Extending cover inequalities for the quadratic knapsack problem to relaxations in lifted space

Marcia Fampa
Universidade Federal do Rio de Janeiro, Brazil
fampa@cos.ufrj.br

Daniela Lubke
Universidade Federal do Rio de Janeiro, Brazil
danielalubke@cos.ufrj.br

Fei Wang
Royal Institute of Technology, Sweden.
fewa@kth.se

Henry Wolkowicz
University of Waterloo, Canada
hwolkowicz@uwaterloo.ca

Abstract

We address the binary quadratic knapsack problem (QKP), where the variable \(x \in \{0,1\}^n \) indicates whether an item is selected for the knapsack or not. We consider relaxations of the QKP in the symmetric matrix space determined by the lifting \(X := xx^T \), and present valid inequalities for them on the matrix variable \(X \), which are obtained by extending the well known cover inequalities for the knapsack problem.

Keywords: Quadratic knapsack problem; relaxation; cover inequalities; lifted matrix space.

1 Introduction

We address the binary quadratic knapsack problem, QKP,

\[
\text{(QKP)} \quad \max \ x^T Q x \\
\text{s.t.} \quad w^T x \leq c \\
x \in \{0,1\}^n,
\]

where \(Q \in \mathbb{S}^n \) is a symmetric \(n \times n \) nonnegative integer profit matrix, \(w \in \mathbb{Z}_{++}^n \) is the vector of positive integer weights for the items, and \(c \in \mathbb{Z}_{++} \) is the knapsack capacity with \(c \geq w_i \), for all \(i \in N := \{1,\ldots,n\} \). The binary variable \(x \) indicates whether an item is chosen for the knapsack or not, and the inequality in the model, known as a knapsack inequality, ensures that the selection of items does not exceed the knapsack capacity. We note that any linear costs in the objective
can be included on the diagonal of Q by exploiting the $\{0,1\}$ constraints and, therefore, are not considered.

The QKP was introduced in [?] and was proved to be NP-Hard in the strong sense by reduction from the clique problem. The quadratic knapsack problem is a generalization of the knapsack problem, KP. The KP can be solved in pseudo-polynomial time using dynamic programming approaches with complexity of $O(nc)$.

The QKP appears in a wide variety of fields, such as biology, logistics, capital budgeting, telecommunications and graph theory, and has received a lot of attention in the last decades. Several papers have proposed branch-and-bound algorithms for the QKP and the main difference between them is the method used to obtain upper bounds for the subproblems [? ? ? ? ?]. The well known trade-off between the strength of the bounds and the computational effort required to obtain them is intensively discussed in [?], where semidefinite programming, SDP, relaxations proposed in [?] and [?] are presented as the strongest relaxations for the QKP. The linear programming, LP, relaxation proposed in [?], on the other side, is presented as the most computationally inexpensive. Both the SDP relaxations and the LP relaxation have a common feature, they are defined in the symmetric matrix lifted space determined by the equation $X = xx^T$, and by the replacement of the quadratic objective function in (1) with the linear function in X, $\text{trace}(QX)$. As the constraint $X = xx^T$ is nonconvex, it is relaxed by convex constraints on the relaxations. The well known McCormick inequalities [?], and also the semidefinite constraint $X - xx^T \succeq 0$, or equivalently, $Y \succeq 0$, where

$$Y := \begin{bmatrix} 1 & x^T \\ x & X \end{bmatrix},$$

have been extensively used to relax the nonconvex constraint $X = xx^T$, in relaxations of the QKP.

In this work we present valid inequalities to strengthen relaxations in lifted space for the QKP, which are derived from cover inequalities for the KP. Taking advantage of the lifting $X := xx^T$, we propose new valid inequalities, which can also be applied to more general relaxations of mixed-integer linear and nonlinear programs that use the same lifting. We also discuss how cuts for the relaxations can be obtained by separation algorithms for cover inequalities.

1.1 Preliminaries: knapsack polyhedron and cover inequalities

The knapsack polytope is the convex hull of the feasible points, $KF := \{x \in \{0,1\}^n : w^T x \leq c\}$.

Definition 1.1 (zero-one knapsack polytope).

$$KPol := \text{conv}(KF) = \text{conv}\{x \in \{0,1\}^n : w^T x \leq c\}.$$

Proposition 1.2. The dimension $\dim(KPol) = n$, and $KPol$ is an independence system, i.e.,

$$x \in KPol, y \in \{0,1\}^n, y \leq x \implies y \in KPol.$$

Cover inequalities were originally presented in [? ? ?]. These inequalities can be used not only for knapsack problems, KP, but also for more general mixed-integer linear programs.
Definition 1.3 (cover inequality, CI). The subset \(C \subseteq N \) is a cover if it satisfies
\[
\sum_{j \in C} w_j > c.
\]
The (valid) CI is
\[
\sum_{j \in C} x_j \leq |C| - 1.
\]
The cover inequality is minimal if no proper subset of \(C \) is also a cover.

Definition 1.4 (extended CI, ECI). Let \(w^* := \max_{j \in C} w_j \) and define the extension of \(C \) as
\[
E(C) := C \cup \{ j \in N \setminus C : w_j \geq w^* \}.
\]
The ECI is
\[
\sum_{j \in E(C)} x_j \leq |C| - 1.
\]

Definition 1.5 (lifted CI, LCI). Given any minimal cover \(C \), there exists at least one facet-defining lifted CI, LCI of the form
\[
\sum_{j \in C} x_j + \sum_{j \in N \setminus C} \alpha_j x_j \leq |C| - 1,
\]
where \(\alpha_j \geq 0, \forall j \in N \setminus C \). Moreover, each such LCI dominates the extended CI.

Details about the computational complexity of LCI are presented in [?]. Algorithm 1.1, from [?], shows how to derive a facet-defining LCI from a given minimal cover \(C \).

Algorithm 1.1 Procedure to find LCI
Sort the elements in ascending \(w_i \) order \(i \in N \setminus C \), defining \(\{i_1, i_2, \ldots, i_r\} \)
For: \(t = 1 \) to \(r \)
\[
\zeta_t = \max_{st} \left\{ \sum_{j=1}^{t-1} \alpha_j x_{i_j} + \sum_{i \in C} x_i \right\}
\]
\[
\sum_{j=1}^{t-1} w_{i_j} x_{i_j} + \sum_{i \in C} w_i x_i \leq c - w_{i_t},
\]
\(x \in \{0, 1\}^{|C|+t-1} \).
Set \(\alpha_{i_t} = |C| - 1 - \zeta_t \).
End For

2 Valid inequalities

We are now interested in finding valid inequalities to strengthen relaxations of the QKP in the lifted space determined by the lifting \(X := xx^T \). Let us denote by ConvRel, any convex relaxation of the QKP in the lifted space, where the equation \(X = xx^T \) was relaxed somehow, by convex constraints. Let \(Y \) be defined as in (2). We initially note that if the inequality
\[
\tau^T x \leq \beta
\]
is valid for the QKP, where \(\tau \in \mathbb{Z}_+^n \) and \(\beta \in \mathbb{Z}_+ \), then, as \(x \) is nonnegative and \(X := xx^T \),

\[
Y \begin{pmatrix} -\beta \\ \tau \end{pmatrix} \leq 0
\]

(6)

is a valid inequality for ConvRel.

For simplicity, we will say that the solution \(\bar{Y} \) of ConvRel satisfies (5) if it satisfies the corresponding valid inequality (6).

2.1 Adding cuts to the relaxation

Our first idea is to iteratively obtain a CI, formulated as \(\alpha^T x \leq e^T \alpha - 1 \), where \(\alpha \in \{0,1\}^n \) and \(e \) denotes the ones vector, which is most violated by the current solution \(\bar{Y} \) of ConvRel. More specifically, we search for the CI that maximizes the maximum violation among the inequalities in \(\bar{Y} \text{cut}(\alpha) \leq 0 \), where

\[
\text{cut}(\alpha) = \begin{pmatrix} -e^T \alpha + 1 \\ \alpha \end{pmatrix}.
\]

To obtain such CI, we solve the following linear knapsack problems, for all \(i = 1, \ldots, n+1 \), where \(e_i \) denotes the unit vector.

\[
v_i^* := \max_{\alpha} \{ e_i^T \bar{Y} \text{cut}(\alpha) : w^T \alpha \geq c + 1, \alpha \in \{0,1\}^n \}\).
\]

(7)

If \(v^* := \max_{i \in \{1, \ldots, n+1\}} \{ v_i^* \} > 0 \), the CI given by the corresponding solution of (7) is violated by \(\bar{Y} \). In this case, we apply Algorithm 1.1 to the CI obtained and lift it to a LCI, which is formulated as (5). Finally, we add the corresponding valid inequality (6) to ConvRel.

Remark 2.1. It is worth noting that if \(Y \geq 0 \) in ConvRel, then if \(Y \) satisfies the constraint (6) derived from a LCI, \(Y \) also satisfies the constraints derived from a CI that can be lifted to the LCI. Therefore, the dominance relation between LCI and CI is maintained on the corresponding constraints on the variable \(Y \).

2.2 New valid inequalities in the lifted space

As previously discussed, after finding any valid inequality in the form of (5) for the QKP, we may add the constraint (6) to ConvRel. We note that besides (6), we can also generate stronger valid inequalities in the lifted space by taking advantage of the lifting \(X := xx^T \). In the following, we show how the idea can be applied to cover inequalities.

Let

\[
\sum_{j \in C_1} x_j \leq \beta.
\]

(8)

be a valid inequality for KPol.

The inequality (8) can be either a cover inequality, CI, or an extended cover inequality, ECI, or a particular lifted cover inequality, LCI, where \(\alpha_j \in \{0,1\}, \forall j \in N \setminus C \) in (3). Furthermore, given a general LCI, where \(\alpha_j \in \mathbb{Z}_+ \), for all \(j \in N \setminus C \), a valid inequality of type (8) can be constructed by replacing each \(\alpha_j \) with \(\min\{\alpha_j, 1\} \) in the LCI.
Definition 2.2 (Cover inequality in the lifted space, CILS). Considering (8), we conclude that at most $\left(\frac{\beta}{2}\right)$ products of variables $x_i x_j$, where $i, j \in C_1$, can be equal to 1. Therefore, we introduce the following inequality on the lifted variable X, which we denote by CILS.

$$\sum_{i,j \in C_1, i<j} X_{ij} \leq \left(\frac{\beta}{2}\right).$$ \hfill (9)

Remark 2.3. When $\beta = 1$, the inequality (8) is well known as a clique cut, widely used to model decision problems, and frequently used as a cut in branch-and-cut algorithms. We note that, if $\beta = 1$, the inequality (9) makes it possible to fix

$$X_{ij} = 0, \text{ for all } i, j \in C_1, i < j.$$

Remark 2.4. A similar observation to Remark 2.1, is that, if $Y \geq 0$ in ConvRel, then if Y satisfies a CILS derived from a LCI, Y also satisfies any CILS derived from a CI that can be lifted to the LCI. Therefore, such CILS derived from a LCI, dominates the CILS derived from the CI.

Besides defining one cover inequality in the lifted space considering all possible pairs of indexes in C_1, we can also define a set of cover inequalities in the lifted space, considering in each inequality, a partition of the indexes in C_1 into subsets of cardinality 2. In this case, the right hand side of the inequalities is never bigger than $\beta/2$. The idea is better specified below.

Definition 2.5 (Set of cover inequalities in the lifted space, SCILS). Let C_1 be the cover in the valid inequality (8) for our QKP. Let

• $C_{ls} := \{(i_1, j_1), \ldots, (i_p, j_p)\}$ be a partition of C_1, if $|C_1|$ is even.

• $C_{ls} := \{(i_1, j_1), \ldots, (i_p, j_p)\}$ be a partition of $C_1 \setminus \{i_0\}$ for each $i_0 \in C_1$, if $|C_1|$ is odd and β is odd.

• $C_{ls} := \{(i_0, i_0), (i_1, j_1), \ldots, (i_p, j_p)\}$, where $\{(i_1, j_1), \ldots, (i_p, j_p)\}$ is a partition of $C_1 \setminus \{i_0\}$, for each $i_0 \in C_1$, if $|C_1|$ is odd and β is even.

In all cases, $i_k < j_k$ for all $k = 1, \ldots, p$.

The inequalities in the SCILS corresponding to (8) are given by

$$\sum_{(i,j) \in C_{ls}} X_{ij} \leq \left\lfloor \frac{\beta}{2} \right\rfloor,$$

for all partitions C_{ls} defined as above.

Finally, we extend the ideas presented above to the more general case of knapsack inequalities. We note that the following discussion applies to a general LCI, where $\alpha_j \in \mathbb{Z}_+, \forall j \in N \setminus C$.

Let

$$\sum_{j \in N} \alpha_j x_j \leq \beta.$$ \hfill (10)

be a valid knapsack inequality for KPol, with $\alpha_j, \beta \in \mathbb{Z}_+, \beta \geq \alpha_j, \forall j \in N$.
Definition 2.6 (Set of knapsack inequalities in the lifted space, SKILS). Let \(\{C_1, \ldots, C_q\} \) be the partition of \(N \), such that for every \(j_k \in C_k \), \(\alpha_{j_k} \) assumes the same value \(\tilde{\alpha}_k \) in (10), for all \(k = 1, \ldots, q \), i.e., \(\alpha_{j_r} = \alpha_{j_s} \) if \(j_r, j_s \in C_k \), for some \(k \), and \(\alpha_{j_r} \neq \alpha_{j_s} \), otherwise. The knapsack inequality (10) can then be rewritten as

\[
\sum_{k=1}^{q} \left(\tilde{\alpha}_k \sum_{j \in C_k} x_j \right) \leq \beta.
\]

(11)

Now, for \(k = 1, \ldots, q \), let \(C_{lk} := \{(i_{k1}, j_{k1}), \ldots, (i_{kp_k}, j_{kp_k})\} \), where \(i < j \) for all \((i, j) \in C_{lk} \), and

- \(C_{lk} \) is a partition of \(C_k \), if \(|C_k| \) is even.
- \(C_{lk} \) is a partition of \(C_k \setminus \{i_{k0}\} \), where \(i_{k0} \in C_k \), if \(|C_k| \) is odd.

The inequalities in the SKILS corresponding to (10) are given by

\[
\sum_{k=1}^{q} \left(\tilde{\alpha}_k X_{i_{k0}i_{k0}} + 2\tilde{\alpha}_k \sum_{(i,j) \in C_{lk}} X_{ij} \right) \leq \beta,
\]

(12)

for all partitions \(C_{lk}, k = 1, \ldots, q \), defined as above, and for \(i_{k0} \in C_k \setminus C_{lk} \). (If \(|C_k| \) is even, \(C_k \setminus C_{lk} = \emptyset \), and the term in the variable \(X_{i_{k0}i_{k0}} \) does not exist.)

Proposition 2.7.

- If inequality (8) is valid for \(QKP \), then CILS and the inequalities in SCILS are valid for ConvRel.
- If inequality (10) is valid for \(QKP \), then inequalities in SKILS are valid for ConvRel.

3 Example

Let us now illustrate the application of the cuts proposed in this work, to two instances of the \(QKP \), with 6 candidate items to be selected (\(N = \{1, \ldots, 6\} \)). The instances were constructed with the purpose of showing situations where our proposed cuts CILS and SCILS are both effective if used separately, and are even stronger if used together. Furthermore, we aim to show through the instances that, when the cuts are used separately, each one of them may be stronger than the other.

For the first instance (Instance 1) we consider \(Q_{jj} = 1 \), for \(j \in N \), \(Q_{12} = Q_{13} = Q_{56} = Q_{21} = Q_{31} = Q_{65} = 100 \), and all other elements in the matrix \(Q \) equal to 2. We also consider \(w_j = 1 \), for all \(j \in N \), and \(c = 3 \). For the second instance (Instance 2), we only change the following elements of the matrix \(Q \): \(Q_{14} = Q_{15} = Q_{41} = Q_{51} = 60 \). The remaining data is kept as it is for Instance 1. An optimal solution for both instances is obtained by the selection of items 1, 2, 3, with value \(z^* = 407 \).
We consider the simple initial convex relaxation of the QKP as the following linear program in the lifted space:

\[
\begin{align*}
\text{max} & \quad \text{trace}(QX) \\
\text{s.t.} & \quad w^T x \leq c \\
& \quad X - xx^T \succeq 0 \\
& \quad x \in [0,1]^n \\
& \quad X \in [0,1]^{n \times n}
\end{align*}
\] (ConvRel)

The optimal solution of ConvRel is given by the sum of all elements in Q, as X can be taken as a matrix of all ones and x is a vector of zeros. Now we consider, for both instances, the lifted cover inequality, LCI:

\[
\sum_{j \in N} x_j \leq 3,
\]

the corresponding CILS:

\[
\sum_{i,j \in N, i < j} X_{ij} \leq 3,
\]

and the corresponding 15 inequalities in the SCILS, corresponding to each partition of N:

\[
X_{12} + X_{34} + X_{56} \leq 1,
\]

\[
\vdots
\]

\[
X_{16} + X_{25} + X_{34} \leq 1.
\]

In Table 1, we show the impact on the objective function of the convex relaxation of the QKP, given by the addition of the proposed valid inequalities derived from an LCI.

<table>
<thead>
<tr>
<th>Inst</th>
<th>z^*</th>
<th>Cuts added to ConvRel</th>
<th>None</th>
<th>CILS</th>
<th>SCILS</th>
<th>CILS + SCILS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>407</td>
<td>654</td>
<td>606</td>
<td>418</td>
<td>410</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>407</td>
<td>886</td>
<td>606</td>
<td>650</td>
<td>526</td>
<td></td>
</tr>
</tbody>
</table>

Table 1: Upper bound given by ConvRel with addition of cuts

Finally, we present a similar analysis, but considering a stronger initial convex relaxation ConvRel$^+$, where we add to ConvRel the valid inequalities $X_{jj} = x_j$, for all $j \in N$, and $w^T X \leq cx^T$. The results are presented in Table 2.

<table>
<thead>
<tr>
<th>Inst</th>
<th>z^*</th>
<th>Cuts added to ConvRel$^+$</th>
<th>None</th>
<th>CILS</th>
<th>SCILS</th>
<th>CILS + SCILS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>407</td>
<td>603</td>
<td>603</td>
<td>407</td>
<td>407</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>407</td>
<td>603</td>
<td>603</td>
<td>431</td>
<td>431</td>
<td></td>
</tr>
</tbody>
</table>

Table 2: Upper bound given by ConvRel$^+$ with addition of cuts

We see from the results in Table 2 that, although the cuts CILS cannot tight the bound given by the stronger relaxation ConvRel$^+$, for these small instances, the set of inequalities SCILS is very effective.
4 Conclusions

We present in this work new valid inequalities for convex relaxations of the binary quadratic knapsack problem, \(QKP \), defined in the lifted space determined by the equation \(X = xx^T \), where \(x \) is a binary vector. The inequalities can be also applied to more general binary quadratic programs, or even more general mixed binary programs that are relaxed in this lifted space. Two different ideas are proposed to construct valid inequalities from a cover inequality for the knapsack problem. The first idea leads to a single valid inequality, denoted in this work by cover inequality in the lifted space, \(\text{CILS} \). The second idea leads to a set of valid inequalities denoted by set of cover inequalities in the lifted space, \(\text{SCILS} \). Through two small instances of the problem, we illustrate the application of these inequalities and show that neither of them dominates the other, and that when used together, they may be stronger than when used separately. Finally, we show how the idea in \(\text{SCILS} \) can be generalized to construct valid inequalities from knapsack constraints.

References