}{2} \times \frac{r(r+1)}{2}}$ is upper triangular) and then write the objective as $\| A(\text{svec} Z) - d \|_2^2 = \| R(\text{svec} Z) - Q^T d \|_2^2$. We can then pose the problem (17) as a small linear optimization problem over the product of the semidefinite cone S^r_+ and a small second-order cone of dimension $\mathbb{R}^{\frac{r(r+1)}{2}}$ and quickly solve it with an off-the-shelf interior point method.

In practice, we have found that the cone constraint is often inactive. The reason is that under reasonable conditions (see Observation 2.2), in a noiseless situation, there is a unique solution to the equation $A(Z) = d$. This solution then is positive definite. Hence by the robustness guarantees (Theorem C.5), a small amount of noise in d will lead to a matrix solving $\min_Z \| A(\text{svec} Z) - d \|_2^2$ that is automatically positive definite. Heuristically, we can simply drop the cone constraint in (8) and consider the unconstrained least squares problem

\[
(18) \quad \min_Z \| A(\text{svec} Z) - d \|_2^2,
\]

which can be solved very efficiently by classical methods. With this observation, we often can solve (8) without using any optimization software.

In the case that Z is not positive definite we have generated a random sketch matrix S, e.g., [40]. This changes the highly overdetermined cone constrained least squares problem to one with a reasonable number of constraints after replacing the data A, d with SA, Sd, respectively.

Appendix C. Robustness of facial reduction. In this section, we provide rudimentary robustness guarantees on Algorithm 1. To this end, consider two $n \times r$
matrices U and V, each with orthonormal columns. Then the principal angles between range U and range V are the arccosines of the singular values of U^TV. We will denote the vector of principal angles between these subspaces, arranged in nondecreasing order, by Γ. The symbols $\sin^k(\Gamma)$ and $\cos^k(\Gamma)$ will have obvious meanings. Thus the vector of singular values $\sigma(U^TV)$, arranged in nondecreasing order, coincides with $\cos(\Gamma)$. Consequently in terms of the matrix

$$\Delta = I - (V^TU)(V^TU)^T,$$

the eigenvalue vector $\lambda(\Delta)$ coincides with $\sin^2(\Gamma)$. An important property is that the principal angles between range U and range V and the principal angles between $(\text{range } U)^\perp$ and $(\text{range } V)^\perp$ coincide modulo extra $\pi/2$ angles that appear for dimensional reasons. The following is a deep result that is fundamental to our analysis [15, 16, 17]. It estimates the deviation in range spaces of matrices that are nearby in norm.

Theorem C.1 (distances and principal angles). Consider two matrices $X,Y \in \mathcal{S}^{n}_+$ of rank r and let Γ be the vector of principal angles between range X and range Y. Then the inequality

$$\|\sin(\Gamma)\| \leq \|X - Y\| \delta(X,Y)$$

holds, where $\delta(X,Y) := \min\{\lambda_r(X), \lambda_r(Y)\}$.

The following is immediate now.

Corollary C.2 (deviation in exposing vectors). Consider two rank r matrices $X,Y \in \mathcal{S}_+$ and let U and V be $n \times r$ matrices with orthonormal columns that span $\ker X$ and $\ker Y$, respectively. Then we have

$$\|UU^T - VV^T\| = \sqrt{2} \left(\frac{\|X - Y\|}{\delta(X,Y)} \right).$$

Proof. Observe $\|UU^T - VV^T\|^2 = 2 \text{tr}(I - (V^TU)(V^TU)^T) = 2\|\sin(\Theta)\|^2$. Applying Theorem C.1, the result follows.

Next, we will need the following lemma.

Lemma C.3 (projections onto subsets of symmetric matrices). For any $n \times r$-matrix U with orthonormal columns, and a matrix $X \in \mathcal{S}^n$, we have

$$\text{proj}(X; US^rU^T) = UU^TXUU^T,$$

and for any subset $Q \in \mathcal{S}^r$, we have

$$\text{proj}(X; UQU^T) = U \text{proj}(U^TXU; Q)U^T.$$

Proof. Optimality conditions for the optimization problem

$$\min_{Y \in \mathcal{S}} \|X - UYU^T\|^2$$

immediately imply $\text{proj}(X; US^rU^T) = UU^TXUU^T$. Since UQU^T is contained in the linear space US^rU^T, the projection $\text{proj}(X; UQU^T)$ factors into a composition

$$\text{proj}(X; UQU^T) = \text{proj} \left(\text{proj}(X; US^rU^T); UQU^T \right).$$
Then there exist constants \(\varepsilon > 0 \) such that the EDM completion problem is uniquely localizable if either of the equivalent conditions in Observation 2.2 holds. In what follows, let \(\text{Alg}(d) \) be the output of Algorithm 1 on the EDM completion problem.

We are now ready to formally prove robustness guarantees on the method. For simplicity, we will assume that the exposing matrices \(W_\alpha \) are of the form \(UU^T \), where \(U \) have orthonormal columns, and that \(\omega_\alpha(d) = 1 \) for all cliques \(\alpha \) and all \(d \in \mathbb{R}^E \). The arguments can be easily adapted to a more general setting. For any subgraph \(H \) of \(G \), we let \(d[H] \) denote the restriction of \(d \) to \(H \). Following [45], the EDM completion problem is said to be uniquely \(r \)-localizable if either of the equivalent conditions in Observation 2.2 holds. In what follows, let \(\text{Alg}(d) \) be the output of Algorithm 1 on the EDM completion problem.

Theorem C.5 (robustness). Suppose the following:

- for any clique \(\alpha \in \Theta \), the subgraph on \(\alpha \) has embedding dimension \(r \);
- the EDM completion problem is uniquely \(r \)-localizable and \(\text{Alg}(d) \) is the realization of \(G \);
- the matrix \(Y \) obtained during the run on the noiseless problem has rank \(n - r \);

Then there exist constants \(\varepsilon > 0 \) and \(\kappa > 0 \) so that

\[
\| \mathcal{P} \circ \mathcal{K}(\text{Alg}(d)) - \hat{d} \| \leq \kappa \| \hat{d} - d \| \quad \text{whenever} \quad \| \hat{d} - d \| < \varepsilon.
\]
Proof. Throughout the proof, we will use the hat superscript to denote the objects (e.g., \hat{X}_α, \hat{W}_α) generated by Algorithm 1 when it is run with the distance measurements $\hat{d} \in \mathbb{R}^E$. Clearly for any $d \in \mathbb{R}^E$, we have $\|K^\dagger \hat{d}_\alpha - K^\dagger d_\alpha\| = O(\|d_\alpha - \hat{d}_\alpha\|)$ for any clique $\alpha \in \Theta$. Fix any such clique α, and notice by our assumptions $K^\dagger d_\alpha$ has rank r. Consequently $\|\hat{X}_\alpha - X_\alpha\| = O(\|d_\alpha - \hat{d}_\alpha\|)$ whenever \hat{d} is sufficiently close to d. Appealing then to Corollary C.2, we deduce $\|\hat{W}_\alpha - W_\alpha\| = O(\|\hat{X}_\alpha - X_\alpha\|) = O(\|d_\alpha - \hat{d}_\alpha\|)$. Hence $\|\hat{W} - W\| = O(\|d - \hat{d}\|)$ for any d sufficiently close to \hat{d}. Since W has rank $n - r$, we deduce $\|\hat{Y} - Y\| = O(\|d - \hat{d}\|)$. Appealing to Theorem C.1, we then deduce $\|\sin(\Gamma)\| = O(\|d - \hat{d}\|)$, where Γ is the principle angle vector between the null spaces of \hat{Y} and Y. By Corollary C.4, then

$$\text{dist} \left(X; \text{face}(\hat{X}, S^n_+) \right) = O(\|\hat{d} - d\|).$$

The result follows. \qed

Acknowledgment. We thank Sasha Aravkin for pointing out a part of the proof of Theorem 4.2.

REFERENCES

