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Abstract

In this paper, we use known bounds on the smallest eigenvalue of a symmetric matrix and
Schoenberg’s Theorem to provide both necessary as well as sufficient trace inequalities that
guarantee a matrix D is a Euclidean distance matrix, EDM. We also provide necessary and
sufficient trace inequalities that guarantee a matrix D is an ED M generated by a regular figure.

1 Introduction

A real, n x n, symmetric matrix D = (d;;) is called a predistance matriz if it is nonnegative
elementwise with zero diagonal. If, in addition, there exist points p!,...,p" in some Euclidean
space " such that

dij = It — p/||? for all i,j =1,...,n,

then D is called a Fuclidean distance matriz, EDM, and the dimension of the smallest space
containing the points p',...,p" is called the embedding dimension of D. A well-known theorem of
Schoenberg [7] states that a predistance matrix D is EDM if and only if D is negative semidefinite
on the subspace M = et = {r e R": el = 0}, where e is the vector of all ones. This provides
a relationship between the convex cone of EDM sand the convex cone of positive semidefinite
matrices.

It is well known that a real symmetric n X n matrix X is positive semidefinite if and only if
all the eigenvalues are nonnegative. Therefore, bounds on the smallest nonzero eigenvalue can be
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used to provide both necessary as well as sufficient conditions for positive semidefiniteness. In this
paper we use known relationships between E D M s and positive semidefinite matrices and known
eigenvalue bounds, to get necessary as well as sufficient inequalities that guarantee a matrix is
EDM .

In this paper, we let e denote the vector of all ones of appropriate dimension; 8™ denotes the
space of real, symmetric, n X n matrices; D € S™ denotes a nonzero predistance matrix; and for
X € 8™, we use X = 0 to denote that X is positive semidefinite.

1.1 Known Eigenvalue Bounds

Bounds for eigenvalues of matrices are well known in the literature. A survey of bounds is given in
e.g. B 4]. The following upper and lower bounds on the smallest nonzero eigenvalue of a symmetric
matrix follow from the results in [9]. We ouline a proof for completeness.

Theorem 1.1 [4] Suppose that A is an n X n, real symmetric matriz of rank at most r, r > 2.
Let

trace A ,  trace A? <trace A ) 2
m = , s° = - .
T r

(1.1)

’
Then the smallest nonzero eigenvalue of A, denoted \1(A), satisfies

1
r—1

m—vr—1s<\(A) <m-— s. (1.2)
Proof. We outline a proof for the lower bound for A\1. The proof of the upper bound is similar but
more involved. Let A be a symmetric matrix of rank r and let A = (\;) be the vector of the nonzero
eigenvalues of A. We know that e’ \ = i1 Aj = trace A and 77, )\? = trace A2. Moreover,

2
the Cauchy-Schwartz inequality implies that r (w) = L(eTA)? < L|le|]?||A][* = trace A%, with

T
equality if and only if all the eigenvalues are equal to %trace A, in which case the lower bound

2
is trivially true. Therefore, we can assume that strict inequality holds, r (W) < trace A?.
Consider the convex program

min A\
subject to 3774 A; = trace A
i1 )\5 < trace A2

By the strict inequality assumption, the generalized Slater constraint qualification holds for this
convex program. Therefore, we can apply the (necessary and sufficient) optimality conditions
(Karush-Kuhn-Tucker conditions), with Lagrange multipliers «, 3:

1
+ae+26X=0, 0O (Z)\?—traceBz) =0, #>0.
=
0
The optimality conditions are satisfied by 8 > 0 and m — vVr—1 s =X < Ay = --- = A\, =
m+ —— s. u

r—1
Note that the bounds get tighter if  can be chosen smaller.



2 Some Necessary and Some Sufficent Trace Inequalities for EDMs

As stated above, it is well known [7] that a predistance matrix D is EDM if and only if D is
negative semidefinite on M. Let V be the n x n — 1 matrix whose columns form an orthonormal
basis for M. Then it immediately follows that a predistance matrix D is EDM if and only if
—VTDV is positive semidefinite. Note also that J := VVT =T — %eeT is the orthogonal projection
onto M. Now, by applying Theorem [ to the matrix X = —V7DV we obtain the following
theorem.

Theorem 2.1 Let D # 0 be an n X n, n > 3, predistance matrixz. Then

1. The following is a sufficient condition for D to be an EDM

2 T2 (n=3) 1 2 2
— - > . .
e D%e 2 =2) (e" De)* > trace D (2.3)

2. If D is an EDM then D satisfies

2
= eI’ D?%e > trace D% (2.4)
n

Proof. It is clear that D is EDM if and only if the smallest nonzero eigenvalue of the
(n —1) x (n — 1) matrix X = —VT DV is nonnegative. But rank X <n — 1. Let

trace X 1 1 D
m= 2R trace DVVT = — trace D(I — —eel) = e e
n—1 n—1 n—1 n n(n —1)
and )

5?2 = trace X2 — m?

n—1

1 2 (n—2)
= trace D* — ————e" D%e + ————>— (e’ De)*.
—— trace n(n—l)e e+ (n—1)2n2(e e)

Then, Theorem [Tl and the fact that m > 0 imply that the smallest nonzero eigenvalue of X is
nonnegative if m? > (n — 2)s?. Note that

2(n —2 -3
(n —1)(m? — (n — 2)s%) = —(n — 2) trace D* + MeTDze - miz)(eTDe)z.
n n
Therefore, Condition 1 holds.
The second condition follows from the upper bound on the smallest eigenvalue, i.e. if m > 0
and m? —s2/(n—2) < 0, then D is not EDM . Therefore, We get the required necessary condition

in (24) since

(n—1)(m?—s?/(n—2)) = — el D%.

1 2
t D+ ——
n_g e * n(n — 2)

The following is an immediate corollary of Theorem BT



Corollary 2.1 Let D be 3 x 3 predistance matrixz. Then D is EDM if and only if
2
3 el D%e > trace D. (2.5)

The results in Theorem B can be strengthened by weakening the sufficient condition (E3), if the
rank of D is known. Note that the necessary condition in Theorem Bl is independent of rank of
D. We get the following result.

Theorem 2.2 Let D # 0 be an n X n, n > 3, predistance matriz and assume that rank D = k <
n — 1. Then the following is a sufficient condition for D to be an EDM

2 70 (k—=2) 2 2
ne D<e 20k )(e De) trace D (2.6)

Proof. If rank D = k then rank X = —VTDV < k. Note that k > 2 since D # 0 and
trace D = 0. Therefore, in this case

trace X 1 1 1 D
m = ra(];e = —Etrace pvvT = —Etrace D(I — ee ) = ekne.
and ]
5?2 = % trace X2 — m?
1 2 k—1
= trace D? — ReTDze + (k‘2n2) (eI De)?.
The result now follows from a similar argument to that in the proof of Theorem Tl [ |

A recent, different sufficient condition for a predistance matrix to be an EDM is derived

TD 2
by Bénasséni [2]. This is in the form of a variance inequality equivalent to S;_ne_)l > trace D2,
The condition is derived using a continuity argument on the D M corresponding to the standard
simplex.

The following is an immediate corollary of Theorem [Z2Z

Corollary 2.2 Let D be an n X n predistance matrixz of rank 2. Then D is an EDM if and only if
2
= e’ D% > trace D2 (2.7)
n

Theorem 2.3 Let D # 0 be an n xn EDM. Then D satisfies inequality in Theorem [Z as an
equality if and only if the embedding dimension of D is 1.

Proof. Let D # 0 be an n x n EDM and let B = —%JDJ, where J = VV7T is the orthogonal
projection on the subspace M = et. Then B > 0 and the embedding dimension of D is well known
to be equal to the rank of B. Furthermore, D can be written in terms of B as

D = diag Be® + e(diag B)' — 2B, (2.8)
where diag B denotes the vector consisting of the diagonal elements of B.

Using (), it is easy to show that %eTDze > trace D? is equivalent to (trace B)? > trace B.
Let Ay < Ay < --- < A, be the eigenvalues of B. Therefore, D satisfies inequality 4 in Theorem
1l as an equality if and only if (trace B)? = trace B2 if and only if (31", ;)2 = 31 A? if and
onlyif \y =Xy =---=X,_1 =0and A\, >0 since B = 0. [ ]



3 Spherical EDMs

An EDM D is said to be a spherical EDM if the points that generate D lie on a hypersphere.
If, in addition, this hypersphere is centered at the origin, then, following [3], we say that D is
generated by a regular figurell The following result is known.

Lemma 3.1 ([6]) Let D be a spherical EDM and let the points that generate D lie on a hypersphere
of radius R. Then \* = 2R? is the minimum value of A such that \ee? — D > 0.

Proof. (For completeness we include a proof of this lemma based on a recent characetrization
of the rangespace and the nullspace of spherical EDMs [[I].) Let D be a spherical EDM of embedding
dimension r and let B = —%JDJ. Let B be factorized as B = PP, where P is n x r of rank .
Furthermore, let Z be a Gale matrix corresponding to D. Z is defined to satisfy

T
Range Z := Nullspace [ ];T ] ,  Z full rank.

Then it was shown in [I] that Range D = Range [ P e | and Nullspace D = Range Z.
Define the nonsingular matrix Q = [ P e Z |. Then Aee” —D = 0 if and only if Q7 (\ee? —D)Q =

0. But
—-PTpp —PTDe 0 )

QT (\eel —D)Q = ( —e'DP  Xn?—e'De 0
0 0 0

. . (2(PTP)?  —PTDe
T_pDx»
Therefore, Aee’ — D > 0 if and only if ( " TDP  An? — T De

eI’ DP(PTP)=2PT De > 0. This implies that

) = 0, if and only if An? —el'De —

e'De  e'DP(PTP)"2PTDe

=

n (3.9)

2n?2
el De B e’ DB De

n? 2n? ’

where BT denotes the Moore-Penrose inverse of B. But the center of the hypersphere containing
the points that generate D is given by a = (PTP)™'PTDe/2n. Hence, \* = ¢’ De/n? + 2a"a =
2R?.

Corollary 3.1 Let D be an n X n predistance matriz. Then D is a spherical EDM if and only if
Neel — D =0, where \* is given in {Z3).

Corollary 3.2 ([3]) Let D be an n x n predistance matriz. Then D is a spherical EDM generated
by a reqular figure if and only if N*ee” — D = 0, where
B el De

A= (3.10)

!Some authors refer to these as ED M s of strength one, [6]



4 Sufficent and Necessary Trace Inequalities for EDMs Generated
by Regular Figures

Since A* given by (BI0) is easy to compute , in the section we present sufficient and necessary trace
inequalities for a predistance matrix to be an EDM generated by a regular figure.

Theorem 4.1 Let D be an n X n,n > 3 predistance matrixz. Then
1. The following is a sufficient condition for D to be an EDM generated by a reqular figure.

n—1 (el De)?

5—— > trace D? (4.11)

n—2 n
2. If D is an EDM generated by a regular figure then

(e” De)?
n2

2 > trace D% (4.12)

Proof. Let A= \eel — D then rank A <n — 1. Let

o trace A n \*
 n—1 n-1""~
and )
2 = trace A% — m?
n—1 \ ) )
20\* —
= trace D?> — ———¢T De + M)\*z,
n—1 n—1 (n—1)2
1 2 1 T 2
= n—l traceD — m(e De) .

Then, Theorem [CTlimplies that the smallest eigenvalue of A is nonnegative if m? > (n —2)s?. But
2 2 o, (1) 7 9
(n—1)(m* — (n—2)s*) = —(n — 2) trace D* + T(e De)“.

Therefore, Condition 1 holds.
Condition 2 follows from the upper bound on the smallest eigenvalue of A, i.e. if D is an EDM
generated by a regular figure then m? — s2/(n — 2) > 0. We get

(n—1)(m? - s?/(n —2)) = —ﬁ trace D? + m(eTDe)?
[

As was the case in Theorem 2], the sufficient condition in Theorem BTl can be weakened if the
rank of D is known. Hence, we have the following theorem

Theorem 4.2 Let D # 0 be an n X n,n > 3 predistance matriz of rank k < n — 1. Then the
following is a sufficient condition for D to be an EDM generated by a reqular figure.
k  (eTDe)?

m T Z trace D2 (413)



Proof. let D be an EDM generated by a regular figure of rank k <n —1, kK > 2 since D # 0

and trace D = 0. then rank VI DV < k. Consequently, rank A = Meel — D <k. Let

B trace A n

-\
k k

and

and the result follows by a similar argument as in the proof of Theorem ETl

1
s = z trace A% — m?
1 2\ 2(k—1
= 7 trace D? — Z—eT De + L2))\*2,
1 (k+1)
= 7 trace D? — 122 (el De)?,
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