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Abstract This paper illustrates how optimization can be used to derive known and
new theoretical results about perturbations of matrices and sensitivity of eigenval-
ues. More specifically, the Karush-Kuhn-Tucker conditions, the shadow prices, and
the parametric solution of a fractional program are used to derive explicit formulae
for bounds for functions of matrix eigenvalues.

1 Introduction

Many classical and new inequalities can be derived using optimization techniques.
One first formulates the desired inequality as the maximum (minimum) of a function
subject to appropriate constraints. The inequality, alongwith conditions for equality
to hold, can then be derived and proved, provided that the optimization problem can
be explicitly solved.

For example, consider theRayleigh principle

λmax = max{〈x,Ax〉 : x∈ R
n,‖x‖= 1}, (1)

whereA is ann× n Hermitian matrix,λmax is the largest eigenvalue ofA, 〈·, ·〉 is
the Euclidean inner product, and‖ · ‖ is the associated norm. Typically, this princi-
ple is proved by maximizing the quadratic function〈x,Ax〉 subject to the equality
constraint,‖x‖2 = 1. An explicit solution can be found using the classical and well
known, Euler-Lagrange multiplier rule of calculus. (See Example 1 below). It is an
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interesting coincidence thatλ is the standard symbol used in the literature for both
eigenvalues and Lagrange multipliers; and the eigenvalue and Lagrange multiplier
coincide in the above derivation. Not so well known are the multiplier rules for
inequality constrained programs. TheHolder inequality

〈x,y〉=
n

∑
i=1

xiyi ≤
(

n

∑
i=1

xp
i

)1/p( n

∑
i=1

yq
i

)1/q

,

wherex,y ∈ R
n
+, p > 1,q = p/(p− 1), can be proved by solving the optimiza-

tion problemh(x) := maxy{∑i xiyi : ∑i y
q
i − 1 ≤ 0,yi ≥ 0,∀i}. The John multi-

plier rule yields the explicit solution. (See [8] and Example 3 below). The classi-
cal arithmetic-geometric mean inequality(α1 . . .αn)

1/n ≤ 1
n(α1 + . . .+ αn), where

αi > 0, i = 1, . . . ,n, can be derived by solving the geometric programming problem

max{Πiα1 :
n

∑
i=1

αi = 1,αi ≥ 0,∀i}.

Convexity properties of the functions, which arise when reformulating the in-
equalities as programming problems, can prove very helpful. For example, convex-
ity can guarantee that sufficiency, rather than only necessity, holds in optimality
conditions. Thequasi-convexityof the function

φ( f ) =

∫

f dν
∫

(1/ f )dµ , (2)

whereµ andν are two nontrivial positive measures on a measurable spaceX, can be
used to derive the Kantorovich inequality, [1]. (We prove the Kantorovich inequality
using optimization in Example 2.) We rely heavily on the convexity and pseudo-
convexity of the functions.

Optimality conditions, such as the Lagrange and Karush-Kuhn-Tucker multiplier
rules, are needed to numerically solve mathematical programming problems. The
purpose of this paper is to show how to use optimization techniques to generate
known, as well as new, explicit eigenvalue inequalities. Rather than include all pos-
sible results, we concentrate on just a few, which allow us toillustrate several useful
techniques. For example, suppose thatA is ann×n complex matrix with real eigen-
valuesλ1 ≥ . . . ≥ λn. A lower bound forλk can be found if we can explicitly solve
the problem

min λk

subject to ∑n
i=1 λi = traceA

∑n
i=1 λ 2

i ≤ traceA2

λk−λi ≤ 0, i = 1, . . . ,k−1
λi−λk ≤ 0, i = k+1, . . . ,n.

(3)

We can use theKarush-Kuhn-Tuckernecessary conditions for optimality to find the
explicit solution. (See Theorem 6.) Sufficiency guaranteesthat we actually have the



Generating Eigenvalue Bounds Using Optimization 3

solution. This yields the best lower bound forλk based on the known data. (Further
results along these lines can be found in [4].)

In addition, the Lagrange multipliers, obtained when solving the program (3),
provideshadow prices. These shadow prices are sensitivity coefficients with respect
to perturbations in the right-hand sides of the constraints. We use these shadow
prices to improve the lower bound in the case that we have additional information
about the eigenvalues. (See e.g. Corollaries 2 and 3.)

1.1 Outline

In Section 2 we introduce the optimality conditions and use them to prove the well
known: (i) Rayleigh Principle; (ii) Holder inequality; and(iii) Kantorovich inequal-
ity. In Section 3 we show how to use the convex multiplier rule(or the Karush-Kuhn-
Tucker conditions) to generate bounds for functions of the eigenvalues of ann×n
matrixA with real eigenvalues. Some of these results have appeared in [7, 12, 4]. In-
cluded are bounds forλk,λk+λℓ andλk−λℓ. We also show how to use the Lagrange
multipliers (shadow prices) to strengthen the bounds. Section 4 uses fractional pro-
gramming techniques to generate bounds for the ratios(λk−λℓ)/(λk+λℓ). Some of
the inequalities obtained here are given in [7, 12] but with proofs using elementary
calculus techniques rather than optimization.

2 Optimality Conditions

2.1 Equality Constraints

First, consider the program

min{ f (x) : hk(x) = 0,k = 1, . . . ,q, x∈U}, (4)

whereU is an open subset ofRn and the functionsf , hk, k = 1, . . . ,q, are continu-
ously differentiable. The functionf is called theobjective functionof the program.
The feasible set, denoted byF , is the set of points inRn which satisfy the con-
straints. Then, the classical Euler-Lagrange multiplier rule states, e.g. [8],

Theorem 1. Suppose that a∈R
n solves(4)and that the gradients▽h1(a), . . . ,▽hq(a)

are linearly independent. Then,

▽ f (a)+
q

∑
k=1

λk▽hk(a) = 0, (5)

for some (Lagrange multipliers)λk ∈ R,k = 1, . . . ,q.
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Example 1.Suppose thatA is ann×n Hermitian matrix with eigenvaluesλ1≥ . . .≥
λn. To prove the Rayleigh Principle (1), consider the equivalent program

minimize

{

−〈x,Ax〉 : 1−
n

∑
i=1

x2
i = 0,x∈ R

n

}

. (6)

Since the objective function is continuous while the feasible set is compact, the
minimum is attained at somea∈F ⊂R

n. If we apply Theorem 1, we see that there
exists a Lagrange multiplierλ ∈ R such that

2Aa−2λa= 0,

i.e. a is an eigenvector corresponding to the eigenvalue equal to the Lagrange mul-
tiplier λ . Since the objective function

〈a,Aa〉= λ 〈a,a〉= λ ,

we conclude thatλ must be the largest eigenvalue and we get the desired result.
If we now add the constraint thatx be restricted to then−1 dimensional subspace
orthogonal toa, then we recover the second largest eigenvalue. Continuingin this
manner, we get all the eigenvalues. More precisely, ifa1,a2, . . . ,ak arek mutually
orthonormal eigenvectors corresponding to thek largest eigenvalues ofA,λ1≥ . . .≥
λk, then we solve (6) with the added constraints

〈x,ai〉= 0, i = 1, . . . ,k.

The gradients of the constraints are necessarily linearly independent since the vec-
torsx, andai, i = 1, . . . ,k, are (mutually) orthonormal. Now ifa is a solution, then
(5) yields

2Aa−2λa+
k

∑
i=1

αiai = 0,

for some Lagrange multipliersλ ,αi , i = 1, . . . ,k. However, taking the inner product
with fixedai , and using the fact that

〈Aa,ai〉= 〈a,Aai〉= λi〈a,ai〉= 0,

we see thatαi = 0, i = 1, . . . ,k, and soAa= λa, i.e.a is the eigenvector correspond-
ing to the(k+1)−st largest eigenvalue. This argument also shows thatA necessarily
hasn (real) mutually orthonormal eigenvectors.

Example 2.Consider the Kantorovich inequality, e.g. [1, 3],
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1≤ 〈x,Ax〉〈x,A−1x〉 ≤ 1
4





√

λ1

λn
+

√

λn

λ1





2

, (7)

whereA is ann×n positive definite Hermitian matrix with eigenvaluesλ1 ≥ . . . ≥
λn > 0,x∈R

n, and‖x‖= 1. This inequality is useful in obtaining bounds for the rate
of convergence of the method of steepest descent, e.g. [5]. To prove the inequality
we consider the following (two) optimization problems

min(max) f1(a) :=
(

∑n
i=1a2

i λi
)(

∑n
i=1a2

i λ−1
i

)

subject tog(a) := 1−∑n
i=1a2

i = 0,
(8)

wherea = (ai) ∈ R
n,ai = 〈x,ui〉 andui , i = 1, . . . ,n, is an orthonormal set of eigen-

vectors ofA corresponding to the eigenvaluesλi, i = 1, . . . ,n, respectively. Thus,
f1(a) is the middle expression in (7). Suppose that the vectora = (ai) solves (8).
Then, the necessary conditions of optimality state that (µ is the Lagrange multiplier)

aiλi

(

∑
j

a2
j λ
−1
j

)

+aiλ−1
i

(

∑
j

a2
j λ j

)

− µai = 0, i = 1, . . . ,n; ∑
i

a2
i = 1. (9)

Thus,

f2(a) := λi

(

∑
j

a2
j λ−1

j

)

+ λ−1
i

(

∑
j

a2
j λ j

)

= µ , if ai 6= 0. (10)

On the other hand, if we multiply (9) byai and sum overi, we get

µ = 2

(

∑
j

a2
j λ j

)(

∑
j

a2
j λ−1

j

)

= 2 f1(a). (11)

By (10) and (11), we can replacef1(a) in (8) by the middle expression in (10), i.e.
by f2(a). The new necessary conditions for optimality (withµ playing the role of
the Lagrange multiplier again andai 6= 0) are

a j
λi

λ j
+a j

λ j

λi
−a j µ = 0, j = 1, . . . ,n.

Now, if botha j 6= 0,ai 6= 0, we get

f3(a) :=
λi

λ j
+

λ j

λi
= µ . (12)

And, multiplying (12) bya j and summing overj yields

µ = ∑
j

a2
j

(

λi

λ j
+

λ j

λi

)

= f2(a).
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Thus, we can now replacef2(a) (and so f1(a)) in (8) by f3(a). Note thata does
not appear explicitly inf3(a). However, thei and j must correspond toai 6= 0 and
a j 6= 0. Consider the function

h(x,y) =
x
y

+
y
x
, (13)

where 0< α ≤ x≤ y≤ β . Since

d
dx

h(x,y) =
y(x2−y2)

(xy)2 ≤ 0 (< 0 if x 6= y),

and, similarly d
dyh(x,y) ≥ 0 (> 0 if x 6= y)), we see thath attains its maximum at

x = α andy= β , and it attains its minimum atx= y. This shows that 2≤ f3(a) and
that f3 attains its maximum atλ1

λn
+ λn

λ1
, i.e. ata1 6= 0 andan 6= 0. The left-hand side

of (7) now follows from 2f1(a) = f2(a) = f3(a). Now, to havef3(a) = f2(a), we
must choosea1 = an = 1

2, andai = 0,∀1 < i < n. Substituting this choice ofa in
f1(a) yields the right-hand side of (7).

2.2 Equality and Inequality Constraints

Now suppose that program (4) has, in addition, the inequality constraints (continu-
ously differentiable)

gi(x)≤ 0, i = 1, . . . ,m. (14)

Then, we obtain the John necessary conditions of optimality. (See e.g. [8].)

Theorem 2. Suppose that a∈ R
n solves (4) with the additional constraints(14).

Then, there exist Lagrange multiplier vectorsλ ∈R
m+1
+ ,α ∈R

q, not both zero, such
that

λ0▽ f (a)+ ∑m
i=1 λi▽gi(a)+ ∑q

j=1α j▽h j(a) = 0,

λigi(a) = 0, i = 1, . . . ,m.
(15)

The first condition in (15) isdual feasibility. The second Condition in (15) is
calledcomplementary slackness. It shows that either the multiplierλi = 0 or the
constraint isbinding, i.e. gi(a) = 0. The Karush-Kuhn-Tucker conditions (e.g. [8])
assume aconstraint qualificationand haveλ0 = 1.

Example 3.Holder’s inequality states that ifx,y∈ R
n
++, are (positive) vectors,p >

1, andq = p/(p−1), then
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〈x,y〉=
n

∑
i=1

xiyi ≤
(

∑
i

xp
i

)1/p(

∑
i

yq
i

)1/q

= ‖x‖p‖y‖q.

We now include a proof of this inequality using the John Multiplier Rule. (This
proof corrects the one given in [8].)

Fix y = (yi) ∈ R
n
++ and consider the program

min f (x) := −∑n
i=1xiyi

subject to g(x) := ∑n
i=1xp

i −1 ≤ 0
hi(x) := −xi ≤ 0, i = 1, . . . ,n.

Holder’s inequality follows if the optimal value is−‖y‖q. Since the feasible set is
compact, the minimum is attained at saya = (ai) ∈ R

n
+. Then, there exist constants

(Lagrange multipliers)λ0≥ 0,λ1≥ 0,γi ≥ 0, not all zero, such that

−λ0yi + λ1pap−1
i − γi = 0, γi ≥ 0,∀i

λ1g(a) = 0, γiai = 0,∀i.

This implies that, for eachi we have

−λ0yi + λ1pap−1
i = γi = 0, if ai > 0,

−λ0yi = γi ≥ 0, if ai = 0.

Sinceyi ≥ 0 andλ0≥ 0, we conclude thatλ0yi = γi = 0, if ai = 0. Therefore, we get

−λ0yi + λ1pap−1
i = γi = 0,∀i. (16)

The remainder of the proof now follows as in [8]. More precisely, since not all the
multipliers are 0, ifλ0 = 0, thenλ1 > 0. This implies that

g(a) = 0, (17)

and, by (16) thata = 0, contradiction. On the other hand, ifλ1 = 0, thenλ0 > 0
which impliesy = 0, contradiction. Thus, bothλ0 andλ1 are positive and we can
assume, without loss of generality, thatλ0 = 1. Moreover, we conclude that (17)
holds. From (16) and (17) we get

− f (a) = ∑n
i=1aiyi

= λ1p∑n
i=1ap

i
= λ1p.

Sinceq = p/(p−1), (16) and (17) now imply that

n

∑
i=1

yq
i =

n

∑
i=1

(λ1p)qaq
i = (λ1p)q =− f (a)q.
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2.3 Sensitivity Analysis

Consider now theconvex (perturbed) program

(Pε)

µ(ε) = min f (x)
subject togi(x)≤ εi , i = 1, . . . ,m,

h j(x) = ε j , j = m+1, . . . ,q,
x∈U,

(18)

whereU is an open subset ofR
n, and the functionsf andgi , i = 1, . . . ,m, are convex

andh j , j = m+1, . . . ,q, are affine. Thegeneralized Slater Constraint Qualification
(CQ) for (Pε) states that

there exists ˆx∈ intU such that
gi(x̂) < εi , i = 1, . . . ,m, andh j(x̂) = ε j , j = m+1, . . . ,q.

(19)

We can now state the convex multiplier rule and the corresponding shadow price
interpretation of the multipliers. (See e.g. [8, 9].)

Theorem 3. Suppose that the CQ in(19)holds for(P0) in (18). Then,

µ(0) = min{ f (x)+
m

∑
i=1

λigi(x)+
q

∑
j=m+1

λ jh j(x) : x∈U}, (20)

for someλ j ∈ R, j = m+ 1, . . .q, andλi ≥ 0, i = 1, . . . ,m. If a∈F solves(P0),
then in addition

λigi(a) = 0, i = 1, . . . ,m. (21)

Theorem 4. Suppose that a∈F . Then, (20) and (21) imply that a solves(P0).

Theorem 5. Suppose that a1 and a2 are solutions to(Pε1) and (Pε2), respectively,
with corresponding multiplier vectorsλ 1 andλ 2. Then,

(ε2− ε1,λ 2)≤ f (a1)− f (a2)≤ (ε2− ε1,λ 1). (22)

Note that since the functions are convex and the problem (20)is an unconstrained
minimization problem, we see that ifa ∈ F solves(P0), then (20) and (21) are
equivalent to the system

▽ f (a)+ ∑m
i=1 λi▽gi(a)+ ∑q

j=m+1λ j▽h j(a) = 0
λi ≥ 0, λigi(a) = 0, i = 1, . . . ,m.

(23)
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Moreover, sincef (ai)= µ(ε i), whenai solves(Pε i ), (22) implies that−λ i ∈ ∂ µ(ε i),
i.e. the negative of the multiplierλ i is in the subdifferential of the perturbation
functionµ(ε) at ε i . In fact (see [9])

∂ µ(0) = {−λ : λ is a multiplier vector for(P0)}.

If λ is unique, this implies thatµ is differentiable at 0 and▽µ(0) =−λ . Note that

∂ µ(a) = {φ ∈ R
n : (φ ,η −a)≤ µ(η)− µ(a)}.

We will apply the convex multiplier rule in the sequel. Note that the necessity of
(23) requires a constraint qualification, such as Slater’s condition, while sufficiency
does not. Thus, in our applications we do not have to worry about any constraint
qualification. For, as soon as we can solve (23), the sufficiency guarantees optimal-
ity. Note that necessity is used in numerical algorithms.

3 Generating Eigenvalue Bounds

We consider then×n matrix A which has real eigenvaluesλ1≥ . . . ≥ λn. We have
seen how to apply optimization techniques in order to prove several known inequal-
ities. Now suppose that we are given several facts about the matrix A, e.g.n, traceA
and/or detA etc... In order to find upper (lower) bounds forf (λ ), a function of the
eigenvalues, we could then maximize (minimize)f (λ ) subject to the constraints
corresponding to the given facts aboutA. An explicit solution to the optimization
problem would then provide the, previously unknown, best upper (lower) bounds
to f (λ ) given these facts. To be able to obtain an explicit solution we must choose
simple enough constraints and/or have a lot of patience.

Suppose we wish to obtain a lower bound forλk, the k-th largest eigenvalue,
given the facts that

K := traceA, m :=
K
n

, L := traceA2, s2 :=
L
n
−m2.

Then we can try and solve the program

min λk

subject to(a) ∑n
i=1 λi = K,

(b) ∑n
i=1 λ 2

i ≤ L,
(c) λk−λi ≤ 0, i = 1, . . . ,k−1,
(d) λi−λk≤ 0, i = k+1, . . . ,n.

(24)

This is a program in the variablesλi with n,k,K and L fixed. We have replaced
the constraint∑λ 2

i = L with ∑λ 2
i ≤ L. This increases the feasible set of vectors

λ = (λi) and so the solution of (24) still provides a lower bound forλk. However, the
program now becomes a convex program. Note that(traceA)2 = (∑λi)

2≤ n∑λ 2
i =
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ntraceA2, by the Cauchy-Schwartz inequality, with equality if and only if λ1 = λ2 =
. . . = λn. Thus, if (traceA)2 = ntraceA2, then we can immediately conclude that
λi = traceA/n, i = 1, . . . ,n. Moreover, ifnL 6= K2, thennL> K2, and we can always
find a feasible solution to the constraints which strictly satisfies∑λ 2

i < L, and hence
we can always satisfy the generalized Slater CQ.

Theorem 6. If K2 < nL and1 < k≤ n, then the (unique) explicit solution to(24) is

λ1 = . . . = λk−1 = m+s
(

n−k+1
k−1

)
1
2 ,

λk = . . . = λn = m−s
(

k−1
n−k+1

)
1
2 ,

(25)

with Lagrange multipliers for the constraints (a) to (d) in(24)being

α = −m
ns

(

k−1
n−k+1

)
1
2 − 1

n,

β =
(

k−1
n−k+1

)
1
2 1

2ns,

γi = 0, i = 1, . . . ,k−1,
γi = 1

n−k+1, i = k+1, . . . ,n,

(26)

respectively.

Proof. Since (24) is a convex program, the Karush-Kuhn-Tucker conditions are suf-
ficient for optimality. Thus, we need only verify that the above solution satisfies both
the constraints and (23). However, let us suppose that the solution is unknown be-
forehand, and show that we can use the necessity of (23) to findit. We get

α +2β λi− γi = 0, i = 1, . . . ,k−1 (27a)

1+ α +2β λk +
k−1

∑
i=1

γi−
n

∑
i=k+1

γi = 0 (27b)

α +2β λi + γi = 0, i = k+1, . . . ,n, (27c)

α ∈ R,β ≥ 0,β

(

n

∑
i=1

λ 2
i −L

)

= 0,γi ≥ 0,γi(λi−λk) = 0, i = 1, . . . ,n. (27d)

Now, if β = 0, then

α = γi =−γ j , i = 1, . . . ,k−1, j = k+1, . . . ,n.

This implies that they are all 0, (or all> 0 if k = n) which contradicts (27b). Thus,
β > 0 and, by (27d),

∑
i

λ 2
i = L. (28)

From (27a) to (27d), we now have

λi =
−α
2β

+
γi

2β
, i = 1, . . . ,k−1,
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λ j =
−α
2β
− γ j

2β
, j = k+1, . . . ,n,

λk =
−α
2β
− 1

2β
−

k−1

∑
i=1

γi

2β
+

n

∑
j=k+1

γ j

2β
.

Supposeγi0 > 0, where 1≤ i0 ≤ k−1. Then (27a) and (27d) imply thatλk = λi0 =
−α
2β +

γi0
2β . On the other hand, since we need

λi =
−α
2β

+
γi

2β
≥ λk =

−α
2β

+
γi0

2β
>
−α
2β

, i = 1, . . . ,k−1,

we must haveγi > 0, i = 1, . . . ,k−1 and, by complementary slackness,

λi = λk =
−α + γi

2β
, i = 1, . . . ,k−1. (29)

But then

λk =
−α
2β
− 1

2β
−

k−1

∑
j=1

γ j

2β
+

n

∑
j=k+1

γ j

2β
=
−α
2β

+
γi

2β
, i = 1, . . . ,k−1,

which implies∑n
j=k+1γ j > 0. But γ j > 0 impliesλ j = λk. This yieldsλ1 = . . . =

λk = . . . = λn, a contradiction since we assumednL > K2. Thus, we conclude that

γi = 0, i = 1, . . . ,k−1.

Now if γ j0 > 0, for somek+ 1≤ j0 ≤ n, thenλ j0 = −α
2β −

1
2β + ∑n

j=k+1
γ j
2β . Since

λ j = −α
2β −

λ j
2β ≤ λk, we must haveγ j > 0, for all j = k+1, . . . ,n. Note thatγ j = 0

for all j = k+1, . . . ,n, leads to a contradiction since thenλ j = −α
2β > λk = −α

2β −
1

2β .
Thus we have shown that theλi ’s split into two parts,

λ1 = . . . = λk−1 > λk = . . . = λn. (30)

The Lagrange multipliers also split into two parts,

γ1 = . . . = γk−1 = 0,γk+1 = . . . = γn = γ.

We now explicitly solve forλ1,λk,α,β , andγ. From the first two constraints and
(28) we get

(k−1)λ1+(n−k+1)λk = K,
(k−1)λ 2

1 +(n−k+1)λ 2
k = L.

(31)

Eliminating one of the variables in (31) and solving the resulting quadratic yields
(25). Uniqueness of (25) follows from the necessity of the optimality conditions.
It also follows from the strict convexity of the quadratic constraint in the program
(24). Using the partition in (30), we can substitute (27c) in(27b) to get
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1+ α +2β (
−α− γ

2β
)− (n−k)γ = 0,

i.e.

γ =
1

n−k+1
. (32)

In addition,λ1−λk = −α
2β −

(

−α
2β −

γ
2β

)

implies

β =
γ

2(λ1−λk)
=

(

k−1
n−k+1

) 1
2 1

2ns
, (33)

while

α =−2λ1β =
−m
ns

(

k−1
n−k+1

) 1
2

− 1
n
. (34)

In the above, we have made use of the necessity of the Karush-Kuhn-Tucker
(KKT ) conditions to eliminate non-optimal feasible solutions.Sufficiency of the
KKT conditions in the convex case, then guarantees that we have actually found the
optimal solution and so we need not worry about any constraint qualification. We
can verify our solution by substituting into (27).

The explicit optimal solution yields the lower bound as wellas conditions for it
to be attained.

Corollary 1. Let 1 < k≤ n. Then

λk≥m−
(

k−1
n−k+1

) 1
2

s, (35)

with equality if and only ifλ1 = . . . = λk−1,λk = . . . = λn.

The above Corollary is given in [12] but with a different proof. From the proof
of Theorem 6, we see thatβ = 0 if k = 1 and so the quadratic constraint∑λ 2

i ≤ L
may not be binding at the optimum. Thus the solution may violate the fact that
∑λ 2

i = traceA2. This suggests that we can do better if we replace the inequality
constraint by the equality constraint∑λ 2

i = L. We, however, lose the nice convexity
properties of the problem. However, applying the John conditions, Theorem 2, and
using a similar argument to the proof of Theorem 6, yields theexplicit solution

λ1 = . . . = λn−1 = m+s/(n−1)
1
2

λn = m− (n−1)
1
2 s,
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i.e. we get the lower bound

λ1≥m+s/(n−1)
1
2 ,

with equality if and only ifλ1 = . . . = λn−1. (This result is also given in [12] but
with a different proof.)

The Lagrange multipliers obtained in Theorem 6 also providethe sensitivity co-
efficients for program (24). (In fact, the multipliers are unique and so the perturba-
tion function is differentiable.) This helps in obtaining further bounds for the eigen-
values when we have some additional information, e.g. from Gerŝgorin discs. We
can now improve our lower bound and also obtain lower bounds for other eigenval-
ues.

Corollary 2. Let 1 < k < n. Suppose that we know

λk+i−λk≤−εi , (36)

whereεi ≥ 0, i = 1, . . . ,n−k. Then

λk ≥m−
(

k−1
n−k+1

) 1
2

s+
1

n−k+1

n−k

∑
i=1

εi . (37)

Proof. The result follows immediately from the left-hand side of (22), if we perturb
the constraints in program (24) as given in (36) and use the multipliers γi = 1

n=k+1.
Note thatλk remains thek-th largest eigenvalue.

Corollary 3. Let 1 < k < n. Suppose that we know

λk+i−1−λk+t ≤ εi ,

for someεi ≥ 0, i = 1, . . . ,t. Then

λk+t ≥m−
(

k−1
n−k+1

) 1
2

s− 1
n−k+1

t

∑
i=1

εi .

Proof. Suppose that we perturb the constraints in program (24) to obtain

λk+i−λk≤ εi , i = 1, . . . ,t. (38)

Sinceεi ≥ 0, this allows a change in the ordering of theλi , for then we can have
λk+i = λk + εi > λk. Thus the perturbation in the hypothesis is equivalent to (38).
From (22), the result follows, since thek-th orderedλi has become the(k+ t)-th
orderλi .
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The results obtained using perturbations in the above two Corollaries can be ap-
proached in a different way. Since the perturbation function µ is convex (see e.g.
[9]) we are obtaining a lower estimate of the perturbed valueµ(ε) by using the mul-
tiplier whose negative is an element of the sub-differential ∂ µ(ε). We can however
obtain better estimates by solving program (24) with the newperturbed constraints.

Theorem 7. Under the hypotheses of Corollary 2, we get

λk≥m−
(

k−1
n−k+1

) 1
2

sε +
1

n−k+1

t

∑
j=1

ε j , (39)

where

s2
ε = s2−

(n−k+1)∑t
j=1 ε2

j −
(

∑t
j=1 ε j

)2

n(n−k+1)
.

Equality holds if and only if

λ1 = . . . = λk−1;λk+i−λk =−εi , i = 1, . . . ,t.

Proof. We replace the last set of constraints in program (24) by the perturbed con-
straints (36), fori = k+1, . . . ,k+ t. The arguments in the proof of Theorem 6 show
that the solution must satisfy (28) and

λ1 = . . . = λk−1;λk+ j −λk =−ε j , j = 1, . . . ,t.

We can assume thatk+ t = n, since we must haveλk+t+ j ≤ λk+t and so we can add
the constraints

λk+t+ j −λk≤−εt , j > 1,

if required. This leads to the system

(k−1)λ1+ ∑t
j=1(λk− ε j) = K,

(k−1)λ 2
1 + ∑t

j=1(λk− ε j)
2 = L.

(40)

Let ε := ∑t
j=1 ε j andε̄ := ∑t

j=1 ε2
j . Then (40) reduces to

(k−1)λ1+(n−k+1)λk = Kε := K + ε,
(k−1)λ 2

1 +(n−k+1)λ 2
k −2ελk = Lε := L− ε̄.

Then
λk = (Kε − (k−1)λ1)/(n−k+1).

Substituting forλk yields the quadratic

n(k−1)λ 2
1 −2(k−1)(Kε− ε)λ1 +K2

ε −2εKε − (n−k+1)Lε = 0,

which implies



Generating Eigenvalue Bounds Using Optimization 15

λ1 =
K
n

+

(

n−k+1
k−1

) 1
2
{

(n−k+1)Lε + ε2

n(n−k+1)
−
(

K
n

)2
} 1

2

(41)

and

λk =
K
n

+
ε

n−k+1
−
(

k−1
n−k+1

) 1
2
{

L
n
− (n−k+1)ε̄ + ε2

n(n−k+1)
−
(

K
n

)2
} 1

2

.(42)

Note that the partial derivative with respect to−ε j , atε j = 0, of the lower bound
for λk in (39) is−1/(n− k+ 1). This agrees with the fact that the corresponding
multiplier is γ j = 1/(n−k+1).

Corollary 3 can be improved in the same way that Theorem 7 improves Corollary
2. We need to consider the program (24) with the new constraints

λk−i−λk≤ εi , i = 1, . . . ,t,

whereεi ≥ 0 andk has replacedk+ t. Further improvements can be obtained if more
information is known. For example, we might know that

λt+i−λt ≤−εi , i = 1, . . . ,s,

wherel +s< t +s< k or k+s< t +s< n. In these cases we would obtain a result
as in Theorem 7.

In the remainder of this section we consider bounds forλk + λℓ andλk−λℓ. To
obtain a lower bound forλk + λℓ we consider the program

minimize λk + λℓ

subject to(a) ∑λi = K,
(b) ∑λ 2

i ≤ L,
(c) λi−λk≤ 0, i = k+1, . . . , ℓ
(d) λ j −λℓ ≤ 0, j = ℓ+1, . . . ,n.

(43)

Note that we have ignored the constraintsλi − λk ≥ 0, i = 1, . . . ,k− 1. From our
previous work in the proof of Theorem 6, we see that the Lagrange multipliers for
these constraints should all be 0, i.e. we can safely ignore these constraints without
weakening the bound.

Theorem 8. Suppose that K2 < nL and1≤ k < ℓ≤ n. Then the explicit solution to
(43) is

1. If n− ℓ > ℓ−k−1, then

λ1 = . . . = λk−1 = m+s
(

n−k+1
k−1

)
1
2 ,

λk = . . . = λn = m−s
(

k−1
n−k+1

)
1
2 ,

(44)
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with Lagrange multipliers for the constraints

α =−2β λk− 2
(n−k+1) ,

β = 1
ns

(

k−1
n−k+1

)
1
2 ,

γi = δ j = 2/(n−k+1), i = k+1, . . . , ℓ−1, j = ℓ+1, . . . ,n,

γℓ =
2(n−ℓ+1)

n−k+1 −1.

(45)

2. If n− ℓ≤ ℓ−k−1, thenλ1 is the solution of the quadratic(51)and

λ1 = . . . = λk−1,

λk = . . . = λℓ−1 = λ1 + K−nλ1
2(ℓ−k)

λℓ = . . . = λn = λ1 + K−nλ1
2(n−ℓ+1)

(46)

with Lagrange multipliers for the constraints being

α =−2β λ1,
β = 1

nλ1−K ,

γi = 1/(ℓ−k), i = k+1, . . . , ℓ−1,γℓ = 0,
δ j = 1/(n− ℓ+1), j = ℓ+1, . . . ,n.

Proof. To simplify notation, we letβ ← 2β . The Karush-Kuhn-Tucker conditions
for (43) yield

(a) α + β λi = 0, i = 1, . . . ,k−1,

(b) 1 + α + β λk − ∑ℓ
i=k+1 γi = 0,

(c) α + β λi + γi = 0, i = k+1, . . . , ℓ−1,
(d) 1 + α + β λℓ + γℓ − ∑n

j=ℓ+1δ j = 0,

(e) α + β λ j + δ j = 0, j = ℓ+1, . . . ,n,
( f ) β ,γi ,δ j ≥ 0, β

(

∑n
1 λ 2

t −L
)

= 0, ∀i, j,
(g) γi(λi−λk) = 0, δ j(λ j −λℓ) = 0, ∀i, j.

(47)

First suppose thatβ = 0. If k > 1, we get thatα = 0 and soγi = δ j = 0, for all
i, j. This contradicts (47)(b). Ifk= 1, we getα =−δ j =−γi , for all i, j. So if α 6= 0,
we must haveλ1 = . . . = λn = m. So we can letk > 1 and assume thatβ > 0. Then
we get

λi = − α
β i = 1, . . . ,k−1

λk = −1
β −

α
β + ∑ℓ

i=k+1
γi
β

λi = − α
β −

γi
β i = k+1. . . , ℓ−1

λℓ = −1
β −

α
β −

γℓ
β +

∑n
j=ℓ+1 δ j

β

λ j = −α
β − δ j

β j = ℓ+1, . . . ,n

To simplify notation, the indexi will now refer toi = k+1, . . . , ℓ−1 while the index
j will refer to j = ℓ+1, . . . ,n. Sinceλi0 ≤ λk, i0 = k+1, . . . , ℓ−1, we get
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∑γi ≥ 1− γi0. (48)

Therefore, there exists at least oneγi0 > 0. This implies thatλi0 = λk, and

γi0 = 1−
ℓ

∑
i=k+1

γi .

Now if γi1 = 0, then

λi1 =
−α
β

>
−α
β
− γi0

β
= λi0 = λk,

which is a contradiction. We conclude

λi0 = λk,γi0 = 1−∑ℓ
i=k+1 γi , i0 = k+1, . . . , ℓ−1.

Note that ifγℓ = 0, we get

γi = 1/(ℓ−k), i = k+1, . . . , ℓ−1.

Similarly, sinceλ j0 ≤ λℓ, j0 = ℓ+1, . . . ,n, we get

∑δ j − γℓ ≥ 1− δ j ,

i.e. at least oneδ j0 > 0 and soλ j0 = λℓ. But if δ j1 = 0, then

λ j1 =
−α
β

>
−α
β
− δ j0

β
= λ j0 = λℓ,

a contradiction. We conclude

λ j0 = λℓ,δ j0 = 1−∑n
l+1 δ j + γℓ, j0 = ℓ+1, . . . ,n.

So that ifγℓ = 0, we also have

δ j = 1/(n− ℓ+1), j = ℓ+1, . . . ,n.

There now remains two cases to consider:

γℓ = 0 andγℓ > 0.

Sinceλk ≥ λℓ, we must have

ℓ−1

∑
i=k+1

γi +2γℓ ≥
n

∑
j=ℓ+1

δ j .

Moreover
λ j ≤ λℓ ≤ λk = λi , for all i, j,
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which implies that
δ j ≥ γi , for all i, j.

So that ifγℓ = 0, we must have

ℓ−k−1> n− ℓ.

From the expressions forγi ,δ j , we get

λk = −1
β − α

β + ℓ−k−1
(ℓ−k)β ,

= λi = −α
β −

1
(ℓ−k)β , i = k+1, . . . , ℓ−1,

λℓ = −1
β − α

β + n−ℓ
(n−ℓ+1)β ,

= λ j = −α
β −

1
(n−ℓ+1)β , j = ℓ+1, . . . ,n.

Thus
λk = λ1− 1

β (ℓ−k) ,

λℓ = λ1− 1
β (n−ℓ+1) .

(49)

After substitution, this yields

−1
β

=
K−nλ1

2
. (50)

Sinceβ > 0, we can apply complementary slackness and substitute forλk andλℓ.
We get the quadratic

(k−1)λ 2
1 +(ℓ−k)

(

λ1 +
K−nλ1

2(ℓ−k)

)2

+(n− ℓ+1)

(

λ1 +
K−nλ1

2(n− ℓ+1)

)2

= L,

(51)
or equivalently
{

4(ℓ−k)(n− ℓ+1)(k−1)+(n− l +1)(2(ℓ−k)−n)2+(l −k)(2(n− ℓ+1)−n)2
}

λ 2
1

+2K {(n− l +1)(2(ℓ−k)−n)+ (l−k)(2(n− ℓ+1)−n)}λ1

+
{

(n− l +1)K2+(l −k)K2−4(ℓ−k)(n− ℓ+1)L
}

= 0.

Note that the above implies

λk + λℓ = 2λ1+
K−nλ1

2

(

1
ℓ−k

+
1

n− ℓ+1

)

. (52)

In the case thatℓ−k−1< n− ℓ, we getγℓ > 0. Thus,λℓ = λk and

λi = λk, i = k+1, . . . ,n. (53)

Substitution yields the desired optimal values forλ . Moreover,
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γi = δ j = 1−
ℓ

∑
t=k+1

γt = 1−
n

∑
s=ℓ+1

δs+ γℓ.

Let γ = γi andδ = δ j , then we get

γ = δ = 1− (ℓ−k−1)γ− γℓ = 1− (n− ℓ)δ + γℓ.

This implies
γ = δ = 2/(n−k+1)

γℓ = 2(n−ℓ+1)
n−k+1 −1.

(54)

Now if k > 1, we see that

β =
γi

λ1−λi
= 2

(

k−1
n−k+1

) 1
2

/(ns).

Then
α =−β λk− γi.

To obtain an upper bound forλk−λℓ, we consider the program

minimize−λk + λℓ

subject to∑λi = K,

∑λ 2
i ≤ L,

λk−λi ≤ 0, i = 1, . . . ,k−1,
λ j −λℓ ≤ 0, j = ℓ+1, . . . ,n

(55)

Theorem 9. Suppose that K2 < nL and1 < k < ℓ < n. Letm̄= m, L̄ = L− (l −k−
1)m̄, ands̄2 = L̄

k+n−l+1− m̄2. Then the explicit solution to program(55) is

λ1 = . . . = λk = m+ n−ℓ+1
k s̄ = m+ 1

2kβ ,

λk+1 = . . . = λℓ−1 = m̄ = m,

λℓ = . . . = λn = m+ k
n−ℓ+1s̄, = m− 1

2(n−ℓ+1)β ,
(56)

with Lagrange multipliers for the four sets of constraints being

α = −2mβ ,

β =

√

1
k + 1

n−l+1

2
√

ns

γi = 1/k, i = 1, . . . ,k−1,
δ j = 1/(n− ℓ+1), j = ℓ+1, . . . ,n,

(57)

respectively.
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Proof. The proof is similar to that in Theorem 8. Alternatively, sufficiency of the
KKT can be used.

The Theorem yields the upper bound

λk−λℓ ≤ n
1
2 s

(

1
k

+
1

n− ℓ+1

) 1
2

.

4 Fractional Programming

We now apply techniques from the theory offractional programmingto derive
bounds for theKantorovich ratio

λk−λℓ

λk + λℓ
. (58)

This ratio is useful in deriving rates of convergence for theaccelerated steepest
descent method, e.g. [6].

Consider thefractional program(e.g. [10, 11])

max

{

f (x)
g(x)

: x∈F

}

. (59)

If f is concave andg is convex and positive, thenh = f
g is apseudo-concavefunc-

tion, i.e.h : R
n→ R satisfies(y− x)t ▽h(x) ≤ 0 impliesh(y) ≤ h(x). The convex

multiplier rules still hold if the objective function is pseudo-convex. We could there-
fore generate bounds for the ratio (58) as was done forλk in Section 3. However, it
is simpler to use the following parametric technique. Let

h(q) := max{ f (x)−qg(x) : x∈F} . (60)

Lemma 1 ([2]). Suppose that g(x) > 0, for all x ∈F , and that q is a zero of h(q)
with corresponding solution̄x∈F . Thenx̄ solves(59).

Proof. Suppose not. Then there existsx∈F such that

q =
f (x̄)
g(x̄)

<
f (x)
g(x)

,

which yields 0< f (x)−qg(x). This contradicts the definition ofq.

We also need the following
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Lemma 2 ([12]). Let w,λ ∈ R
n be real, nonzero vectors, and let

m= λ Te/n and s2 = λ TCλ/n,

where e is the n×1 vector of ones, and the centering matrix C= I −eeT/n. Then

−s(nwTCw)
1
2 ≤ wT λ −mwTe= wTCλ ≤ s(nwTCw)

1
2 .

Equality holds on the left (resp. right) if and only if

λ = aw+be

for some scalars a and b, where a≤ 0 (resp. a≥ 0).

We now use the above techniques to derive an upper bound for the Kantorovich
ratio in (58). Consider the program

max γkℓ
= λk−λℓ

λk+λℓ

subject to∑λi = K
∑λ 2

i ≤ L
λk−λi ≤ 0, i = 1, . . . ,k−1
λi−λℓ ≤ 0, i = ℓ+1, . . . ,n.

(61)

Theorem 10. Suppose that1< k < ℓ < n,K2 < nL, and Theorem 8 guaranteesλk+
λℓ > 0. Then the explicit solution to(61) is

λ1 = . . . = λk = p̄(n−ℓ+1+k)−(n−ℓ+1)(1− p̂
1
2 )

k(n−ℓ+1+k)

λk+1 = . . . = λℓ−1 = traceA2

traceA

λℓ = . . . = λn = p̄ 1− p̂
1
2

n−ℓ+1+k,

(62)

γkℓ
=

(p+k)(n− ℓ+1− p)
1
2 (n− ℓ+1+k)

2(p+k)(k(n− ℓ+1))
1
2 +{(p+k)(n− ℓ+1− p)} 1

2 (n− ℓ+1+k)
,

where
p := K2

L − (ℓ−1)
p̄ := K− (ℓ−k−1) L

K

p̂ := 1− k
n−ℓ+1(n− ℓ+1+k)

(

1
k + ℓ−k−1

p̄2

(

L
K

)2− L
p̄2

)

.

Proof. Let F denote the feasible set of (61), i.e. the set ofλ = (λi) ∈R
n satisfying

the constraints. We consider the following parametric program

(Pq) h(q) := max{(λk−λℓ)−q(λk + λℓ) : λ ∈F} .

Thenh(q) is a strictly decreasing function ofq and, ifλ ∗ solves(Pq) with h(q) = 0,
then, by the above Lemma 1,λ ∗ solves the initial program (61) also.
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The objective function of(Pq) can be rewritten as min−(1− q)λk + (1+ q)λℓ.
The Karush-Kuhn-Tucker conditions for(Pq) now yield (withβ ← 2β again):

k− th

l − th
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= 0

β ≥ 0;δi ≥ 0,∀i = 1, . . . ,k−1;γ j ≥ 0,∀ j = ℓ+1, . . . ,n;λ ∈F ;

β
(

∑λ 2
i −K2)= 0;δi (λk−λi) = 0,∀i;γ j (λ j −λℓ) = 0,∀ j.

Sinceλk ≥ λℓ and we seekq such thath(q) = 0, we need only considerq > 0.
Further, ifβ = 0, then we get the following cases:

k < i < ℓ : 0 = α + β λi impliesα = 0
i < k : 0 = α + β λi− δi impliesα = δi = 0
ℓ < i : 0 = α = β λi + γi impliesα =−γi = 0
i = k : 0 =−(1−q)+ α + β λk + ∑δi impliesα =−∑δi +1−q
ℓ = i : 0 = +(1+q)+ α + β λℓ−∑δi impliesα = ∑γi− (1+q).

(63)

These equations are inconsistent. Therefore, we can assumeβ > 0, which implies
that∑λ 2

i = L.
Now, for i < k, eitherλk = λi or δi = 0 which implies thatλi =−α/β . Similarly,

for ℓ < i, λℓ = λi or λi =−α/β . And, fork < i < ℓ, λi =−α/β . We can therefore
see that our solution must satisfy

λi = λk, i = 1, . . . ,k
λi = λ , i = k+1, . . . , ℓ−1
λi = λℓ, i = ℓ, . . . ,n.

Now rather than continuing in this way, we can apply Lemma 2. Letw = (wi), with
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wi = 1−q
k , i = 1, . . . ,k

wi = 0, i = k+1, . . . , ℓ−1

wi = −(1+q)
n−ℓ+1 , i = ℓ, . . . ,n.

Then
(1−q)λk− (1+q)λℓ = (1−q)

k ∑k
i=1 λi− (1+q)

n−ℓ+1 ∑n
i=ℓ λi = wTλ ;

mwTe = m(1−q−1−q)=−2mq;
wTCw = wT Iw− 1

nwTeeTw

= (1−q)2

k + (1+q)2

n−ℓ+1− 1
n(4q2)

nwTCw = n(1−q)2

k + n(1+q)2

n−ℓ+1 −4q2.

Therefore, Lemma 2 yields

(1−q)λ1− (1+q)λn≤−2mq+s

{

n(1−q)2

k
+

n(1+q)2

n− ℓ+1
−4q2

}

1
2

, (64)

with equality if and only if
λ = aw+be,

for some scalarsa andb with a≥ 0. And, the right hand side of (64) equalsh(q),
the maximum value of(Pq).

We now need to findq such thath(q) = 0, i.e.

4m2q2 = s2
{

n(1−q)2

k
+

n(1+q)2

n− ℓ+1
−4q2

}

;

k(n− ℓ+1)4m2q2 = (n− ℓ+1)s2n(1−q)2+ks2n(1+q)2−k(n− ℓ+1)s24q2;
(

−k(n− ℓ+1)4m2+s2n(n− ℓ+1+k)−k(n− ℓ+1)s24
)

q2

+2s2n(−(n− ℓ+1)+k)q
+s2n((n− ℓ+1)+k)= 0

[(ns2−4km2−4s2k)(n− ℓ+1)+ns2k]q2 +2ns2(k− (n− ℓ+1))q+ns2(n− ℓ+1+k)= 0

q=
−ns2(k− (n− ℓ+1))−n2s4(k− (n− ℓ+1))2− [as above]ns2(n− ℓ+1+k)

1
2

[as above]
.

We have chosen the negative radical for the root, since the quantity in [ ] is negative
and we needq > 0. The conditions for equality in (64) yield:

λi = a(1−q)
k +b, i = 1, . . . ,k

λi = b, i = k+1, . . . , ℓ−1

λi =
−a(1+q)
n−ℓ+1 +b, i = ℓ, . . . ,n

or
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λk−λℓ
λk+λℓ

=
a
(

1−q
k

)

+b+
a(1+q)
n−ℓ+1−b

a(1−q)
k − a(1+q)

n−ℓ+1 +2b

=
a(1−q)(n−ℓ+1)+ak(1+q)

a(n−ℓ+1)(1−q)−a(1+q)k+2bk(n−ℓ+1).

We now solve fora andb by substituting forλi in ∑λi = K and∑λ 2
i = L:

k

(

a(1−q)

k

)

+b+(ℓ−k−1)b+(n− ℓ+1)

(−a(1+q)

n− ℓ+1

)

+b = K

or
(k+ ℓ−k−1+n− ℓ+1)b= K−a(1−q)+a(1+q)

b =
2aq+K

n
.

And

k

(

a(1−q)

k

)

+b2+(ℓ−k−1)b2+(n− ℓ−1)

(−a(1−q)

n− ℓ+1
+b2

)

= K2

or

[k+ℓ−k−1+n−ℓ+1]b2+[2a(1−q)−2a(1+q)]b+
a2(1−q)2

k
+

a2(1+q)2

n− ℓ+1
−K = 0

k

(

a
1−q

k
+

2aq+K
n

)2

+(ℓ−k−1)

(

2aq+K
n

)2

+(n−ℓ+1)

(−a(1+q)

n− ℓ+1
+

2aq+K
n

)

−K = 0

k

(

a

(

1−q
k

+
2q
n

)

+
K
n

)2

+(ℓ−k−1)

(

2aq
n

+
K
n

)2

+(n− ℓ+1)

(

+a

(−(1+q)

n− ℓ+1
+

2q
n

)

+
K
n

)2

−L = 0;

[k

(

1−q
k

+
2q
n

)2

+(ℓ−k−1)
4q2

n2 +(n− ℓ+1)

(−(1−q)

n− ℓ+1
+

2q
n

)2

]a2

+a2[k

(

1−q
k

+
2q
n

)

K
n

+(ℓ−k−1)
2q
n

K
n

+(n− ℓ+1)

(

2q
n
− (1+q)

n− ℓ+1

)

K
n

]

+k

(

K
n

)2

+(ℓ−k−1)

(

K
n

)2

+(n− ℓ+1)

(

K
n

)2

−L = 0

[−4q2

n
+

(1−q)2

k
+

(1+q)2

n− ℓ+1

]

a2 +nm2−L = 0

a =
−nm2 +L

−4q2

n + (1−q)2

k + (1+q)2

(n−ℓ+1)

1
2

Substitution for theλi yields the desired results.
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Let γ = λk/λℓ. Then

γkℓ =
γ−1
γ +1

and
dγkℓ

dγ
=

2
(γ +1)2 > 0.

Thusγ is isotonic toγkℓ. This yields an upper bound toγkℓ, see [13]: If (to guarantee
λℓ > 0) we have(ℓ−1)L < L, then

λk

λℓ
≤ c+k+

{

n−ℓ+1
k (c+k)(n− ℓ+1−c)

}
1
2

c+k−
{

k
n−ℓ+1(c+k)(n− ℓ+1−c)

}
1
2

,

where

c =
(K)2

L
− (ℓ−1).

(These inequalities are also given in [7].) Note that

γ +1
γ−1

=
λk + λℓ

λk−λℓ
,

is reverse isotonic toγ. Thus we can derive a lower bound for this ratio.

5 Conclusion

We have used optimization techniques to derive bounds for functions of the eigen-
values of ann×n matrixA with real eigenvalues. By varying both the function to be
minimized (maximized) and the constraints of a properly formulated program we
have been able to derive bounds for thek-th largest eigenvalue, as well as for sums,
differences and ratios of eigenvalues. Additional information about the eigenval-
ues was introduced to improve the bounds using the shadow prices of the program.
Many more different variations remain to be tried.

The results obtained are actually about ordered sets of numbersλ1 ≥ . . . ≥ λn

and do not depend on the fact that these numbers are the eigenvalues of a matrix.
We can use this to extend the bounds to complex eigenvalues. The constraints on
the traces can be replaced by

∑vi = traceT,∑ (vi)
2≤ traceT∗T,

wherevi can take on the real, imaginary, and modulus of the eigenvaluesλi , and the
matrixT can become(A+A∗)/2, (A−A∗)/2i. Further improvements can be made
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by using improvements of the Schur inequality∑(vi)
2 ≤ traceT∗T. This approach

is presented in [12] and [13].
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