CONE~CONVEX PROGRAMMING: STABILITY AND AFFINE CONSTRAINT FUNCTIONS

J.M. Borwein® and H. Wolkowicz+

We present strengthened optimality conditionms for the abstract con-
vex program. In particular, we consider the special case when the range
space of the constraint is finite dimensional and when the constraint
function is affine. Applications include a sensitivity theorem and a
generalization of Farkas' Lemma.

1. INTRODUCTION
In this paper we consider both: the general abstract convex program
(Pg) u = inf{p(x): g(x) € -5, x € @}, 1)
where p: X + R is a convex functional, g: X + Y is an S-convex function,
S is a convex cone in Y and 9 is a convex set in X; and the special
abstract convex program

(¢4 u = inf{p(x): Ax € -8, x € q}, (2)

)
where now Ax = Lx - b is an affine operator and @ is a polyhedral set,
i.e., L is a linear operator, b is a vector and @ is a finite intersection
of closed half spaces.

Such programs arise in several situationms. For example, the semi-
infinite program

p = inf{p(x): h{x,t) < 0, for all t in T and x in a}

can be written in the form (Pg) if we set g(x) = h(x,*), Y some subspace
of RT and S the cone of nomnnegative functions in Y. If T is compact,
h(-,t)-convex for each t and h(x,*) continuous for each x, then we can
choose Y = C[T], the continuous functions on T. The Lagrange multipliers

are then taken from the dual space of Borel measures on T, see e.g.

Borwein and Wolkowicz (1979b).
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Optimal control problems with linear dynamics, an initial condition,
a final target set and a control set can be rewritten in the form (PA)'
The constraint Ax € -S represents the state hitting the target for a
given control x, see e.g. Luenberger (1969).

Many problems in stability of differential equations can be phrased
in terms of the feasibility of an operator equation in the space of
linear operators endowed with the symmetric ordering, i.e. the ordering
induced by the cone of positive semidefinite operators, see e.g. Berman
(1973).

Characterizations of optimality for (Pg) with constraint qualifica-
tion have been given by many authors, see e.g. Luenberger (1969). The
usual constraint qualification used is Slater's condition, i.e. there
exists a feasible point % whose image under g is in the topological
interior of ~S. This condition has been weakened by Craven and Zlobec
(1980) to require only nonempty relative algebraic interior of the feas-
ible set and nonempty interior of the cone S, while a characterization of
optimality for (Pg) without any constraint qualification has been given
by Borwein and Wolkowicz (1979b).

Massam (1979) considered (Pg) in the special case that Y is finite
dimensional. She used the "minimal exposed face" of -5 which contained
the image of the feasible set to get optimality conditions which held
when the minimal exposed face actually coincided with the minimal face.
This was pointed out and strengthened in Borwein and Wolkowicz (1981a).
In Borwein and Wolkowicz (1981b) we presented a Lagrange multiplier
theorem for (Pg) which holds without any constraint qualification. This
result differs from the standard Lagrange multiplier theorem in two ways.
First the Lagrange multiplier is chosen from the dual cone of the minimal
face (or "minimal cone") of (Pg)’ denoted Sf, rather than the (smaller)

dual cone of S; second, the Lagranglan is restricted to x € 8 N g-l(Sf-SfL
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In Borweln and Wolkowicz (1979a) we presented an algorithm which
“"regularizes" (Pg) by finding Sf and g-l(Sf—Sf).

In this paper we restrict ourselves to the special case when Y is
finite dimensional. We first recall and strengthen the Lagrange multi-
plier characterization of optimality for (Pg) given in Borwein and
Wolkowicz (1981b). This is then applied to the program (PA) to yield a
Lagrange multiplier result which differs from the standard case only in
that the multiplier is chosen from a larger dual cone. This differs from
previous results where the multiplier is chosen from a larger dual cone
and the variable x is restricted to a smaller set than Q.

These results are then applied to extend the sensitivity theorem for
(Pg) given in Luenberger (1969) and derive a generalization of the

Farkas' lemma given in Ben-Israel (1969). These results hold without

any constraint qualification.

2. PRELIMINARIES
Let us first consider the general abstract convex program

(Pg) p = inf{p(x): g(x) € -8, x € 0}
where p: X + R is a continuous convex functional (on 2); g: X + R is a
continuous S-convex function (on ), i.e.

tg(x) + (1-t)g(y) - gltx+(1-t)y) € 8
for all 0 < t < 1 and x, y in Q; S 18 a convex cone, i.e. S+ S CS and
ts C S for all t > 0; 2 is a convex set in X (not necessarily polyhedral);
and X is a locally convex (Hausdorff) space. The feasible set of (PS) is

sy, (3

F=anNg
We assume throughout that
F¥ 0. (4)
The polar cone of a set K in R" is

k' = (6 € ®%: ¢x > 0 for all x in K}, (5)
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where ¢x denotes the inner product in R*. The anmnihilator of a set K is
k' = & n ", .
Recall that for two closed convex cones K and L,
&yt = gt 4t (6)
where * denotes closure, e.g. Luenberger (1969).

We will need to use the smallest face of S which contains -g(F).

Definition 1: (i) K 1is a face of a convex cone S if K is a convex cone and
X, YE€S, x+y €K implies x, y € K. (7
(ii) The minimal cone for (Pg)’ denoted Sf, is defined to be the
smallest face of S which contains -g(F). (Note that Sf is the inter-
section of all faces of S which contain -g(F)).
The following characterization of optimality for (Pg) was given in

Borwein and Wolkowicz (1981b) Theorem 4.1.

THEOREM 1: For the program (Pg),

p = inf{p(x) + Ag(x): x € Ff} (8)
for some \ in (Sf)+ and ¥ = a N g—l(Sf-Sf). In addition, if u = p(a)
with a in F, then

ig(a) = 0 (complementary slackness) 9

and (8) and (9) characterize optimality of a in F. u]

To prove the above result one shows that
Ff = a n g lst-st) = a n g lst-sy, (10)
g(F) n-rist 4 ¢ (11)
where ri denotes relative interior, and that
g 1is Sf - convex on F.
Then, the standard Lagrange multiplier theorem is applied to the equiva-
lent program

u = inf{p(x): g(x) € —Sf, x € Ff].
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The details are given in Borwein and Wolkowicz (1981b). Note that by the

standard Lagrange multiplier theorem we mean Theorem 1 with Ff = Q and

+ +
(Sf) replaced by S , see e.g. Luenberger (1969). This theorem requires
that Slater's condition hold, i.e. that
aQn g—l(—int SY+40, (12)

where int denotes interior.

We will now present a version of Theorem 1 which 1s stronger in the
sense that the Lagrange multiplier relation holds on a larger set. A
similar result was given in Borwein and Wolkowicz (1979a), Theorem 6.2
and Remark 6.3. This result will be applied in Section 3. TFirst we
need the following lemma. Note that a polyhedral function is the maximum

of a finite number of affine functions.

LEMMA 1: Consider the ordinary convex program

(Po) p = inf{p(x): gk(x) <0, k=1,...,m, x € v}
where gk: X+ R, k=1,...,m, are continuous convex functionals (on V)
and V is a polyhedral set in X. Suppose that there exists an % € V such
that gk(i) <0, k=1,...,m, with striet inequality if gk 18 not poly-
hedral on V. Then

y = inf{p(x) + rg(x): x € v} 13)
for some X = O‘k) > 0. Moreover, if u = p(a) for some a € F, then

ag(a) = 0 (14)

and (13) and (14) characterize optimality of a in F.

PROOF. Llet 1 = {k: gk is polyhedrall, J = {1,...,mNT and
W= {x€X: gk(x) < 0, for all k in I},
Then (Po) is equivalent to the program

p = inf{p(x): gk(x) < 0, for all k in J, x € v Nl (15)
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The point X nov satisfies Slater's condition for this program. Therefore
there exist nonnegative scalars s k in J, such that

y = inf{p(x) + I ukgk(x): x € VNW.
kel

Now since V is polyhedral,
v={x€X: \bk(x) = ¢kx - bkf_O, k=1l,...,t

for some ¢k in X*, the dual of X, and b, in R. Moreover, for each k in 1,

k
k k k .. k
g (x) = max ni(x) for some affine functions n, and finite index sets I .
ier
Therefore

0, 1 in Ik, k in I,

A

p = infl{p(x) + I akgk(x): nl;_(x)
kEJ

) < 0, k= 1,...,th
This program is linearly constrained which implies that there exist
further nonnegative scalars uli, i€ Ik, k in I, and a nonnegative vector

A in Rt such that

u = inf{p(x) + ):ulznl;(x) + Ap(x)} < infl{p(x) + ag(x) + Ap(x)}
where o, = z kal;_ , a = (ak) and ¢ = (wk). Since a(x) < 0 for all x in V,
i€1

p < inf{p(x) + ag(x): x € V}. (16)
The reverse inequality follows from the definition of (Po), since
ag(x) < 0 for all feasible x. This proves (13). The rest of the proof,

i.e. complementary slackness and sufficiency, is standard. 0

If % € ri V, then the above lemma holds with V convex but not
necessarily polyhedral, see Rockafellar (1970a, Theorem 28.1).

We now present the strengthened version of Theorem 1.

THEOREM 2: Suppose that
g 1is sf-convex on FH, an

where

FCFPCa. (18)
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Moreover, suppose that P is polyhedral. Then Theorem 1 holds with F
replaced by FH.

PROOF. We can rewrite (Pg) as the equivalent program

() w=inflp(): g(x) € -sf, x e M.
By (11) and (18), a generalized Slater's condition holds for this program
and thus the standard Lagrange multiplier theorem holds. Let us show
this by applying Theorem 1 and Lemma 1. Now, by Theorem 1 applied to
(PH), we get

= dnflp(x) + rg@: x € F n g~ (sf-sfyy 19)
for some A in (Sf)+. Since Y = R™ is finite dimensional, we can find
o 1= 1,..st, dn (s5)* such that

f £ £ +

(s7-87) = 121 {o 3.
Thus x € g (s'-5T) 1f and only 1£ ¢ 8(0) < 0, 1 = 1,...,t, and (19) 1s
equivalent to

u = 1nf{pGo) + Tg(0): 6,800 < 0, 1 = 1,...,t, x € Fl.  (20)

Since g is Sf—convex on FH and {¢i} C (Sf)‘L c (Sf)+, we conclude that
both ¢ig and -¢ig are convex (on FH), which in turn implies that

¢ig is affine (on FH), i=1,...,t
and, without loss of generality, we can assume them affine on X. Now
since FH is polyhedral, we can apply Lemma 1 to (20). Thus, there exist

nonnegative scalars ay such that
_ t

w = inflp(x) + Tg() + I o4,8(x): x € . (21)
i=1

We can now let

Then clearly A 1s in (Sf)+ and this shows that (8) holds with Ff replaced
by FH. That (9) holds follows, for if a € F, then

rg(a) = Xg(a) (22)
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t
since I ai¢i is in (Sf)l. The sufficiency of (8) and (9) is clear. O
=]

The above two theorems differ from the standard case in two ways.
First, x is restricted to a set smaller than { while the multiplier X is
chosen from the larger cone (Sf)+ rather than S+. Theorem 2 shows how to
weaken the restriction on x. This strengthens the optimality conditions.
We now show that we can further strengthen the conditions by replacing

(Sf)+ with a smaller cone.

COROLLARY 1: Suppose that in Theorem 2 we have

sfcrnay M=ang?

H. (23)
. + , £+
Then Theorem 2 holds with L replacing (S7) <if
Lt - wt = sHY (24)
or equivalently, when equality holds in (23) and H and L are closed

convex cones, if

1" - 5 1s closed. (25)
Moreover, if equality holds in (23) and H is a subspace, then the above
condition (24) or (26) is also necessary (independent of the particular

f

functions p and g). In particular, we can choose H = Sf-S and L = S.

PROOF. Note that when equality holds in (23) then (24) and (25) are

equivalent since, by (6)

+ +  _+

sHt = anwt =t - vt

when H and L are closed convex cones. Now, if (24) holds and X satisfies
(8) and (9) (with FH instead of Ff), then one can solve A = ¢ - h with ¢
in L+ and h in H+. Hence for any x in FH we get

Ag(x) = ¢g(x) - hg(x)

(26)
< ¢8(x),
since g(x) € H when x € FH. Thus
u = inf{p(x) + Ag(x): x € FH}
(27)

< inf{p(x) + ¢g(x): x € FH}.
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The reverse inequality holds also. For, ¢g(x) < 0, for all x €E FC FH,

since g(F) € -Sf C -L. The complementary slackness condition is proved
in the usual way, i.e. if u = p(a) with a € F, then

p(a) = u

1nflp(x) + ¢g(x): x € F}

p(a) + ¢g(a), since a € F C FH

|A

p(a), since g(F) C sfc 1.

|a

Conversely, suppose ¢ lies in (Sf)+, equality holds in (23) and H is

a subspace. Assuming that Theorem 2 holds with L+ replacing (Sf)+, we
need to show that (24) holds. Let P be the orthogonal projection on H.
Consider the program

y = inf{¢P(y): -Py € -~ cone L, y € ™
where cone L denotes the convex cone generated by L. Then
pp_1 (cone L) C pp_l(Lﬂ-H) = Sf sou = 0, Also —P_l(H) = R® so that
Theorem 2 yields

0 =y = inf{éPy + A(-Py): y € R'}.
Since we now assume that X € L+, we get ¢P = AP = 0 and

¢ = ¢ - (¢P-AP)

= (4-2)(I-P) + 1 € -H" + 1. a)

Remark 1. As an example of the above theorem, let us consider the case
S = R:, i.e. (Pg) is now equivalent to the ordinary finite dimensional
convex program with convex (on Q) constraints gk(x) <0, kEP ={1,...,m},
x € Q. Let P = {k €P: gk(x) = 0, for all x € F} be the minimal indexing
set of binding constraints, e.g. Abrams and Kerzner (1978). Then it is
easy to see that

sfely=(y) €Kiy, =0, forall ke P}
is the minimal cone of (Pg) and Theorem 1 yields

u = infl{p(x) + Ag(x): x € @ and gk(x) = 0, for all k € P},
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for some A = (A)) in sH*, 1.e. A 2 0 for k € PP, A arbitrary for

kK € P-. This result extends the characterization of optimality for the

ordinary convex program given in e.g. Abrams and Kerzner (1978), Ben-Israel

et al. (1976) and Ben-Tal and Ben-Israel (1976). The extension is in the

sense that the infimum may be unattained and the constraint x € Q is

included. (Note that one might also be able to use the approach of

Abrams (1975) for problems with unattained infima.) Since S is polyhedral,

Corollary 1 implies we can assume that A € S+, i.e. )‘k > 0 for all k in P.
Now suppose that @ is polyhedral and the constraints gk, k € Pg, are

analytic convex (or only piecewise faithfully convex, see Ben-Israel et

al. (1976) and Rockafellar (1970b)) on €. In Theorem 2 set H = {a}*,

where a = (ak) with ap > 0 if x € P~ and gk is not polyheéral (on ),

o, >0 if k € P and gk is polyhedral (on Q) and o = 0 otherwise. Then

K
Faanglm

=N {x€X: I akgk(x) = Q}.
kep

Let x be any feasible point for (P) and
D, = {d € X: there exists a > 0 with
h(x+ad) = h(x), for all 0 < a < a}
be the cone of directions of constancy at x of h, e.g. Ben-Israel et al.
kgk. Then Dh is a subspace (or polyhedral cone)
independent of the point x (see e.g. Ben-Tal and Ben-Israel (1979) for X

(1976), where h = Lo

finite dimensional and Wolkowicz (1980a) for the general case). Note that
Theorem 2 holds with F“ replaced by any polyhedral set G such that
FCGCH
since the program (PH) remains equivalent to the original program (Ps).
We now set
G=0a0 (frl'Dh) .

To apply Theorem 2 with FH replaced by G, we need only show that g is
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Sf-convex on G. Now if x,y € G and 0 < < 1, then Ax + (1-\)y € G, since
Dh is a subspace and so convex, and

k k k

g Ox+(1-N)y) - 2g (x) - (1-3)g (y) 2 0 (28)
for all k € P, since the constraints gk are convex on 2. To show that
g is Sf—convex on G we need to show that equality holds in (28) for all
kE€EP . In fact, it is sufficient to show that gk is affine on G for all

k

k € P . Now suppose that ko €P and g ® is not affine (on 9), then

o, > 0, h(x) = h(x) = 0 for all x in G and so

k
(]

-u. %o k
kg (x) = I a8 (x)
keP\ {k }
k k

for all x € G. Thus -g ® as well as g © are convex functions on G which
implies that gko is affine on G. Theorem 2 now yields

u = inf{p(x) + Ag(x): x € G}
for some X in (Sf)+. Moreover, by Corollary 1 we can assume that X € S+,
i.e. A > 0. This result yields the optimality conditions given in
Wolkowicz (1980b). Note that, if {x € X: h(x) = 0} is convex, then
= c.

The above set G can be found computationally in the analytic convex
(or faithfully convex) case by calculating the cones of directioms of
constancy of the appropriate functions, see Wolkowicz (1978).

In the case that Slater's condition (12) holds, the above theorems
reduce to the standard Lagrange multiplier theorem (see e.g. Luenberger
(1969)) i.e. in this case g_l(Sf—sf) becomes all of X, while (Sf)+
becomes S+.

Note that A is S-convex (on ) since it is affine (on f). Thus the

above preliminaries all hold for the program (PA)’ see (2).

Remark 2. We can extend the functions p: X + R U {=} and

g: X~ R® U {=} and remove the continuity assumptions on p and g.
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Theorem 1 (see Wolkowicz and Borwein (1981b)) would then require that
dom p O F, where dom p denotes the essential domain of p. Lemma 1 needs
x € dom p and p continuous at some feasible point and g continuous on V.

Theorem 2 needs dom p 2 F and p(x) + Ag(x) continuous at some point in

M n g Lsf-sh.

3. A LAGRANGE MULTIPLIER THEOREM FOR (PA)

If the cone S 1s polyhedral, then the program (PA) is linearly con-
strained and the standard Lagrange multiplier theorem always holds.
(Recall that 9 is a polyhedral set in (PA).) However, we now see that
even when S is an arbitrary convex cone, then program (PA) allows a
Lagrange multiplier theorem which differs from the standard case only in
that the multiplier A is chosen from a larger comne containing S+, namely
from (Sf)+. Moreover, when A is a linear operator and § is a subspace,

we get a geometric weakest constraint qualification.

THEOREM 3: For the program (PA),
y = inf{p(x) + MAx: x € Q}, (29)
for some  in (s5*. In addition, if u = p(a) with a in F, then
Ag(a) = 0 (30)
and (29) and (30) characterize optimality of a in F.

PROOF: By Theorem 1, we get that
u = inflp(x) + Tax: x € 2 n A (sf-s%)) (31)
for some X in (Sf)+ and if y = p(a) with a in F, then
igla) = 0 (32)
and (31) and (32) characterize optimality of a in F. Now since Y = R" is
finite dimensional, we see that
Al(stosT) = (x € X: 9 Ax = 0, L= 1,000, (33

1
for some ¢i € (Sf-SffL = (Sf) with
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k
i
sf - sf=n fo, 1. (34)
i=1
Lemma 1 now implies that
k
u = inflp(x) + *Ax + I o ¢ Ax: x €0}, (35)
=1 1'%
for some ay in R+. We now let
_ k
A=A+ I a,b, . (36)
1=1 i1

Since the functionals ¢i are in (Sf), we get that

x e sH? an
and moreover, since g(a) € g(F) C —Sf,

rg(a) = Xg(a). (38)
The conclusion now follows by substituting A into (35) and noting that
the program (35) is equivalent to (31) and that, by (38), rg(a) = 0 if

and only if Xg(a) = 0, [m]

Remark 3. In (31) we can assume X is in S+ rather than (Sf)+ if

st 4 sHt - shHY (39)
(see Corollary 1). Thus if

A(Q) C (sf-sh (40)
then A_l(sf-sf) is redundant in (31) and (29) holds with X in S+. Thus
(39) and (40) is a constraint qualification for (PA)'

We can further strengthen the above theorem by using Theorem 2. In
fact, in this case we see that regularity of the problem, in the sense
that the standard Lagrange multiplier theorem holds, independent of p,
depends solely on the condition (39), i.e. solely on the geometry of the

cone S.

THEOREM 4: Firet, for the program (PA), there exists a polyhedral cone
H in K* such that

sf = 5N -H and A(Q) C H. (41)
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Now if X and H in &® satisfy
(@) sfckn-mand (11) A@ CH (42)
with H polyhedral, then Theorem 3 holds with (sf)+ replaced by ' Jif
& -n - sHY, (43)
or equivalently, when equality holds in (42)(1) and H and K are closed
convex aones, if
gt - " 1s closed. (44)
Moreover, if B is a subspace and equality holds in (42) (1), then the

above conditions are also necessary for &t to replace (Sf)+.

PROOF: 1f Sf = 5, we can choose H = R®. If Sf is a proper face of S,
then A(R) N -ri S = ¢ and the Hahn-Banach Theorem implies that there
exists ¢o1 € S+ such that

¢1(A(9)) > 0, ¢1(ri s) > 0. (45)
This implies that —Sf c-sn {¢1}+ . If equality holds, then we can set
H= {¢l}+. 1f not, then we repeat the same process but with the cone
-s N {¢1}+ replacing the cone -S. Since R" is finite dimensional this
process must stop in a finite number of steps. We then set

t
+
H= 0 {¢1} .
i=1
This H then satisfies 4l).
Now suppose that (42) holds. Since A is affine, we see that A is

Sf-convex on the polyhedral set

M =analm (46)

£ oy ¥

and Theorem 2 implies that we can replace F by in (8), i.e.

p = inf{p(x) + AAx: x €00 A tant, n

£+ £+

for some X in (87) . By Corollary 1, we see exactly when (8 ) can be
replaced by K+, but with x € 2 O A-l(H) rather than x € Q as desired.

1

But since A(Q) C H, we see that x € @ if and only ifx€QN A T(H). =]
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Slater's condition (12) is a conetraint qualification for (Pg), i.e.
it is a sufficient condition which guarantees that the standard Lagrange
multiplier theorem holds for (Pg)’ independent of the objective function
p.- A weakest constraint qualification is a necessary and sufficient con-
straint qualification. Weakest constraint qualifications for the
ordinary convex program, i.e. for the program (Pg) with S polyhedral and
Q = X, have been given in Wolkowicz (1980a). The nonconvex case is
treated in Gould and Tolle (1972). See also Bazaraa et al. (1976). We
now see that the above theorem ylelds a very elegant weakest constraint

qualification for (P).

COROLLARY 2: (onsider the program (PA) when A ig linear and @ is a sub-

space. Then there exists a subspace H satisfying (41) and moreover, the

eondition

S+ _ H+ - (Sf)+ (48)
or equivalently, if S is closed,

st - 1" 1s closed (49)

is a weakest comstraint qualification.

PROOF: Since A(R) 1s now a subspace, let us choose H to be any subspace
satisfying (41), e.g. H = A(Q) + Sf-Sf. The result now follows from

Theorem 4. o

4. STABILITY AND A GENERALIZATION OF FARKAS' LEMMA
We now apply the results in the previous section. First, we have the
following sensitivity theorem for a perturbed program (Pg

perturbation € is restricted to Sf - S.

), when the
€
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THEOREM 5: Suppose that w and u(e) are the optimal values of the program
(Pg) and the perturbed program
minimize p(x)

8¢ subject to g(x) ~ec¢ € -Sand x € Q

respectively, where ¢ € st - S (regp. € S: - 8). Suppose that ) and A

are the (restricted) Lagrange multipliers for (Pg) and (P8 e) respectively,
’

found using Theorem 1. Then

u - u(e) < e (resp > - Age). (50)

PROOF: Suppose that Sf is the minimal cone for the perturbed program
(Pg,s) with ¢ € Sf -~ 8. Let us first show that S: c Sf. Suppose not, i.e.
suppose that there exists x € @ such that g(x) -~ ¢ = -5 € =§ but s ¢ Sf.
Then g(x) = -s + ¢ € Sf - Sbut -s 4+ ¢ ¢ Sf - Sf, since
(S-Sf) n (Sf—S) =sf - st Now by (11), there exists x € Q such that
g(X) = -8 € -ri Sf. Thus for 0 < A < 1 and A sufficiently small, we see
that (1-A)% + Ax € @, -8 + A(8+e) € -r1 ST - § and

g((1-0)x+Ax) = (1-A)g(k) + rAg(x) - 8;» for some 8, €5
| € -s\-sf, (51)
since s € Sf.

= -§ + A\(8+e) ~ A8 - 8

This contradicts the definition of the minimal cone Sf. Thus
sfc st (52)
Now by Theorem 1
£ -1, £
b-p(x) <ig(x), forallxin F = N g (8°-8)
< e, for all x in Fs’ the feasible set of
(P, )» by (52) and stnce ) € (sF)™.
?
The first inequality of (50) now follows by taking the infimum over x in

Fe' The second inequality follows symmetrically. a]

This result reduces to the standard stability result if Slater's

Condition holds, i.e. in this case the perturbation ¢ 18 no longer

\




Cone-Convex Programming;: Stability and Affine Constraint 395

restricted since Sf -S§=§ -8 = Rm, e.g. Luenberger (1969; 222) or
Geoffrion (1971). Thus u(e) is a continuous function of €. (In
Geoffrion (1971) it was shown that u is a continuous function of ¢ when

restricted to the subspace Sf - Sf. This follows from the above since

sfasfifcest-sh

We now derive a generalization of Farkas' lemma. Recall that the
usual Farkas' lemma (e.g. Mangasarian (1969)) holds with the assumption
that S is polyhedral. In the folloging At: ™ + " is the transpose of

the mxn matrix A and Sf is the minimal cone for the constraint Ax € S.

THEOREM 6: Suppose that A i& an mxn matrix, ¢ 18 a vector in R®, H i8 a
subspace (whose existence is promised by Corollary 2) and K i8 a closed
convex cone which satisfies

sf ek n-B, AR CH and (44). (53)
Then the following are equivalent:

1) The system

At =, 2eHt (54)
ig consistent.
ii) Ax € S == ¢x > 0.
ii1) The system

AfA =4, rex (55)
ie consistent

iv) Ax € K == ¢x > 0.

PROOF: Consider the abstract convex program

(P) u = infl{¢x: -Ax € -5, x € Q = X},
Then (ii) is equivalent to the fact that x* = 0 solves (P). By Theorem 3,
this is equivalent to

0 = u = infl¢x - AMAx: x € R"}

for some A in (Sf)+. This in turn is equivalent to
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0=¢ - Atx , for some A € (Sf)+,
since the gradient
T(ox-AAx) = ¢ - AfA.
Thus (i) is equivalent to (ii). The remaining equivalences follow from
Theorem 4 and Corollary 2. 0O
Note that if (39) holds, then (i111) and (iv) yield the extension of
Farkas' Lemma, with K+ - S+ (see e.g. Ben-Israel (1969))
AtA =¢ , A€ S+ is consistent
if and only if
Ax € S == ¢x > 0.
This result holds if and only if A(S+) is closed, or equivalently,

N(A) + S 1s closed which is equivalent to (39).
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