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Abstract This paper illustrates how optimization can be used to égdivown and
new theoretical results about perturbations of matricessamsitivity of eigenval-
ues. More specifically, the Karush-Kuhn-Tucker conditiaghe shadow prices, and
the parametric solution of a fractional program are usecktivd explicit formulae
for bounds for functions of matrix eigenvalues.

1 Introduction

Many classical and new inequalities can be derived usingnigdtion techniques.
One first formulates the desired inequality as the maximuimifnum) of a function
subject to appropriate constraints. The inequality, aleitly conditions for equality
to hold, can then be derived and proved, provided that thenggztion problem can
be explicitly solved.

For example, consider tHeayleigh principle

Amax= max{ (X, AX) : xeR"||x]| =1}, 1)

whereA is ann x n Hermitian matrix,Amax is the largest eigenvalue &f, (-,-) is
the Euclidean inner product, afid || is the associated norm. Typically, this princi-
ple is proved by maximizing the quadratic functiogAx) subject to the equality
constraint|x||> = 1. An explicit solution can be found using the classical amedl w
known, Euler-Lagrange multiplier rule of calculus. (SeeaBwyle 1 below). It is an
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interesting coincidence thatis the standard symbol used in the literature for both
eigenvalues and Lagrange multipliers; and the eigenvaidd_agrange multiplier
coincide in the above derivation. Not so well known are thdtiplier rules for
inequality constrained programs. THelder inequality

n n e /oy 1/a
<va>:i;XiYi§ <izlxip> (;yﬁ) ;

wherex,y € R ,p > 1,0 = p/(p—1), can be proved by solving the optimiza-
tion problemh(x) := max,{y;xyi : ¥iy# — 1 < 0,y; > 0,vi}. The John multi-
plier rule yields the explicit solution. (See [8] and Exampl below). The classi-
cal arithmetic-geometric mean inequalitg; ... an)Y/" < %(al + ...+ an), where
a; > 0,i=1,...,n, can be derived by solving the geometric programming prable

n
max{M;as : Zlai =1,a0; >0,Vi}.

Convexity properties of the functions, which arise wherorefulating the in-
equalities as programming problems, can prove very helpful example, convex-
ity can guarantee that sufficiency, rather than only netgdsolds in optimality
conditions. Theguasi-convexityf the function

o) = [ fav [/ f)dn. (2)

whereu andv are two nontrivial positive measures on a measurable spacan be

used to derive the Kantorovich inequality, [1]. (We prove Kantorovich inequality
using optimization in Example 2.) We rely heavily on the ocexity and pseudo-
convexity of the functions.

Optimality conditions, such as the Lagrange and KarushrKtiincker multiplier
rules, are needed to numerically solve mathematical progriag problems. The
purpose of this paper is to show how to use optimization tegles to generate
known, as well as new, explicit eigenvalue inequalitieghathan include all pos-
sible results, we concentrate on just a few, which allow uliustrate several useful
techniques. For example, suppose that ann x n complex matrix with real eigen-
valuesA; > ... > An. A lower bound forAy can be found if we can explicitly solve
the problem

min Ak
subjectto 311, Aj = traceA
ST1A? < tracen? 3)
Ac— A <0, i=1,...,k—1
A=A <0, i=k+1,...n

We can use th&arush-Kuhn-Tuckenecessary conditions for optimality to find the
explicit solution. (See Theorem 6.) Sufficiency guaranteaswe actually have the
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solution. This yields the best lower bound farbased on the known data. (Further
results along these lines can be found in [4].)

In addition, the Lagrange multipliers, obtained when saivihe program (3),
provideshadow pricesThese shadow prices are sensitivity coefficients witheesp
to perturbations in the right-hand sides of the constraiis use these shadow
prices to improve the lower bound in the case that we havdiaddl information
about the eigenvalues. (See e.g. Corollaries 2 and 3.)

1.1 Qutline

In Section 2 we introduce the optimality conditions and Ut to prove the well
known: (i) Rayleigh Principle; (ii) Holder inequality; arfidi) Kantorovich inequal-
ity. In Section 3 we show how to use the convex multiplier (olethe Karush-Kuhn-
Tucker conditions) to generate bounds for functions of igervalues of am x n
matrix A with real eigenvalues. Some of these results have appesfedli2, 4]. In-
cluded are bounds fa, A+ A, andA, — A,. We also show how to use the Lagrange
multipliers (shadow prices) to strengthen the bounds.i@edtuses fractional pro-
gramming techniques to generate bounds for the rédips A;) / (Ak+ A¢). Some of
the inequalities obtained here are given in [7, 12] but witbofis using elementary
calculus techniques rather than optimization.

2 Optimality Conditions
2.1 Equality Constraints

First, consider the program
min{f(x) : hy(x) =0,k=1,...,9, xe U}, 4

whereU is an open subset &" and the functiond, h,, k=1,...,q, are continu-
ously differentiable. The functiofi is called theobjective functiorof the program.
The feasible setdenoted by#, is the set of points ifR" which satisfy the con-
straints. Then, the classical Euler-Lagrange multiplige states, e.g. [8],

Theorem 1. Suppose thata R" solveg4) and that the gradientshy(a), ..., 7hq(a)
are linearly independent. Then,

q
vi@+H Avhd(a) =0, (5)
=1

for some (Lagrange multipliersly € R,k=1,....q. [ ]
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Example 1Suppose thak is ann x n Hermitian matrix with eigenvalue¥, > ... >
An. To prove the Rayleigh Principle (1), consider the equivefgogram

minimize{—(x,Ax> 11— ix,z =0,x¢ R”} . (6)

Since the objective function is continuous while the felgsiet is compact, the
minimum is attained at songec .% C R". If we apply Theorem 1, we see that there
exists a Lagrange multiplie¥ € R such that

2Aa—2Aa=0,

i.e.ais an eigenvector corresponding to the eigenvalue equiktbagrange mul-
tiplier A. Since the objective function

(a,Aa) =A(a,a) = A,

we conclude thad must be the largest eigenvalue and we get the desired result.
If we now add the constraint thatbe restricted to the — 1 dimensional subspace
orthogonal toa, then we recover the second largest eigenvalue. Continnitigs
manner, we get all the eigenvalues. More precisely jbo, .. .,ax arek mutually
orthonormal eigenvectors corresponding tokltergest eigenvalues é{, A1 > ... >

Ak, then we solve (6) with the added constraints

(xa)=0, i=1... .k

The gradients of the constraints are necessarily lineadgpendent since the vec-
torsx, anda;, i =1,...,k, are (mutually) orthonormal. Now # is a solution, then

(5) yields
k
2hAa—2Aa+ Y aja =0,
2,

for some Lagrange multipliers, ai,i = 1,... k. However, taking the inner product
with fixed a;, and using the fact that

(Aaa) = (a,Ag) = Ai(a,a) =0,

we seethat; =0, i=1,...,k and scAa= Aa, i.e.ais the eigenvector correspond-
ing to the(k+ 1)—stlargest eigenvalue. This argument also showsAtracessarily
hasn (real) mutually orthonormal eigenvectors. [ |

Example 2 Consider the Kantorovich inequality, e.g. [1, 3],
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2
1< (%AX) (X, A™x) < % <\/;ii+ \/Qig , 7

whereA is ann x n positive definite Hermitian matrix with eigenvalugs> ... >
An>0,xe R", and||x|| = 1. This inequality is useful in obtaining bounds for the rate
of convergence of the method of steepest descent, e.g.d§jrdve the inequality
we consider the following (two) optimization problems

min(max) fi(a) := (3L, )(2?:131'2)\;1) (8)
subjecttog(a) :=1— z|:1a1 =0,
wherea= (g) € R",a = (x,u;) andu;,i = 1,...,n, is an orthonormal set of eigen-
vectors ofA corresponding to the eigenvalugs i =1,...,n, respectively. Thus,

f1(a) is the middle expression in (7). Suppose that the veztor(a;) solves (8).
Then, the necessary conditions of optimality state thas the Lagrange multiplier)

ai/\i<2a12/\j1>+aa)\il(ZaJZ)\J-)—ua;_O,i_l,...,n; Za,-zzl. (9)
J J i

Thus,

<Za2/\ >+/\i1 <zaj2Aj> =, if g #0. (10)
J

On the other hand, if we multiply (9) bg and sum over, we get

u_2<zaj2Aj> (zaZ/\ >_2f1 a). (11)
J

By (10) and (11), we can replade(a) in (8) by the middle expression in (10), i.e.
by f2(a). The new necessary conditions for optimality (wjittplaying the role of
the Lagrange multiplier again arag+ 0) are

Ai Aj .
a,/\JJra,)\ —aju=0, j=1,....n

Now, if botha; # 0,8 # 0, we get

)\i+Aj

f3(a) = A_J N U (12)

And, multiplying (12) bya; and summing ovey yields

A A
u= ;ajz (/\—; + /\—:> = fy(a).
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Thus, we can now replack(a) (and sofi(a)) in (8) by f3(a). Note thata does
not appear explicitly inf3(a). However, the and j must correspond te; # 0 and
aj # 0. Consider the function

_Xy
h(Xay) - y + X’ (13)
where 0< a < x<y < f3. Since

2 _\2
oy =LY <o (<oitxzy)

and, similarlydiyh(x,y) >0 (>0if x#vy)), we see thah attains its maximum at
x=a andy = 3, and it attains its minimum at=y. This shows that X f3(a) and
that f3 attains its maximum a}ﬁ + ﬁ—; i.e. ata; # 0 andap, # 0. The left-hand side
of (7) now follows from Z1(a) = fy(a) = f3(a). Now, to havefs(a) = f»(a), we
must choosey = a, = % anda; = 0,V1 < i < n. Substituting this choice o in
f1(a) yields the right-hand side of (7). [ |

2.2 Equality and I nequality Constraints

Now suppose that program (4) has, in addition, the inequedibstraints (continu-
ously differentiable)
g(x) <0, i=1....m (14)

Then, we obtain the John necessary conditions of optimé&8e e.g. [8].)

Theorem 2. Suppose that & R" solves (4) with the additional constrain{&4).
Then, there exist Lagrange multiplier vectars RT“, a € RY, not both zero, such
that

Ao f(a)+ A v ai(@) + 31, a5 vhij(a) =0,

Aigi(a) =0, i=1,...,m (15)

The first condition in (15) iglual feasibility The second Condition in (15) is
called complementary slacknesis shows that either the multipliex; = O or the
constraint isbinding, i.e. gi(a) = 0. The Karush-Kuhn-Tucker conditions (e.g. [8])
assume &onstraint qualificatiorand havelg = 1.

Example 3Holder’s inequality states thatiy € R") ., are (positive) vectorg) >
1,andq=p/(p—1), then
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n 1/p 1/q
<x,y>=_zl>qyi§<2>¢’> (Zﬁ) = [IXlIpllYlla-

We now include a proof of this inequality using the John Mliér Rule. (This
proof corrects the one given in [8].)
Fixy = (yi) € R, and consider the program

min £ = — 5y xy
subjecttog(x) := 3" ;x*-1<0
hi(x) == =X <0,i=1,.

Holder’s inequality follows if the optimal value is||y|q. Since the feasible set is
compact, the minimum is attained at say- (&) € R".. Then, there exist constants
(Lagrange multipliersjo > 0,A1 > 0,y > 0, not all zero, such that

—Aoyi +Apaf " — % =0, % >0,
A1g(a) =0, ya =0,Vi.

This implies that, for eachwe have

—“AoYi +Mpad t=y=0,ifa >0,

Sincey; > 0 andAg > 0, we conclude thakpy; = ¥ = 0, if & = 0. Therefore, we get
—Aoyi +A1pa” t =y =0,Vi. (16)

The remainder of the proof now follows as in [8]. More prebissince not all the
multipliers are 0, ifAg = 0, thenA;1 > 0. This implies that

9(a) =0, (17)

and, by (16) that = 0, contradiction. On the other hand,Af = 0, thenAy > 0
which impliesy = 0, contradiction. Thus, bothy andA; are positive and we can
assume, without loss of generality, thet= 1. Moreover, we conclude that (17)
holds. From (16) and (17) we get

—f(a) =yl ayi
= Apylqa’
= )\1p.

Sinceq=p/(p—1), (16) and (17) now imply that

Zlyl Zl (A1p)%af! = (A1p)¥ = —f(a)%.



Henry Wolkowicz
2.3 Sensitivity Analysis
Consider now theonvex (perturbed) program
H(g) = min f(x)
subjecttogi(x) <&, i=1,...,m,
(PE) hj(x):8j7 j:m+17"'aqa (18)
xeUu,
whereU is an open subset &", and the function$ andg;, i = 1,...,m, are convex
andh;j, j=m+1,...,q, are affine. Th@eneralized Slater Constraint Qualification
(CQ)for (P;) states that

there existx & intU such that
g(X) <sg,i=1,....m andh;(X) =¢,j=m+1,....q.

(19)
We can now state the convex multiplier rule and the corredppgnshadow price
interpretation of the multipliers. (See e.g. [8, 9].)

Theorem 3. Suppose that the CQ {19) holds for(P,) in (18). Then,

u(O)=min{f(x)+.i/\igi(x)+_ % 1)\jhj(x): xeU},
i= j=mt

(20)
forsomeA; € R, j=m+1,...g,andA; >0, i
then in addition

1,...,m. If ac .# solves(R),

Aigi(a)=0, i=1,....m

(21)
Theorem 4. Suppose that & .#. Then, (20) and (21) imply that a solv@®).
Theorem 5. Suppose that’aand & are solutions ta(P.1) and (P.z), respectively,
with corresponding multiplier vectos® andA2. Then,
(2—eh A?) < f(al) - f(a?) < (e2— &L AL). (22)

|
Note that since the functions are convex and the problenig20) unconstrained
minimization problem, we see that é € .# solves(R), then (20) and (21) are
equivalent to the system

Vi@ +3MAivgi(@)+ 3 A vhi@) =0
Ai>0, Aigi(a)=0, i=1,....m

(23)
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Moreover, since (a') = ('), whena' solves(P,i), (22) impliesthat-A' € du(e"),
i.e. the negative of the multipliek' is in the subdifferential of the perturbation
functionpu(g) ate'. In fact (see [9])

J0u(0) = {—A : A is a multiplier vector forRy)}.
If A is unique, this implies that is differentiable at 0 and7p1(0) = —A . Note that

du(@ ={pecR": (@,n—a)<u(n)—u@)y}.

We will apply the convex multiplier rule in the sequel. Ndbat the necessity of
(23) requires a constraint qualification, such as Slaterglition, while sufficiency
does not. Thus, in our applications we do not have to worryuabay constraint
qualification. For, as soon as we can solve (23), the suffigignarantees optimal-
ity. Note that necessity is used in numerical algorithms.

3 Generating Eigenvalue Bounds

We consider th@ x n matrix A which has real eigenvaluds > ... > A,. We have
seen how to apply optimization techniques in order to preveal known inequal-
ities. Now suppose that we are given several facts about #tex#, e.g.n,traceA
and/or def etc... In order to find upper (lower) bounds fbiA ), a function of the
eigenvalues, we could then maximize (minimiZé}) subject to the constraints
corresponding to the given facts ab@utAn explicit solution to the optimization
problem would then provide the, previously unknown, begiarglower) bounds
to f(A) given these facts. To be able to obtain an explicit solutiermust choose
simple enough constraints and/or have a lot of patience.

Suppose we wish to obtain a lower bound fg; the k-th largest eigenvalue,
given the facts that

K L
K :=traceA, m:= o L:=traceh?, & := o .

Then we can try and solve the program

min Ak

subjectto(a) Y11 Ai =K,

(b) $LaA? <L, (24)
(©) A=A <0, i=1,....k—1,

(d) A =A< 0, i=k+1,...,n.

This is a program in the variables with n,k,K andL fixed. We have replaced
the constrainty A? = L with ¥ A? < L. This increases the feasible set of vectors
A = (Aj) and so the solution of (24) still provides a lower bound¥arHowever, the
program now becomes a convex program. Note (nateA)? = (3 Aj)> <ny A2 =
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ntraceA?, by the Cauchy-Schwartz inequality, with equality if andyah Ay = A, =

.. = An. Thus, if (traceA)? = ntraceA?, then we can immediately conclude that
Ai =traceA/n, i=1,...,n. Moreover, ifnL # K2, thennL > K2, and we can always
find a feasible solution to the constraints which strictiys$ess A? < L, and hence
we can always satisfy the generalized Slater CQ.

Theorem 6. If K? < nL and1 < k < n, then the (unique) explicit solution (84)is

1
AM=...= A 1—m+s(EJ{)2, (25)
Ak=...=An=m— S(n kjltl)
with Lagrange multipliers for the constraints (a) to (d)(4) being
1
a= ;21 (nEEll)2 - %’
B= (71" 7 (26)
=0, i=1,... k=1,
M:n7ﬁ+la |7k+13 7n7

respectively.

Proof. Since (24) is a convex program, the Karush-Kuhn-Tucker itmmmd are suf-
ficient for optimality. Thus, we need only verify that the ab@olution satisfies both
the constraints and (23). However, let us suppose that fhé@wois unknown be-
forehand, and show that we can use the necessity of (23) t@.f\e get

a+2BAi—y=0,i=1,....k—1 (27a)
k—1 n

1+a+2BA+ zlyl— =0 (27b)
i= i=kt1

a+2BA+y=0i=k+1,...,n, (27¢)

n
acRB>0p8 <ZlAi2—L> =0,y >0,)(A—A)=0,i=1,....n. (27d)
i=

Now, if 8 =0, then
a=y=-y,i=1... k=1 j=k+1,...,n

This implies that they are all 0, (or alf 0 if k = n) which contradicts (27b). Thus,
B > 0and, by (27d),
TAP=L. (28)
|

From (27a) to (27d), we now have

A-——+—|—1 k=1,
2B 2B
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_—a )
—a 1 Loy
A
L 2,28
Suppose/0 > 0, where 1< ip < k—1. Then (27a) and (27d) imply thag = A, =
2 q 4 20 On the other hand, since we need

M= gt 2 M= o428 > =L k-1,

28 28" 28 "2 2B
we must have; > 0,i =1,...,k— 1 and, by complementary slackness,

—a+y .

Al =Ac= 20 J=1,....k—1. (29)
But then
n
Yi -a ¥ .
,\_____ === +=-=,i=1... k-1,
<=3 Z * 2.2 25 2P

which impliesy|_y,1y; > 0. Buty; > 0 impliesA; = A. This yieldsA; = ... =
Ak = ... = An, a contradiction since we assumed> K2. Thus, we conclude that

=0, i=1,....,k—1.

Now if yj, > 0, for somek+1 < jo < n, thenAj, = B B + 31 ZB Since
Aj = “ ﬁ < Ak, we must havey; > 0, forall j =k+1,...,n. Note thatyJ =0

for aII j =k+1,...,n, leads to a contradiction since thbp— 25 > M= ZB %
Thus we have shown that thA@s split into two parts,
AM=...=A1>A=...=An. (30)

The Lagrange multipliers also split into two parts,

= ="1=0%1=...= =Y.

We now explicitly solve forA1, Ax, a, 3, andy. From the first two constraints and
(28) we get
(k—=DA1+ (n—k+ 1A =K
(k—=1)AZ+(n—k+1AZ=L

Eliminating one of the variables in (31) and solving the t&sg quadratic yields
(25). Uniqueness of (25) follows from the necessity of thé&mality conditions.

It also follows from the strict convexity of the quadraticnstraint in the program
(24). Using the partition in (30), we can substitute (27d)4rib) to get

(31)



12 Henry Wolkowicz

1+a+28(—2 Y _(n—wy=o,

2B
i.e.
1
Ay (32)
In addition,A; — A= 5% — (;—g - %) implies
k-1 \? 1
_ y - il
= 201 —A) (n—k—l— 1) 2ns’ (33)
while
1
“m/ k-1 \? 1
“—‘”1B—E(m) “n (34)
[ |

In the above, we have made use of the necessity of the Karubh-Kucker
(KKT) conditions to eliminate non-optimal feasible solutio8sifficiency of the
KKT conditions in the convex case, then guarantees that we lotwalg found the
optimal solution and so we need not worry about any congtrpialification. We
can verify our solution by substituting into (27).

The explicit optimal solution yields the lower bound as vwaslconditions for it
to be attained.

Corollary 1. Letl <k <n. Then

1
k—1 \?2
>m—( ——
Ak>m <n—k+1) S, (35)
with equality if and only ifA; = ... = Ak _1,Ak=... = Ap. [ |

The above Corollary is given in [12] but with a different pfoBrom the proof
of Theorem 6, we see thit= 0 if k = 1 and so the quadratic constrajpa? < L
may not be binding at the optimum. Thus the solution may téothe fact that
s AZ = traceA?. This suggests that we can do better if we replace the iniggual
constraint by the equality constraip\2 = L. We, however, lose the nice convexity
properties of the problem. However, applying the John diov, Theorem 2, and
using a similar argument to the proof of Theorem 6, yieldsstkicit solution
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i.e. we get the lower bound
M > m+s/(n—1)2,

with equality if and only ifA; = ... = A,_1. (This result is also given in [12] but
with a different proof.)

The Lagrange multipliers obtained in Theorem 6 also prothgesensitivity co-
efficients for program (24). (In fact, the multipliers areigqure and so the perturba-
tion function is differentiable.) This helps in obtainingther bounds for the eigen-
values when we have some additional information, e.g. frars@orin discs. We
can now improve our lower bound and also obtain lower bouodsther eigenval-
ues.

Corollary 2. Let1 < k < n. Suppose that we know
Akri — A < &, (36)
whereg; > 0,i=1,...,n—k. Then

1

k—1 \2 1 Nk
>m—( ——— - Ne&.

Az m (n—k—i—l) s—i—n—k—i—li;a 37)

Proof. The result follows immediately from the left-hand side a2)2f we perturb
the constraints in program (24) as given in (36) and use thapters y; =
Note thatAx remains thék-th largest eigenvalue.

_1
n=k+1°

Corollary 3. Let1 < k < n. Suppose that we know
Ari-1— Akst < &,
forsomeg; > 0,i=1,...,t. Then

1
k—1 \? 1 ¢

Mesy > m— - ’

kbt =M (n—k+1> S n—k+1i;€'

Proof. Suppose that we perturb the constraints in program (24)tairob

A — A< g,i=1,...t. (38)

Sinceg > 0, this allows a change in the ordering of the for then we can have
Akii = Ak + & > Ak Thus the perturbation in the hypothesis is equivalent 8).(3
From (22), the result follows, since theth ordered); has become thé +t)-th
orderA;. |
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The results obtained using perturbations in the above twoll2oies can be ap-
proached in a different way. Since the perturbation fumctiois convex (see e.g.
[9]) we are obtaining a lower estimate of the perturbed val(g by using the mul-
tiplier whose negative is an element of the sub-differémtjae). We can however
obtain better estimates by solving program (24) with the pevturbed constraints.

Theorem 7. Under the hypotheses of Corollary 2, we get

1
k—1 \?2 1 !
>m— [ —— .
Az m <n—k+1) S‘M_n—kJrljZlg“ (39)

where )
S§§_<n—k+1>zﬁlef—(zﬁlej)
N n(n—k+1) '
Equality holds if and only if

M=...=A 1 Ai—Ak=-¢,i=1... L

Proof. We replace the last set of constraints in program (24) by #neubed con-
straints (36), foi = k+1,...,k+t. The arguments in the proof of Theorem 6 show
that the solution must satisfy (28) and

M= =M1 Aqj—Ak=—¢,j=1,....t.

We can assume thit-t = n, since we must havl;; < Ax;+ and so we can add
the constraints
Ayt — A< —&,) > 1,

if required. This leads to the system

(k=D)A1+Fi1(A— ) =K, (40)
(k— 1))\%4— ZJ::L(/\k_ &) =L
Lete :=3|_; & ande = yi_; 7. Then (40) reduces to

(k=D)A1+(n—k+ 1A =Ke ;=K +¢,
(k=DAZ+(n—Kk+1AZ—2eA=Ls =L —¢.

Then
A= (Ke — (k= 1)A1)/(n—k+ 1),

Substituting forAy yields the quadratic
n(k—1)A7 — 2(k—1)(Ke — €)A1 + KZ — 2eKg — (Nn—k+ 1)L = 0,

which implies
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1

1
K n—k+1\7 [ (n—k+DLe+e2  [(K\?|?
Al_ﬁ+< k—1 > { nn—k+1)  \n (41)
and
1 _ 1
K k=1 \Z2[L (n—k+1e+e? [K\?|®
A= —+ £ L_(n-k+lete” (K (42)
n n-—k+1 n—k+1 n n(n—k+1) n
|

Note that the partial derivative with respecttaj, ate; = 0, of the lower bound
for Ac in (39) is—1/(n—k+ 1). This agrees with the fact that the corresponding
multiplierisy; = 1/(n—k+1).

Corollary 3 can be improved in the same way that Theorem 7axrgs Corollary
2. We need to consider the program (24) with the new consgrain

/\kfi—)\kgé‘i,i:l,---,t,

whereg; > 0 andk has replaceld+t. Further improvements can be obtained if more
information is known. For example, we might know that

/\'[Jri_/\tg_gia i:l,...,S,

wherel +s<t+s< kork+s<t+s<n.Inthese cases we would obtain a result
asin Theorem 7.

In the remainder of this section we consider bounds\for A, and A, — A,. To
obtain a lower bound foky + A, we consider the program

minimize A+ A,

SA L, (43)

Note that we have ignored the constraints- Ax > 0,i = 1,... k— 1. From our
previous work in the proof of Theorem 6, we see that the Lagganultipliers for
these constraints should all be 0, i.e. we can safely igi@®et constraints without
weakening the bound.

Theorem 8. Suppose that K< nL and1 < k < ¢ < n. Then the explicit solution to
(43)is

1.1fn—¢>¢—k—1,then

(44)
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with Lagrange multipliers for the constraints

a=—2BA— nk+1)
k—
B=wnim)? _ (45)
V= 61—2/(n—k+1),|:k+1,...,£—1,j:€+1,...,n,
2(n— F+l)_1
Vo= n—k+1 :

2. 1fn—¢ <¢—k—1,thenA; is the solution of the quadrati&1) and

M=...= A1,
M= :M1:M+§% (46)
Ap=.. _)‘”_)‘1+2(n ?11)

with Lagrange multipliers for the constraints being

a__ZBAla

B_ n)\l K?
V=1/(0—K),i=k+1,..0-1y=0,

Qzlﬂn—ﬂ+nJ=£+L“wn

Proof. To simplify notation, we le3 « 2(3. The Karush-Kuhn-Tucker conditions
for (43) yield

@ a4+ BA —0, i=1,.. k-1,
(b) L+ 0 + BA — Sy ¥ =0,

(c) o+ BAi+ v =0,i=k+1,...,0—-1,
i+a+pA+ v —3]119=0, (47)
(e) a + BA; + 0 =0, j=(+1....n,

(f) valvéJ ZO, B(ZT/\E—L):O’ v'a]v

(@) ¥Ai—A) =0, 8j(Aj—Ae) =0, Vi, j.

First suppose thgd = 0. If k > 1, we get thatr = 0 and soy = §; = 0, for alll
i, j. This contradicts (47)(b). K= 1, we geta = —9; = —y, foralli, j. Soifa #0,

we must havé; = ... = A, = m. So we can lek > 1 and assume th# > 0. Then
we get

A= % i=1,...,k=-1

’\k:%l_ % +Zi£:k+1%

A = - % - % i=k+1..../-1

It a Vi Y7410
M=FoE T B TTp o
Aj = ’T" - FJ ji=¢+1,....n

To simplify notation, the indekwill now refer toi = k+1,...,¢— 1 while the index
jwillreferto j =£¢+1,...,n. SinceAj, < Ay,ip=k+1,...,¢—1, we get
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Therefore, there exists at least gne> 0. This implies thaf;, = Ay, and

Now if y, =0, then

_—a_-a
M=p g g

which is a contradiction. We conclude

= Aip = Ak,

Aip=AYo =13V, fo=k+1,....0-1
Note that ify, = 0, we get
v=1/({—k),i=k+1,....,0—1
Similarly, sinceAj, < A¢, jo=4¢+1,...,n, we get
> -v=1-9,
i.e. at least on@;j, > 0 and so\j, = A,. But if §;, = 0, then

—a _ —a
M=F B

a contradiction. We conclude

:/\io =As,

Aig =200 =1=3"10j+V, Jjo={+1,....n
So that ify, = 0, we also have
0, =1/(n—(+1),j=0(+1,...,n.
There now remains two cases to consider:
y» = 0 andy, > 0.

SinceAg > Ay, we must have

(-1 n
Vi+ 2y > 51'.
i=k+1 j=t+1

Moreover
Aj <Ap < A=A, foralli, j,
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which implies that
0j >y, foralli, j.

So that ify, = 0, we must have
l—Kk—1>n—/.

From the expressions far, o;, we get

POBTERE
:’\i:T_(ffk)B’ i=k+1,....0-1,
Ay = -1_a + n—¢
B ga (nfé+11)[3’
=A=F ~@wrmp 1 =¢+1...n
Thus L
A=A~ g1
A=A A 1k) (49)
=17 Bln—r+1)
After substitution, this yields
-1 K— n)\l
= . 50
5= 3 (50)

Sincef > 0, we can apply complementary slackness and substitut®fand A,.
We get the quadratic

2 2
(K—DAZ+ (£ —K) (/\1+ %) +(n—£+1) (/\1—|— 2(Kn:7x11)) =1L,
(51)

or equivalently
{4(t—K)(n—+1)(k—=1)+ (n—1+1)(2(¢—k) —n)?+ (1 —K)(2(n— £+ 1) —n)?} A?
+2K{(n=1+1)(2(l—Kk)—n)+ (I =k)(2(n—=£+1) —n)}A;
+{(n=1+ DK+ (I —K)KZ—4({—K)(n— ¢+ 1)L} = 0.

Note that the above implies

K—nAy /1 1
Ak+Ar=2A1+ 5 (ﬁ—k+n—é+1)' (52)

In the case that—k—1 < n—¢, we gety, > 0. Thus, A, = A and
Ai=Agi=k+1,....n (53)

Substitution yields the desired optimal values AoiMoreover,
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4 n
y=90=1- y=1-— O+ V.
t=k+1 s=+1

Lety =y andd = 9;, then we get

y=0=1-(({—k=1)y—y=1-(n—0)0+ V.

This implies
y=0=2/(n—k+1)
- 54
p=2ed -1 =

Now if k > 1, we see that

Vi k—1 :
P=3=A _2<n—k+1) /(9.

Then
a=—BA—y.

To obtain an upper bound fdg — A,, we consider the program

minimize —Ax+ Ay

subject toy A; = K,
SAZ<L, (55)
A—Ai<0,i=1,... k=1,
Aj—A<0,j=¢+1,...,n

Theorem 9. Suppose that K< nL and1 < k< ¢ < n. Letm= mL=L-— (I —k—
1)m, ands? = Lt — M. Then the explicit solution to progra(B5)is

Alz...:)\k:m—l-&frls_: m+ﬁ’
Agr=-.=hg=m - =m (56)
Av=...=An = Mt 55S = M= o7

with Lagrange multipliers for the four sets of constrainésriyg

o =—-2mg,
1 1
\ kAT
P="5um" (57)

v=1/ki=1,....k—1
o =1/(n—L+1),j=(+1,....n,

respectively.
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Proof. The proof is similar to that in Theorem 8. Alternatively, ficiEncy of the
KKT can be used. [ |

The Theorem yields the upper bound

1

1 (1 1 2
—an<nis| =4+ — ) .
Ax—As<n S<k+n—£+1)

4 Fractional Programming

We now apply techniques from the theory fodctional programmingto derive
bounds for thé&antorovich ratio

Ak— Ay
/\k—i—)\g.

(58)

This ratio is useful in deriving rates of convergence for #ueelerated steepest
descent method, e.g. [6].
Consider thdractional program(e.g. [10, 11])

fx) }

maxy —— I XE .Z ;. (59)
{ 9(x)

If fis concave ang is convex and positive, them= é is apseudo-concavieinc-

tion, i.e.h: R" — R satisfies(y — x)! 7 h(x) < 0 impliesh(y) < h(x). The convex

multiplier rules still hold if the objective function is psdo-convex. We could there-

fore generate bounds for the ratio (58) as was dongfam Section 3. However, it
is simpler to use the following parametric technique. Let

h(q) := max{f(x) —qg(x) : xe F}. (60)

Lemma 1 ([2]). Suppose that(x) > 0, for all x € #, and that q is a zero of(lg)
with corresponding solutior € .%. Thenx solveq59).

Proof. Suppose not. Then there exists .% such that

f(x)  f(x
= — —,
RRTEINTEY
which yields 0< f(x) — qg(x). This contradicts the definition of [ |

We also need the following
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Lemma2 ([12]). LetwA € R" be real, nonzero vectors, and let
m=ATe/nand€=ATCA/n,
where e is the x 1 vector of ones, and the centering matrixd — e€’ /n. Then
—s(nWTCw)Z <w'A —mwe=w'CA < s(nwCw)Z.
Equality holds on the left (resp. right) if and only if
A =aw+be

for some scalars a and b, where<a0 (resp. a> 0). [ |

We now use the above techniques to derive an upper bounddtattitorovich
ratio in (58). Consider the program

Ae—As
max Y, = Atﬂjﬁ
subject toy A =K
TAZ<L (61)

A—2i<0,i=1,... k=1
Ai—A<0,i=/(+1,...,n.

Theorem 10. Suppose that < k < ¢ < n,K? < nL, and Theorem 8 guarantes+
As > 0. Then the explicit solution t(51) is

1
oy An—l 1K) — (n—041) (1 2
AM=...=X= 5< , k(gm7(€+1+k))( :
— 1-H2
A=...=A = prﬂk’

(P+K(N—f+1—p)Z(n—L+1+K)
2(p+K)(K(n—L+1)2 +{(p+K)(N—L+1—pti(n—r+1+k)

p=K (-1

pi=K—-({—k-1)k

R ke 2

pi=1- K (n—l+14K) (%+ Ll (k)2 p%) .
Proof. Let.# denote the feasible set of (61), i.e. the sek ef (A;) € R" satisfying
the constraints. We consider the following parametric paioy

(Py) h(q) :=max{(Ak—Ap) —q(Ak+Ar): A eF}.

Thenh(q) is a strictly decreasing function gfand, ifA* solves(P,) with h(q) =0,
then, by the above Lemma A} solves the initial program (61) also.
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The objective function ofP;) can be rewritten as min(1— q)Ax+ (1 + q)A,.
The Karush-Kuhn-Tucker conditions fo,) now yield (with 8 < 23 again):

1 M
=&
k—th| —(1-q) paLe
+al...[+B|-- |+ |+
I—th] 1+4q¢
1 An
+ +...+ =0
YoM
Yi

B>0;6>0Vi=1,....k=1y>0Vj=~,+1,....mA € F,

B (> A?—K?) =0:8 (A—Ai) = 0,¥i;y; (Aj — A¢) = 0,¥].

SinceAx > A, and we seekj such thath(q) = 0, we need only considey > O.
Further, if 3 = 0, then we get the following cases:

k<i</?¢:0=a+pAimpliesa =0
i<k:0=a+BA—¢§impliesa =& =0
(<i:0=a=pAi+yimpliesa=—-y=0 (63)
i=k:0=—(1-qg)+a+BA+3d impliesa=—-5§+1—q
(=i:0=4(1+q)+a+BA—Y & impliesa =5 y — (1+q).

These equations are inconsistent. Therefore, we can agdum@, which implies
thaty A2 = L.

Now, fori < k, eitherAg = A; or & = 0 which implies thai\; = —a /3. Similarly,
for¢ <i, Ay=AiorAi=—a/B.And, fork <i < ¢, Aj = —a/B. We can therefore
see that our solution must satisfy

A=Mi=1,...k
A=A, i=k+1,...,0-1
A=A,i=¢,...n

Now rather than continuing in this way, we can apply Lemma&w.= (w;), with
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Wizl;kq7 i=1,...,k
w; =0, i=k+1,...,/-1
W = ;Elffrql),izﬁ,...,n.

Then

(LM~ (L+ A, = L5k A HA 50 A =wia;
mwe=m(l-q—1-q)=—-2mg
wicw = w'lw—tw'ee'w
12 2
= S it R (4e)

1-q)2 1 2
nw'Cw = M9 4 A7 42,

Therefore, Lemma 2 yields

n(1-q)?  n(1+q)?
k n—-¢+1

1
2
1=k 1+ < ~2may-sf b o
with equality if and only if
A =aw+be
for some scalara andb with a > 0. And, the right hand side of (64) equél&),

the maximum value ofP;).
We now need to fing such thah(q) =0, i.e.

1— 2 1 2
4Pl — Sz{n( - a) " :(_;j)l —4q2};

k(n— ¢+ 1)4nPg? = (n— £+ 1)$n(1— )2 + kn(1+ q)% — k(n — £ + 1)S4c?;

(=k(n—£+1)4mP+n(n— £+ 1+ k) —k(n— £+ 1)s°4) ¢?
+2¢n(—(n— £+ 1) +K)q
+s’n((n—¢+1)+k) =0

(NS — 4km? — 45°%k) (N — £+ 1) + nSK| % + 2nS(k— (n— £+ 1))g+nF(n—(+1+k) =0

(k= (n—L+1)) —n?*(k— (n— £+ 1))%— [as abovins(n— ( + 1+ K)?
9= [as above

We have chosen the negative radical for the root, since thetdyin [ ] is negative
and we need, > 0. The conditions for equality in (64) yield:

A=alt@ipi=1,...,
Ai=bi=k+1,..,0-1

Ai=200 pi=4,...,n

k

or
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1-q a(l+q)
N a(T>+b+ b
N = el <1+q> b

a(17a)(f—(+1)+ak(1+q)
A7+ 1) (1—q)—a(Lt-q)k+ 2Dk n—7+ 1)

We now solve form andb by substituting fon; in 3 Aj = K andy A2 =L
al-q ke _ —al+a))
k( K )+b+(€ k—1)b+(n £+1)(n—€+1 +b=K

or
(k+¢—k—1+n—(¢+1)b=K-a(l—q)+a(l+q)
2ag+K
P

b:

And

k(“ﬂzw)+b?+w—k_1m?+m_e_1)(§¥%§¥+bﬁ<_K2

or

201 N2 a2 2
m+£—k_1+n_e+ub?+pml_m_zaa+qﬂb+a(1kq)+f;g2fl__K:o

2 2
k(a—l_q+ 2aq+K) +(0—k-1) (2aq+K) +(n—0+1) (_a(Hq) + 2aq+K) —K=0
k n n n—-¢+1 n

(C(2)5) s (31
+(n—(+1) <+a(;(_1€++qi+2—:> +§>2—L—0;

[kch+%) -k nJ} 4 (n— e+n( “_m+&01¥

—+1

+aﬂk<1_q4-f0 (k- quﬁ +(n—- e+1)<2r:q Ji;jﬁ)%ﬂ

(&) sk (S) s (6) Lo

42 )2 2
Ik C Rl S
n k n—-/+1

1

4 —nm? +L 2
o4 (1-9? | (14q)?
no Tk T D

Substitution for the\; yields the desired results. [ |
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Lety = Ax/A;. Then

_y-1
e = y+1
and q 5
Yke
£ =—"9>0.
dy (y+1)7?

Thusy is isotonic toy,. This yields an upper bound g, see [13]: If (to guarantee
A¢ > 0) we havg({ — 1)L < L, then

NI=

A _ c+k+ {(c+k)(n—¢+1-c)}

Ar —

)

Nl

ct+k— {4 (c+k(n—¢+1-c)}

where )
c= Q —(£-1).

(These inequalities are also given in [7].) Note that

y+1_ At
y—1 A=A/

is reverse isotonic tg. Thus we can derive a lower bound for this ratio.

5 Conclusion

We have used optimization techniques to derive bounds fations of the eigen-
values of am x n matrix A with real eigenvalues. By varying both the function to be
minimized (maximized) and the constraints of a properlyrfolated program we
have been able to derive bounds for kath largest eigenvalue, as well as for sums,
differences and ratios of eigenvalues. Additional infotiova about the eigenval-
ues was introduced to improve the bounds using the shadoesof the program.
Many more different variations remain to be tried.

The results obtained are actually about ordered sets of atsAp > ... > Aj
and do not depend on the fact that these numbers are the algeswf a matrix.
We can use this to extend the bounds to complex eigenvallescdnstraints on
the traces can be replaced by

3 vi =traceT, y (vi)? < traceT*T,

wherev; can take on the real, imaginary, and modulus of the eigeaga|uand the
matrix T can becom¢A+ A*)/2, (A— A*)/2i. Further improvements can be made
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by using improvements of the Schur inequaEtY(vi)2 < tracel *T. This approach
is presented in [12] and [13].
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